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Abstract: Block copolymers with crystallizable blocks are a highly interesting class of materials owing
to their unique self-assembly behaviour both in bulk and solution. This Special Issue brings together
new developments in the synthesis and self-assembly of semicrystalline block copolymers and also
addresses potential applications of these exciting materials.

Block copolymers bearing one or more crystallizable blocks have moved into the focus
of current research owing to their unique self-assembly behaviour both in bulk and in solu-
tion. The bulk morphology and, hence, the properties of semicrystalline block copolymers
are influenced by a complex interplay between crystallization and micro phase separa-
tion. Depending on the segregation strength (confinement) in the melt, crystallization
can either be confined in the pre-existing microphase-separated morphology for strongly
segregated melts, whereas for weakly segregated systems, a “breakout crystallization” can
occur, which overwrites any existing morphology leading exclusively to lamellar struc-
tures [1–9]. This opens a broad parameter space for tuning the properties of semicrystalline
block copolymers in bulk. First studies on semicrystalline AB diblock, ABA triblock and
multiblock copolymers with one crystallizable block based on poly(ethylene oxide) (PEO),
polyester blocks like poly(ε-caprolactone) (PCL), or polyethylene (PE, based on hydro-
genated poly(1,4-butadiene)) have already been reported in the mid-1970s to 1980s [10–17].
An important milestone in this field was the development of ABC triblock terpolymers
with one or two crystallizable blocks based on polystyrene-block-poly(1,4-butadiene)-block-
poly(ε-caprolactone) (SBC) and the corresponding hydrogenated analogues with PE middle
blocks (SEC), reported first by the group of R. Stadler in 1996 and 1998, respectively, and
intensively studied thereafter together with the group of A. J. Müller [18–22]. Shortly after,
in 1998, Floudas et al. reported on the first µ-ABC miktoarm star terpolymer with two
crystallizable PEO and PCL blocks [23]. An important and technically highly relevant
application of block copolymers with crystallizable blocks are thermoplastic elastomers.
Here, ABC triblock terpolymers with a glassy polystyrene and a semicrystalline PE end
block were shown to exhibit superior elastic properties compared to conventional amor-
phous ABA-type thermoplastic elastomers at moderate deformations [24,25]. Additionally,
commercially available multiblock copolymers with semicrystalline polyamide or polyester
hard blocks and polyether-based soft blocks are well-known thermoplastic elastomers and
have inspired the development of more complex multiblock copolymers with improved
elasticity employing well-defined ABA triblock copolymers as soft segments [26]. Some
of the semicrystalline multiblock copolymers containing polyether segments, especially
poly(ethylene oxide) segments, also attracted interest for gas separation membranes [27–29].
New synthetic concepts give access to even more complex block copolymer architectures
such as triblock or tetrablock copolymers with three or even four different crystalliz-
able blocks, [30,31] as well as to the implementation of new semicrystalline blocks, e.g.,
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poly(vinylidene fluoride) (PVDF) [32]. Some of these recent developments are addressed in
this Special Issue.

Crystallization-driven self-assembly (CDSA) of block copolymers with one core-
forming, crystallizable block has developed to an extremely active and innovative field of
research, starting from the first observation of defined cylindrical micelles with crystalline
poly(ferrocenyl dimethylsilane) (PFS) cores in 1998 [33] and following the development
of living CDSA in the groups of I. Manners and M. A. Winnik [34–42]. This paved the way
to a myriad of crystalline-core micellar structures and hierarchical super-structures that
were not accessible before via the self-assembly of fully amorphous block copolymers,
e.g., cylindrical micelles with defined length, length distribution, and corona chemistries
(block type or patchy corona), branched micelles, non-centrosym metric cylindrical mi-
celles, and fascinating micellar superstructures (e.g., 2D lenticular platelets, scarf-shaped
micelles, multidimensional micellar assemblies, cross and “wind mill”-like supermicelles).
Another intriguing material class is based on amphiphilic crystalline-core micelles with
poly(L-lactide) (PLLA) or corresponding stereocomplexes (PLLA/PDLA (poly(D-lactide)),
showing interesting potential for biomedical applications, such as controlled release and
drug delivery [43,44].

This Special Issue brings together new developments in the synthesis and self-assembly
(bulk and solution) of block copolymers with crystallizable blocks, including emerging
applications of these exciting materials. In a fundamental work, Rahman studied the use
of semicrystalline multiblock copolymer membranes with polyether soft segments for hy-
drocarbon separation [45]. The permeability of hydrocarbons was found to decrease with
the number of carbons and polytetrahydrofuran (PTHF)-based systems were superior to
PEO-based systems in terms of permeability and permselectivity, making these systems in-
teresting for applications in the petrochemical industry. In addition, the lower performance
of multiblock copolymers with longer PEO soft segments was attributed to partial PEO
crystallization. The combination of homologation (C1 polymerization) with ring-opening
(ROP) or iodine transfer polymerization (ITP) is a facile route to block copolymers with
polymethylene (structurally identical to PE) blocks. Hadjichristidis and Müller et al. utilized
this approach to synthesize PE-b-PEO-b-PCL triblock terpolymers, in which all three blocks
are able to crystallize. Here, PE crystallizes first upon cooling from the phase-separated
melt followed by PCL and PEO [46]. They note that a combination of different characteriza-
tion techniques (DSC, WAXS, PLOM) is necessary to fully deduce the complex behaviour
of triple crystalline triblock terpolymers. In a joint work with Maiz et al. phase transitions
in PE-b-PVDF diblock copolymers and blends were studied [47]. Due to the polymorphic
nature of semicrystalline PVDF control over crystal structure is crucial, as for example the
piezoelectric and ferroelectric β-phase is interesting for applications in electronic devices or
renewable energies.Compared to PVDF homopolymer the formation of the β-phase was
found to be strongly promoted in PE-b-PVDF diblock copolymers at low cooling rates.
Living, stereoselective olefin polymerization is an efficient method for the synthesis of
double crystalline diblock copolymers with PE and sPP (syndiotactic polypropylene) blocks,
as described by De Rosa et al. [48]. By using selective crystalline substrates for the epitax-
ial crystallization of PE (benzoic acid) and sPP (p-terphenyl), well-ordered morphologies
with crystalline lamellae of PE and sPP highly oriented along one direction are accessible.
A relatively new approach is the evaporation-induced confinement assembly (EICA) of
semicrystalline block copolymers in microemulsions that after solvent evaporation gives
rise to microparticles with confinement specific morphologies, e.g., helical cylinders or
axially stacked rings. In this context, Gröschel and Schmalz et al. have studied the confine-
ment assembly of a series of PS-b-PB-b-PLLA triblock terpolymers [49]. It turned out that
over a broad composition range, microparticles with predominantly hexagonally packed
core–shell cylinders consisting of a PLLA core, a PB shell and a PS matrix were formed,
which upon hydrolysis of the PLLA block resulted in highly porous microparticles with
pronounced surface corrugations.
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Considering the CDSA of block copolymers with crystallizable blocks in solution, this
Special Issue includes two reviews focussing on the preparation and application of micelles
with a patch-like microphase-separated (patchy) corona [50], as well as on glycine-based
diblock copolypeptoids [51], respectively. Patchy micelles can be prepared by CDSA of
triblock terpolymers with crystallizable middle blocks and two incompatible amorphous
end blocks, or from mixtures of diblock copolymers with one common crystallizable block.
Owing to their unique corona structure, patchy micelles can be utilized as highly efficient
surfactants and blend compatibilizers, as nanoparticle templates, and in heterogeneous
catalysis. Polypeptoids with N-substituted polyglycine backbones are a promising class
of materials as, in contrast to natural polypeptides, they provide a good thermal stability,
solubility in organic solvents and protease stability. This can be attributed to the absence of
hydrogen bonding and stereogenic centres. Crystallinity can be easily tuned by the length
of the alkyl substituents, giving rise to bioinspired worm-like 1D nanofibrils, nanorods and
nanosheets. In an intriguing study, Reiter et al. prepared stacked lamellar crystals from a
PS-b-PEO diblock copolymer in solution using a self-seeding approach [52]. By varying
the diblock copolymer concentration and employed self-seeding temperature control over
size, the number of platelet-like crystals and even the number of stacked lamellae in the
crystals was achieved. A seed-trapping protocol was developed by Guerin and Winnik et al.
to study the impact of seed fragmentation on CDSA to cylindrical micelles at elevated
temperatures, where both seed dissolution and fragmentation occur [53]. Seed fragmen-
tation was found to increase with annealing time at elevated temperatures, resulting in
a decrease in length of the regrown cylindrical micelles. Furthermore, kinetics follow a
stretched exponential that might indicate a fractionation upon crystallization as the rate of
unimer addition to the seeds depends on the length and fraction of the crystallizable block.
Finally, going toward potential applications in tissue engineering, a systematic study on
the reinforcement of alginate hydrogel matrices with fibre-like micelles prepared by living
CDSA of a PCL-b-PMMA-b-PDMA triblock terpolymer (PMMA = poly(methyl methacry-
late); PDMA = poly(N,N-dimethyl acrylamide)) is presented by Dove and O’Reilly et al. [54].
Varying the micelle length and concentration in the hydrogel revealed an optimum fibre
micelle length of 500 nm at a loading of 0.1 wt%, resulting in a significantly increased strain
at flow of 37%.

In summary, the manuscripts in this Special Issue provide a nice overview of the recent
developments in block copolymers with crystallizable blocks, spanning from synthesis to
self-assembly approaches and potential applications.

Conflicts of Interest: The authors declare no conflict of interest.
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