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By plotting response times of young and older adults across a variety of tasks, Brinley spurred investigation and debate into
the theory of general cognitive slowing. Though controversial, Brinley plots can assess between-task differences, the impact of
increasing task demand, and the relationship between responses in two groups of subjects. Since a relationship exists between
response times and the blood-oxygen level dependent (BOLD) signal of functional MRI (fMRI), Brinley’s plotting method could
be applied as a meta-analysis tool in fMRI studies of aging. Here, fledgling “Peiffer plots” are discussed for their potential impact on
understanding general cognitive brain activity in aging. Preliminary results suggest that general cognitive slowing may be localized
at the sensorimotor transformation in the precentral gyrus. Although this meta-analysis method is naturally used with imaging
studies of aging, theoretically it may be applied to other study pairs (e.g., schizophrenic versus normal) or imaging datasets (e.g.,
PET).
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1. INTRODUCTION

In the mid 1960s, Brinley presented a novel plotting method
to consider the relationship between response times in young
and older adults across a variety of tasks with varying lev-
els of cognitive difficulty [1]. The average response times for
both the young and older groups of adults on each task were
placed on a scatter-plot, and a regression line was then fit-
ted to the data using the operation of y = mx + b. In do-
ing so, a relationship was realized between the behavior in
young adults and its ability to predict behavior on the same
task in older adults. The power of this method of data anal-
ysis is that it can be used across task types to pool data from
multiple studies. Here we harvest the powerful aspects of the
Brinley analysis method and apply them to functional mag-
netic resonance imaging (fMRI) data. Meta-analyses of fMRI
data are typically hindered by differences in the types of tasks
used across studies. The use of the Brinley method allows for
a meta-analysis of fMRI data that actually takes advantage of
multiple cognitive tasks. However, the remaining challenge is
to carefully interpret the findings.

The history of Brinley plots is rife with debate and dis-
cussion on what the plot is measuring and what it means.

Feelings in opposing camps can even be so strong as to elicit
T-shirts emblazoned with the No symbol over the word Brin-
ley. Later researchers inferred that aspects of Brinley plots
could provide information on general cognitive function-
ing in older adults since Brinley’s data contained both task
switching and nonswitching data subsets [2–7]. For exam-
ple, if the slope for the fitted line of a group of tasks is 1,
then there is equal change between tasks for younger and
older adults. However, when the slope of the fitted line de-
viates and is greater than 1, there is an increased slowing
in older adults associated with more cognitively demanding
tasks (i.e., a general cognitive slowing deficit is evident in
older adults regardless of task [e.g., [2]]). Other researchers
have disagreed with this Brinley plot interpretation and sug-
gest that the plot reflects a difference in response variabil-
ity between the age groups rather than processing speed, per
se [8]. Finally, current work in how aging affects processing
speed questions the degree to which general cognitive slow-
ing can be summarized with one linear function across all
types of tasks [5, 9, 10].

In addition to describing the behavioral appearance of
cognitive slowing, research has pursued localizing the phe-
nomenon within the aging brain. Generalized cognitive
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slowing has been thought to result from pervasive slow-
ing of all cognitive brain functions in older adults. With
this in mind, some researchers have proposed that the lo-
cus of general cognitive slowing occurs where sensory im-
pulses transfer to a common site of motor generation for
the response and that this sensorimotor dysregulation in-
tensifies with more difficult tasks [11–13]. Yordanova and
colleagues found evidence to support this hypothesis using
event-related potentials, which are able to evaluate the tim-
ing and strength of cognitive processing in response to ex-
ternal stimuli [11]. However, when considering task-specific
slowing impact, other researchers point to additional slow-
ing in specific cognitive areas such as working memory, vi-
sual search and mental rotation [10, 14], which may occur in
addition to or instead of the sensorimotor slowing.

After reviewing the body of research literature on gen-
eral cognitive slowing in aging, we adopted the early Brin-
ley method for plotting reaction times and applied it to the
blood-oxygen level dependent (BOLD) signal from multi-
ple fMRI studies. In doing so, an attempt is made to local-
ize brain areas responsible for the deviant slope in the re-
sponse time Brinley plot. Unlike reaction times, the BOLD
signal has a legitimate negative value (i.e., deactivations) that
occurs when contrasting activity during two different events.
For example, certain brain areas are more active during base-
line than during any particular task. These areas prominently
include posterior cingulate cortex and inferior parietal lobe
areas and are known as the default network [15]. In apply-
ing Brinley’s plotting method on the BOLD signal, we are
able to construct novel Peiffer plots, a meta-analysis of fMRI
data that is not limited to site locations of activation max-
ima and thus not skewed to evaluate only areas identified as
statistically different within a study [see discussion in [16]].
Typical meta-analyses of fMRI data use location-centered ap-
proaches where the focus of peak activity is evaluated [16–
20]. This can underestimate between-task differences be-
cause subthreshold activity differences are overlooked [see
discussion in [16]]. Further, differences in task parameters
and paradigm domain limit the tasks compared in many
fMRI meta-analyses to a single type of task (e.g., Stroop in-
terference task [16, 21]). With the novel method proposed
here, a plot can be made across a variety of fMRI studies
to evaluate two different population groups to identify ar-
eas showing between-task differences that may not necessar-
ily be identified as deviant within an individual study com-
parison. Lastly, in using this method to compare young and
older adults, we may be able to show localization of the areas
that may in fact identify differences in age-related informa-
tion processing that characterize general cognitive slowing.

2. METHODS

BOLD data and behavioral response times were obtained
from 4 simple detection tasks (3 visual and 1 auditory). In
order to plot a BOLD signal value for young and older adults
in each study, original fMRI data was needed. The fMRI
Data Center (http://www.fmridc.org) contributed a com-
plete dataset from Buckner and colleagues (Accession no.
2-2000-1118W) for 2 points in the analysis (young = 14;
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Figure 1: Representative voxel illustrating testing of the null hy-
pothesis (H0 : m = 1). To assess whether the null hypothesis is true
in any given voxel, a t-test comparison of the α and β residual val-
ues was used. When α �=β, then the line was not significantly close
to one and the voxel was considered to have a significant deviant
slope. If the T value survived the correction for multiple compari-
son (3 contiguous voxels where FWE P < .05), the respective brain
area was considered to be a loci for general cognitive slowing. A sec-
ond analysis is needed to identify areas where voxels with slopes of
−1 were eliminated in the residual analysis.

older adults = 14) [22]. These BOLD signal measurements
related to responses associated with the presentation of a sin-
gle or double flashing checkerboard. The other 2 points were
from studies performed in our laboratory (young = 20; older
adults = 20) [23]. These BOLD signal measurements were
related to block activity during an auditory task where sub-
jects needed to respond when they heard a target tone or
in a visual task where they responded to the blurring of a
flashing checkerboard. For all points in the meta-analysis, all
fMRI comparisons were between task and baseline (i.e., fix-
ation cross) and were preprocessed with global signal cor-
rection. Further, during the preprocessing of the data, it is
spatially normalized to MNI template space. Normalized task
specific “con” images reflecting the task-related BOLD activ-
ity change from baseline were computed with SPM99 for all
individuals in each dataset. These individual “con” images
were then averaged within age group for each study result-
ing in a total of 8 average BOLD activity maps (2 age groups
over 4 tasks). This process emulated the construction of a tra-
ditional Brinley plot which averaged the response times for
each task within each age group. Within the BOLD average
signal maps, each voxel contains a value representing the age
group’s average BOLD activity for that task at that standard-
ized MNI x, y, z coordinate.

Using the 4 average young maps as observed x-values and
the corresponding 4 average older adult maps as observed
y-values, a linear regression analysis (y = mx + b) was cal-
culated within each voxel that contained at least 3 x, y data
points (see Figure 1 for a representative voxel). Individual

http://www.fmridc.org
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3D maps were computed that contained voxels with individ-
ual regression parameters of interest (e.g., slope, b-intercept,
R-square, predicted y-value, etc.). Since the null hypothe-
sis (H0) in question was whether or not there was equiva-
lent change between young and older adults across tasks, the
slope value for H0 was 1. To evaluate H0 :m = 1, the absolute
residual values were calculated at each data point in SPM2
(α = |y − ŷ|where ŷ = mx + b and β = |x − x̂|where x̂ =
(y−b)/m). The resulting 8 residual maps (2 age groups over 4
tasks) were then statistically compared using a t-test in SPM.
When the n is large enough, theoretically, it would be more
statistically correct to analyze the difference between these
residuals with a paired t-test. If the null hypothesis was true,
then the absolute residual values would be equal and not sta-
tistically different from each other (α = β). If the slope was
not equal to 1, then the voxel’s t-test would be significant
(α �=β). Multiple comparisons were controlled for by using
FWE of P < 0.05 and an extent threshold of at least 3 consec-
utive voxels. The sign (+ or −) and value of the slope could
then be assessed to determine how the two groups deviated
in their BOLD signals across the tasks plotted in the analysis
(e.g., one group activates an area more across tasks than the
other group).

As graciously pointed out by an anonymous reviewer,
slopes of −1 should not be considered as part of the null hy-
pothesis, since the direction of activity across tasks for the age
groups would actually be opposite (i.e., young adults activat-
ing across tasks while older adults deactivate). Therefore, it
is also important to investigate areas where the slope is sig-
nificantly negative, since the above “residual” analysis would
not just eliminate slopes of +1 but also slopes which were
not significantly different from −1. An example of this can
be seen in the plotted data of Figure 1 in which this partic-
ular voxel would not be significant in the above “residual”
analysis, but still represents an interesting result. Significant
voxels with a slope of −1 can be identified using the P-value
of the regression used to fit the Peiffer plot (i.e., P < .05 for
the slope to be different from zero). Three contiguous voxels
with a significant regression P-value and a negative slope will
be considered a cluster of interest as well.

To evaluate a significant voxel’s b-intercept, the 95% con-
fidence interval was assessed. If this interval contained zero,
the voxel’s b-intercept was considered not to deviate from
zero. Again, b-intercept clusters were considered significant
if they contained at lest 3 contiguous voxels with significantly
nonzero b-intercepts.

3. RESULTS

The traditional Brinley plot using average response times
across the 4 tasks included in the fMRI meta-analysis showed
the established differences between young and older adults
(see Figure 2). The slope of 1.4 supports general cognitive
slowing within the dataset even though relatively simple re-
sponse time tasks were used, and although uninterpretable
for response time data, the negative b-intercept is also typi-
cal. With a slope greater than one, older adults had greater
differences between tasks in response time than younger
adults.
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Figure 2: Traditional Brinley plot of response times for the 4 tasks
used in the fMRI meta-analysis. If young and older adults showed
equivalent between-task change in the speed of responses across
these studies, the slope of the fitted line would be 1 (dotted blue
line); however, results indicated that some general cognitive slow-
ing is evident within the datasets since the slope of the fitted line
was 1.4 (solid green line).
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Figure 3: Contiguous clusters that survived FWE correction. These
clusters had slopes that were not significantly equal to one (color-
coded for clarity), and theoretically, they localized areas of differ-
ences in between-task BOLD signal change for older and younger
adults.

For the fMRI meta-analysis, five distinct clusters sur-
vived the stringent correction applied for multiple compar-
isons. The location of these clusters is summarized visually
in Figure 3 and details are given in Table 1. Clusters of inter-
est to competing theories of general cognitive slowing were
found within the left pre- and postcentral gyrus areas as well
as within the right medial frontal gyrus. All clusters identified
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Table 1: SPM volume summary

Cluster number Talairach daemon label Cluster size FWE-corrected P-value T x, y, z (mm)

1 Left postcentral gyrus 7 .000 43.33 −44, −24, 55

2 Right thalamus 4 .000 41.35 8, −20, 20

3 Left precentral gyrus 6 .000 37.85 −20, −20, 75

4 Subgyral right MFG 3 .001 27.48 28, 8, 45

5 Subgyral/left insula 5 .003 22.91 −36, 16, 15
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Figure 4: Average slope values for clusters with slopes significantly
different from one. A total of 5 clusters (color-coded for clarity) sur-
vived and had average slope values less than 1 and greater than −1.
These slope values are the result of greater between-task BOLD sig-
nal change in the cohort of young adults than older adults.

in the analysis had, on average, a slope that was significantly
less than one yet significantly greater than negative one (see
Figure 4). This slope indicates that between these 4 tasks,
younger adults had greater BOLD signal change than older
adults in these brain areas. Notably, there is a lack of differ-
ence in between-task BOLD activity within primary sensory
areas such as vision between older and younger adults, even
though several studies have reported older adults having less
activity than younger adults in sensory areas [24–26].

When the Peiffer plot was explored for 3 contiguous vox-
els with significantly negative slopes less than zero, 19 total
clusters were identified. Nine of these clusters (47%) were lo-
cated within the right middle and superior frontal gyri and
included a total of 68 voxels (see Figure 5). Across these clus-
ters older adults showed BOLD deactivation on tasks when
younger adults tended to slightly activate and older adults
had BOLD activation when younger adults were deactivating
on a task (average slope −1.89 +/− 0.21). These areas appear
to be activating in opposition between the age groups and
are contiguous to the right middle frontal gyrus area (clus-
ter no. 4) identified in the “residual” analysis. Other clus-
ters, showing similar activity differences were seen within
left medial frontal gyrus (2 clusters; 6 voxels); left inferior
parietal lobule (3 clusters; 10 voxels); cingulate gyrus (2 clus-

Figure 5: Contiguous clusters in right frontal cortex where the slope
is −1. Several clusters were identified in the secondary analysis to
assess for areas where activity was opposite in younger and older
adults. These areas within right frontal cortex tended to be active
across tasks in younger adults and deactivated across task in older
adults. Further, these areas correspond to regions involved in atten-
tion and task decisions, which have also been implicated in general
cognitive slowing theories.

ters; 7 voxels); and single clusters within the basal ganglia
(5 voxels), midbrain (3 voxels), and the left posterior lobe of
the cerebellum (7 voxels). It is important to note, however,
that these findings, unlike those from the “residual” analy-
sis above, have not been stringently controlled for multiple
comparisons aside from retaining the requirement for 3 con-
tiguous voxels.

To assess whether these slope findings were dependent on
age and not an epiphenomenon of the datasets, a random-
ization of the age groups was performed within each dataset.
Individuals were randomized in two groups so that the aver-
age age of both groups was roughly equal (∼51 years of age).
When the Peiffer plot was constructed for these new groups,
no significant clusters were identified where the null hypoth-
esis (H0 : m = 1) was false. Additonally, no significant ar-
eas were identified where the slope was −1. These findings
thus support the claim that the results of the original plot
were not due to the dataset composition (i.e., scanner, site,
or paradigm) but were dependent on separating the study
populations by age.

Assessment of the b-intercept indicated that the lack of
significant slopes within the primary sensory areas may be
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Figure 6: B-intercept map for Peiffer plot at x = 10 mm. Cool-
colored voxels show negative b-intercept values where older adults
have lower activity than younger adults. Note the large clus-
ter within the occipital area. Warm-colored voxels indicate pos-
itive b-intercepts where older adults show greater activity than
younger adults. Interestingly, several contiguous voxels were iden-
tified within right motor cortex and indicated increased bilateral
activity in older relative to younger adults across the 4 detection
tasks.

due to a baseline shift in activity between the age groups (see
Figure 6). For example, within visual cortex, several areas
were identified that had negative b-intercepts which indi-
cated that across the tasks older adults tended to start from
a lower BOLD activity level than young adults (if x = 0,
then y = a negative BOLD signal). This result is a contin-
ual within-task difference, which is also seen in the published
literature [23–27]; however, since this reduced BOLD signal
in older adults is constant across several tasks, it does not
have a slope which deviates significantly from 1. In addi-
tion, an area within right motor cortex shows a positive b-
intercept and thus greater activity in older adults relative to
younger adults. As graciously pointed out by an anonymous
reviewer, this result is consistent with the model hypothesis
of hemispheric asymmetry in older adults (HAROLD). The
HAROLD model states that there is reduced lateralization
of brain activity in older adults relative to younger adults,
which results from changes in neural architecture and not
cognitive strategy [28, 29]. Due to the small number of data
points used to construct these plots, the area included within
the 95% confidence interval of the b-intercept is relatively
large. Therefore, these early findings may underestimate the
amount of brain activity which could be described as being
affected by an age-related DC-shift and is thus an age-related
BOLD signal difference that is independent of task.

Finally, an epiphenomenon of the method was revealed
when evaluating the goodness of fit, as measured by the
R-squared value. Areas where the slope was similar to one
showed very high R-squared values (>0.8) suggesting a high
predictability for older adults’ BOLD signal in several brain
regions; however, within the clusters identified as signifi-
cantly deviant from one, R-squared values were lower and
ranged between 0.1–0.46.

4. DISCUSSION

Here we report the preliminary use of a novel meta-analysis
technique in studies on aging, which localizes one factor of
general cognitive slowing to the sensorimotor transfer. These
findings lend support to existing data from event-related po-
tential work indicating that slowing occurs predominately
during the time for generation of the response in older adults
and not when evaluating incoming sensory material [11, 13].
Deviant slopes could be found in between-task BOLD ac-
tivity values where younger adults have greater BOLD ac-
tivity change than older adults in the sensorimotor trans-
fer area in the left hemisphere. Additionally, right frontal ar-
eas were identified with slopes near −1, indicating that older
and younger adults were activating these attentional areas in
opposite directions across the tasks. Not surprisingly, more
attentionally demanding tasks have shown that older adults
have differential patterns of activation within the frontal cor-
tex in response to the task when compared to younger par-
ticipants [30, 31].

An important caveat exists, however, since datasets
within this analysis were obtained from relatively noncog-
nitively demanding tasks. In other words, more brain ar-
eas may be involved as loci of general cognitive slowing
and would emerge as more cognitively demanding datasets
become available for assessment. Comparing our current
datasets to the existing literature on Brinley plots of reaction
times, simple discrimination tasks show the least amount of
response time slowing; therefore, these BOLD signal findings
presumably will only become stronger with the addition of
datasets containing more cognitively demanding conditions
(e.g., working memory). In addition, with more tasks re-
quiring greater attentional demand, the negative slope found
within right frontal cortex may steepen and be found within
the residual analysis which can control for the multiple com-
parisons inherent within imaging data. Power analyses of
these preliminary results suggest that roughly 9 datasets are
needed to perform a meta-analysis with a paired t-test to
achieve a power-level of 80%.

Interestingly, all significant clusters identified as deviant
within the meta-analysis were separate from peak activity
differences reported in any of the individual tasks used within
the datasets. If traditional meta-analysis techniques were
used [16–20], none of these areas would have been found.
Utilizing this novel meta-analysis technique, it is possible
to assess between-task differences in BOLD activity between
groups regardless of paradigm design, task parameters, and
location of the scan. While global signal correction was used
to normalize the datasets within this study, the assessment
method could also be performed using average group z-maps
that would allow datasets from multiple fMRI processing
software packages to be analyzed collectively. Additionally,
this method may yield interesting findings in a variety of
study groups where a clear “normal” group can be identified
and used on the x-axis (e.g., schizophrenics versus normals;
dyslexics versus normals; AD versus normal older adults). It
is important to keep in mind that the use of this method is
to determine between-task differences among two popula-
tions and not to differentiate the two groups within any one
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paradigm of the analysis. Thus, differences in whether or not
an area is identified as deviant come from how the BOLD
signal responds across a wide array of tasks.

An existing disadvantage of this meta-analysis technique
is that it requires access to raw fMRI data to obtain subjects’
normalized contrast weighted BOLD activity maps (task -
baseline) from multiple tasks. With the continued increase of
complete data sets maintained in accessible repositories like
the fMRI Data Center, this should hopefully become less bur-
densome in the near future.

Overall as a meta-analysis method in the fMRI field,
this plotting addresses several limitations of existing analysis
methods. Specifically, it allows the assessment of between-
task differences regardless of a task’s paradigm domain or
baseline condition. Further, it can identify areas of sub-
threshold effects in addition to the suprathreshold within-
task differences that are identified by performing a meta-
analysis on voxel quadrants identified in individual studies
as the local maxima. Lastly, this method provides imaging
researchers the ability to localize between-task differences in
BOLD signal and apply that knowledge to existing behav-
ioral evidence not only in aging but in other complex condi-
tions (e.g., dyslexia, schizophrenia, Alzheimer’s disease, etc.)
as well.
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