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ABSTRACT The cell envelope of Gram-negative bacteria consists of two membranes
surrounding the periplasm and peptidoglycan layer. b-Lactam antibiotics target the
periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell
death. The primary means by which bacterial species resist the effects of b-lactam
drugs is to populate the periplasmic space with b-lactamases. Resistance to b-lac-
tam drugs is spread by lateral transfer of genes encoding b-lactamases from one
species of bacteria to another. However, the resistance phenotype depends in turn
on these “alien” protein sequences being recognized and exported across the cyto-
plasmic membrane by either the Sec or Tat protein translocation machinery of the
new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown
bacterial source that has been identified in a single clinical isolate of Klebsiella pneu-
moniae. BKC-1 was shown to be located in the periplasm, and functional in both K.
pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an un-
usual signal peptide with a twin arginine motif and a duplicated hydrophobic region.
Biochemical assays showed this signal peptide directs BKC-1 for translocation by
both Sec and Tat translocons. This is one of the few descriptions of a periplasmic
protein that is functionally translocated by both export pathways in the same orga-
nism, and we suggest it represents a snapshot of evolution for a b-lactamase adapt-
ing to functionality in a new host.

IMPORTANCE Bacteria can readily acquire plasmids via lateral gene transfer (LGT).
These plasmids can carry genes for virulence and antimicrobial resistance (AMR). Of
growing concern are LGT events that spread b-lactamases, particularly carbapene-
mases, and it is important to understand what limits this spread. This study provides
insight into the sequence features of BKC-1 that exemplify the limitations on the
successful biogenesis of b-lactamases, which is one factor limiting the spread of
AMR phenotypes by LGT. With a very simple evolutionary adaptation, BKC-1 could
become a more effective carbapenemase, underscoring the need to understand the
evolution, adaptability, and functional assessment of newly reported b-lactamases
rapidly and thoroughly.
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The adaptation of a bacterial species to a new niche can be promoted by the acqui-
sition of additional genes by lateral gene transfer (LGT), but this requires that the

newly acquired proteins are translated (1), localized (2), and folded into functional
forms (3) to deliver the appropriate phenotype (4–7). Antimicrobial resistance (AMR) is
such a phenotype and has become of grave concern for human health globally (8, 9).
The enzymes that play a key role in the generation of AMR phenotypes in many bacte-
ria are b-lactamases, providing resistance to b-lactam antibiotics. These enzymes are
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typically active in the periplasm, where they hydrolyze the b-lactam ring of the drug,
rendering it inactive (10, 11). Carbapenemases are a subset of b-lactamases effective
against the carbapenem class of b-lactam antibiotics used to treat multidrug-resistant
bacterial infections (12, 13). In addition to an extended-spectrum b-lactamase (ESBL)
resistant phenotype, carbapenemases thereby provide a carbapenem-resistant pheno-
type, and the widespread use of carbapenems has increased the prevalence of carba-
penem-resistant Enterobacteriaceae (CRE) (12, 14, 15). There are two prominent types
of carbapenemases: (i) the metallo-b-lactamases that require one or more zinc atoms
to be coordinated in their active site (e.g., NDM-1), and (ii) the K. pneumoniae carbape-
nemases that are not metalloenzymes but instead are serine b-lactamases (16). First
described in 2001 (17), the most prominent is “Klebsiella pneumoniae carbapenemase
2” or KPC-2 (encoded by blaKPC-2) and the related variants are the major contributors to
widespread CRE phenotypes (14, 18, 19). Genes such as these are found on mobile
genetic elements, particularly plasmids, meaning that these genes are readily transmis-
sible (16, 20–23).

To confer an AMR phenotype to the host species, b-lactamases acquired by LGT
need to be present at sufficiently high steady-state levels, with this level dependent on
the compound efficiency of protein synthesis, protein transport pathways, and protein
folding. Thus, the phenotype demands efficiency of host cell processes despite that
the “alien” protein from an LGT event did not coevolve with the host cell factors medi-
ating these pathways. For example, there is a global distribution of the CTX-M family of
b-lactamases in E. coli (24, 25), K. pneumoniae (26, 27), other Enterobacteriaceae (28,
29), and Pseudomonas aeruginosa (30, 31), implying that all of the species acquiring
these genes are capable of efficiently translating the polypeptide through what might
be nonoptimal codon bias, transporting it across the inner membrane via protein
translocases that must recognize its signal peptide, and folding the CTX-M protein so
that the functional form populates the periplasm. Studies directed at the CTX-M b-lac-
tamases show that this requires the translocation of the nascent polypeptide across
the inner membrane in an unfolded state, followed by protein folding reactions in the
periplasm to generate the enzymatically active b-lactamase (32–34).

Most of the proteins that function in the periplasm are translocated across the inner
membrane by the general secretory (Sec) pathway as linear polypeptide chains, and
their folding in the periplasm is facilitated by a specific set of chaperones (35–38). In
order to engage the Sec translocon, protein substrates possess an N-terminal signal
peptide of about 17 to 24 amino acids in length, comprising a positively charged n-
region, a highly hydrophobic h-region, and a polar c-region that includes the cleavage
site for signal peptidase (39, 40). Given that the first serine b-lactamases evolved from
penicillin binding proteins (41, 42), which utilize the Sec pathway for their translocation
to the periplasm (43), it was assumed that these enzymes would also translocate via
Sec. This assumption proved to be valid for most b-lactamases, including TEM-1, CTX-
M-14, and AmpC, each of which have been widely distributed among drug-resistant
Enterobactericeae (29, 44–47).

Given this paradigm, it was curious to see that a small cohort of chromosomally
encoded serine b-lactamases, such as L2 from Stenotrophomonas maltophilia and BlaC
from Mycobacterium tuberculosis, are not transported by the Sec translocon, but
instead utilize the twin arginine translocase (Tat) machinery for translocation across
the inner membrane (47, 48). This means that these few b-lactamases use an alternate
pathway where they are first folded in the cytoplasm and only thereafter translocated
as fully functional enzymes (47).

Substrate proteins that engage the Tat machinery possess an N-terminal signal pep-
tide that is usually between 27 and 35 amino acids in length and that contains both
Tat-targeting and Sec-avoidance features to ensure the exclusivity that is known to
exist for these protein translocation pathways (49, 50). The major Tat recognition fea-
ture is a pair of almost invariant arginine residues in the signal peptide n-region, found
as part of the SRRXFL motif (49, 51). A combination of an h-region that is only
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moderately hydrophobic, coupled with the presence of one or more positively charged
residues in either the c-region or at the N terminus of the mature protein, serve as Sec
avoidance elements (52–55). Thus, signal peptides have evolved to target their passen-
ger proteins strictly to either the Tat or Sec machinery. For protein substrates acquired
through LGT, this also matters in terms of the folding assistance they will be provided
in the new host cell; intrinsic sequence and structural features that require folding by
the chaperones in the periplasm posttranslocation (35, 36, 39) will only be satisfied if
the protein is translocated in an unfolded state by the Sec translocon. Conversely,
intrinsic sequence and structural features that require folding in the cytoplasm prior to
translocation will only be satisfied if the protein is translocated in a folded state by the
Tat translocon (56, 57). While recent studies suggest there is some leeway for overlap-
ping features that define Sec or Tat signal peptides (53, 55), with the exception of the
Sec-dependent lipase in Bacillus subtilis (58), which can overflow into the Tat pathway
upon multicopy overproduction, there is very limited evidence that a single protein is
capable of using both translocons in the same organism.

Initial studies on the signal peptides of b-lactamases revealed three putative Tat-
transported enzymes: BKC-1 and GPC-1, first identified in clinical isolates of K. pneumo-
niae and P. aeruginosa, respectively (59–61), as well as PAD-1 from the soil bacterium
Paramesorhizobium desertii (60). Here, we show that these three proteins represent an
isolated subfamily of b-lactamases with carbapenemase activity. Furthermore, through
the production of BKC-1 in a model strain of E. coli with or without a functional Tat sys-
tem, we show that while a subpopulation of protein molecules are translocated by the
Sec pathway, the rest are translocated via Tat translocon. Therefore, mounting a carba-
penem-resistant phenotype depends on the presence of the Tat machinery to provide
sufficient translocation of BKC-1 into the periplasm.

RESULTS
Equivalent plasmids carry blaBKC-1 and blaKPC-2. The plasmid p60136 harboring

blaBKC-1 was identified in a carbapenem-resistant Klebsiella isolate (59). Gene signatures,
including the transposable element ISKpn23 (Fig. 1A), were suggestive of a gene trans-
position from another species via LGT. Sequence analyses revealed that p60136 is
related to the globally disseminated pB29 (GenBank accession MK330869) and pKPC05
(GenBank accession MK330868) plasmids. However, rather than blaBKC-1, these other
two IncQ plasmids carry blaKPC-2 flanked by elements from the transposon Tn4401, the
transposase (tnpA) from ISKpn6 and the tnpR-encoded resolvase. Apart from these
transposon elements that are characteristic of blaKPC-2-harboring plasmids (62), the
three plasmids have a high degree of sequence identity, including across the replica-
tion genes (Fig. 1A).

We sought to understand the overall sequence relationships between BKC-1 and other
b-lactamases that have been identified globally. Using a 40% sequence identity cutoff as
an indicator of diverse b-lactamases, sequences were extracted from BLDB (Beta-lacta-
mase database) (63) and the top 200 hits were subsequently analyzed using iTOL (64)
(Fig. 1B). Molecular phylogeny analysis in this global context demonstrated that BKC-1 is
most closely related to GPC-1 from P. aeruginosa (61), and these two in turn are related to
PAD-1 from the soil bacterium P. desertii (60). These proteins have a sequence identity of
66% (Fig. 1B), but no other closely related proteins are present in the BLDB.

Targeting and subcellular localization of BKC-1. The vast majority of bacterial sig-
nal peptides are 20 to 30 amino acids long (65). However, initial sequence analysis
revealed an unexpected feature in the N-terminal region of nascent BKC-1, where an
unusually long, 46-residue signal peptide that included a twin arginine motif (SRRQAI)
and a putative cleavage site after Ala46 was present (Fig. 2A). A multiple sequence align-
ment of BKC-1 from K. pneumoniae with GPC-1 from P. aeruginosa and PAD-1 from P.
desertii showed that a 16-residue duplication in the h-region of the signal peptide of BKC-
1 is responsible for its increased length (Fig. 2B; Fig. S1 in the supplemental material).

To investigate the biochemical impact of these signal sequence features in BKC-1,
we used the well-characterized E. coli model system to study its targeting and
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FIG 1 Comparison of the genetic environment of BKC-1. (A) The blaBKC-1 gene is carried on an RSF1010 plasmid, p60136 (59), the sequence of which was
aligned with two related IncQ plasmids from K. pneumoniae (pKPC05 with 87.58% overall sequence identity and pB29 with 84.61% overall sequence
identity) using Easyfig 2.2.5. Arrows represent genes as follows: b-lactamase encoding genes (green); replication-related genes (red); other genes of known
function (orange); and genes of unknown function (blue). (B) A global phylogeny of class A b-lactamases was constructed by sequence comparison of class
A b-lactamases from BLDB. The sequences displayed were retrieved from BLDB allowing for at least 40% sequence identity. The position of BKC-1 is
denoted in bold. GPC-1, a b-lactamase identified in P. aeruginosa, showed the greatest amino acid sequence identity to BKC-1 (77%), while the next closest
relationship (63% sequence identity) was with the chromosomally encoded b-lactamase (PAD-1) from P. desertii. The four rings that designate features in
the phylogeny are as indicated in the legend.
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translocation. To determine whether BKC-1 activity in E. coli was similar to that seen in K.
pneumoniae, the coding sequence of blaBKC-1 was cloned under either a constitutive TetR
promoter in pACYC184 (66) or a tetracycline-inducible promoter in pJPCmR (67). K. pneu-
moniae B5055 and E. coli BW25113 were transformed with each plasmid and antibiotic

FIG 2 A unique signal sequence targets BKC-1 into the periplasm. (A) The position and sequence of the signal peptide encoded in blaBKC-1. The twin
arginine motif (underlined), 32-residue h-region (red), and cleavage site (AGA-AT) are indicated. (B) Protein sequence alignment of BKC-1 from K.
pneumoniae, GPC-1 from P. aeruginosa, and PAD-1 from P. desertii. Red indicates identical residues; yellow indicates conserved residues. (C and D) Cell
lysates from E. coli transformed with pJPCmR (–) or pJPBKC-1His encoding C-terminally His6-tagged BKC-1 (1) were fractionated (C) or TSE-extracted (D)
and analyzed by SDS-PAGE and immunoblotting using antibodies raised against BKC-1, BamA (membrane protein control), or SurA (periplasmic protein
control). Asterisks indicate the slower-migrating nonspecific protein present in SurA immunoblots.
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sensitivity was assessed by MIC assays. In addition to ampicillin, the broad-spectrum
cephalosporin drugs ceftriaxone, ceftazidime, and cefotaxime were tested, as were the
carbapenems imipenem, meropenem, and ertapenem. All BKC-1-expressing strains had
similar levels of resistance toward each b-lactam tested (Table 1). The MIC values showed
similar trends for both species regardless of whether the carbapenemase was under the
control of a constitutive or inducible promoter. MICs for cells expressing BKC-1 were ei-
ther at or below the breakpoint for resistance for all three carbapenems and ceftazidime
(Table 1), while MICs for ampicillin, ceftriaxone, and cefotaxime were higher than the
breakpoint, consistent with previous findings that BKC-1 does not hydrolyze carbape-
nems and ceftazidime as efficiently as other antibiotics tested (59). Growth curve analysis
of E. coli BW25113 harboring plasmid-encoded BKC-1 showed that its expression did not
impose a fitness cost (Fig. S2), whereas for K. pneumoniae B5055, a moderately lower
growth rate was observed (Fig. S2).

To determine the localization of BKC-1 in E. coli BW25113, subcellular fractionation was
undertaken using lysates prepared from cells expressing C-terminally hexahistidine (His6)-
tagged BKC-1 following 4 h of anhydrotetracycline (ATc) induction. Immunoblotting con-
firmed BKC-1 to be present exclusively in the soluble cellular fraction (combined cytoplasm
and periplasm), and absent from membranes (Fig. 2C). This finding indicates that the
unusually long signal sequence of BKC-1 is not acting as an inner membrane anchor. To
confirm that the protein was periplasmic, osmotic shock was used to release the periplas-
mic contents and immunoblotting (Fig. 2D) confirmed BKC-1 to be localized to the
periplasm.

Loss of TatC diminishes b-lactam resistance conferred by BKC-1. TatC is an
essential component of the Tat system that interacts with substrate proteins via the
twin arginine motif of the signal peptide (68). This binding step initiates the full assem-
bly of the Tat translocon and subsequent transport of substrate across the inner mem-
brane (50, 69). Sequence analysis suggested the signal peptide of BKC-1 has features
consistent with the protein being a substrate of the Tat pathway (Table 2). To assess
the role of the Tat system in b-lactamase translocation into the periplasm, C-terminally
His6-tagged BKC-1 was expressed in BW25113 and/or the isogenic DtatC mutant (70).
As controls, the b-lactamases KPC-2 (putatively Sec dependent) and L2 (Tat depend-
ent) were concomitantly expressed with a His6 epitope incorporated at the C terminus
of each protein. The expression of these b-lactamases did not compromise the growth
of E. coli BW25113 nor its isogenic DtatC mutant (Fig. S3), except that L2 imposed
minor fitness defects.

As a clinically relevant readout for enzymatically active b-lactamases, antibiotic sen-
sitivity to ampicillin, three cephalosporins, and three carbapenems was assessed using
MIC assays in the presence of anhydrotetracycline (ATc) (Table 3). Surprisingly, the phe-
notype of the DtatCmutant producing BKC-1 was drug dependent. In the case of cefta-
zidime, detectable resistance conferred by BKC-1 was strictly dependent on the

TABLE 1MIC assessment of E. coli BW25113 and K. pneumoniae B5055 expressing BKC-1

Drug

MIC (mg/ml)

E. coli BW25113 K. pneumoniae B5055

No
plasmid

Constitutive Induced
No
plasmid

Constitutive Induced
Break
pointapACYC184 +BKC-1 pJPCmR +BKC-1 pACYC184 +BKC-1 pJPCmR +BKC-1

Ampicillin 4 4 .1,024 4 .1,024 4 4 .1,024 4 .1,024 $32
Ceftriaxone #0.0625 #0.0625 64 #0.0625 .64 #0.0625 #0.0625 64 #0.0625 .64 $4
Cefotaxime #0.0625 #0.0625 64 #0.0625 .64 #0.0625 #0.0625 32 #0.0625 64 $4
Ceftazidime 0.25 ,0.25 4 0.25 8 0.25 0.25 8 0.25 8 $16
Imipenem 0.125 0.125 2 0.125 4 0.5 0.5 4 0.5 4 $4
Meropenem 0.03125 0.03125 1 0.03125 1 0.03125 0.03125 1 0.03125 1 $4
Ertapenem #0.015 #0.015 0.5 #0.015 0.5 #0.015 #0.015 1 #0.015 1 $2
aCLSI M100-ED30 breakpoint.
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presence of TatC (Table 3). However, resistance to cefotaxime, ampicillin, and ceftriax-
one, although reduced in the DtatC mutant, was not completely abolished by inactiva-
tion of the Tat pathway (Table 3). MICs of DtatC mutant cells expressing BKC-1 were
reduced by more than 2-fold for ampicillin, ceftriaxone, and cefotaxime, 32-fold for cef-
tazidime, and 2-fold for all three carbapenems tested. These observations suggest that
the transport of BKC-1 is, at least in part, dependent on the Tat system; however, there
is clearly some translocation of the enzyme in a Tat-independent manner.

The substrate-activity profile for BKC-1 revealed that the enzyme has marginal activ-
ity toward ceftazidime relative to the other b-lactam antibiotics tested (MIC of 8mg/ml
compared to at least 64mg/ml for the other drugs shown in Table 3). This suggests
that the decreased level of BKC-1 accumulating in the periplasm in the absence of TatC
is likely sufficient to hydrolyze b-lactam drugs that are good substrates for the enzyme,
but insufficient to turn over drugs such as ceftazidime, for which the enzyme is less
well suited. As expected, KPC-2 activity as revealed through MIC values was unaffected
in the DtatC mutant strain, confirming its translocation to be independent of the Tat
system. In contrast, L2 activity was strictly dependent on TatC and the sensitivity of the
DtatC mutants was 64-fold less, for all four drugs tested. This is consistent with previ-
ously findings that L2 is exclusively a substrate of the Tat translocon and its transloca-
tion does not rely on the Sec pathway (47).

To support these observations, immunoblotting was undertaken on whole-cell sam-
ples. Even following overexposure, the His6-tagged epitope on L2 could not be
detected in either wild-type or DtatC mutant backgrounds (Fig. 3A). This suggests that
the tag may be proteolytically removed from this construct, since the protein is clearly
present and functional, as judged by the phenotypes displayed in the MIC evaluation
of these strains (Table 3). The level of KPC-2 expression appeared to be relatively simi-
lar in wild-type and DtatC mutant cells (Fig. 3A), also consistent with the phenotype
observed from MIC experiments. In the tatC1 background, BKC-1 appeared to be pres-
ent at higher levels than KPC-2, and the vast majority of the protein was present as the
processed, mature form (Fig. 3A). In contrast, in the DtatC mutant, although some
tagged BKC-1 of the mature size was detected, a slower-migrating form of the protein

TABLE 2 Signal sequence analysis of BKC-1, BKC-1A, KPC-2, and L2

Protein Signal sequenceb Tat probability score Maximum S scorea

BKC-1 MTITFSRRQAIAGALLAVPAVSTLAASAGALLAVPAVSTLAASAGA 0.84 0.843
BKC-1A MTITFSRRQAIAGALLAVPAVSTLAASAGA 0.93 0.853
KPC-2 MSLYRRLVLLSCLSWPLAGFSATA 0.01 0.223
L2 MLARRRFLQFSGAAVASSLALPLLARAAGKATANA 0.99 0.841
aScore obtained from TatP 1.0 (cutoff 0.75).
bTwin arginine motifs are in boldface type and h regions are underlined.

TABLE 3MIC assessment of E. coli expressing BKC-1, KPC-2, and L2 in the presence and absence of TatC

Drug

MIC (mg/ml)

BW25113 BW25113 DtatC

No plasmid

Induced

No plasmid

Induced

pJPCmR +BKC-1 +KPC-2 +L2 pJPCmR +BKC-1 +KPC-2 +L2
Ampicillin 4 4 .1,024 .1,024 .1,024 4 4 512 .1,024 4
Ceftriaxone #0.0625 #0.0625 .64 32 .64 #0.0625 #0.0625 64 32 #0.0625
Cefotaxime #0.0625 #0.0625 .64 16 64 #0.0625 #0.0625 32 16 #0.0625
Ceftazidime 0.25 0.25 8 8 32 0.25 0.25 0.25 8 0.25
Imipenem 0.125 0.125 4 8 NTa 0.125 0.125 2 8 NT
Meropenem 0.03125 0.03125 1 4 NT #0.015 #0.015 0.5 4 NT
Ertapenem #0.015 #0.015 0.5 4 NT #0.015 #0.015 0.25 4 NT
aNT, not tested, because L2 is not a carbapenemase.
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FIG 3 The unique signal sequence of BKC-1 is required for efficient Tat-independent translocation into the periplasm. (A and B) Whole-cell lysates were
prepared from wild-type E. coli BW25113 or its isogenic DtatC mutant to compare levels of BKC-1 with other b-lactamases (A) or its BKC-1A derivative that
has a shorter signal peptide (B). pJPCmR or its derivative vectors containing C-terminally His6-tagged b-lactamases proteins were used to synthesize the
indicated protein of interest (above immunoblot). The extracts were analyzed by SDS-PAGE and immunoblotting using antibodies raised against the
indicated proteins (right of immunoblot). SurA and F1b serve as loading controls. Asterisks indicate precursor protein forms that migrate slower by SDS-
PAGE. (C) The proposed model for the function and translocation of BKC-1 across the inner membrane (IM) in the presence and absence of TatC. The
topological compartments of the periplasm and outer membrane (OM) are indicated. The unfolded and folded forms of BKC-1 (red) are shown and the
rectangle with twin arginines (RR) represents its signal peptide. In the periplasm, both translocated forms of BKC-1 work together to hydrolyze b-lactam
antibiotics, but in the absence of TatC, there is a decreased number of BKC-1 that can enter the periplasm.
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accumulated, at the expected size of the cytoplasmic unprocessed precursor. This is
consistent with reduced translocation into the periplasm in the absence of a functional
Tat pathway and is consistent with the reduced resistance phenotypes for ampicillin,
ceftriaxone, and cefotaxime, as well as the Tat dependence seen for ceftazidime resist-
ance (Table 3).

Signal peptide modification of BKC-1. The results presented above suggested
that the targeting of BKC-1 is more complex than observed for other b-lactamases,
being partially dependent on both Sec and Tat pathways. To address the extent to
which the function of BKC-1 depends on its long signal sequence, we used GPC-1 and
PAD-1 as models (Fig. 2B) to construct a modified sequence of BKC-1 (termed BKC-1A),
where the 16-residue duplication of the h-region was removed. Expression of BKC-1A
in E. coli BW25113 and its isogenic DtatC mutant imposed very minor fitness defects,
similar to L2 expression (Fig. S3), but cell densities and growth rates were comparable
to wild-type cells. We next assessed the phenotypic impact of truncating the BKC-1 sig-
nal peptide by measuring MICs using the same seven antibiotics as before in both the
wild-type and the DtatC mutant background (Table 4). Although the 16-residue dele-
tion did not affect resistance to ampicillin, the deletion did alter the resistances to all
other drugs tested by at least 2-fold. MICs for cephalosporins with wild-type cells
expressing BKC-1A were 2- to 4-fold lower than those expressing the native BKC-1
(Table 4). These effects were even more pronounced in the absence of TatC, where the
MICs were 2-fold, 4-fold, and 8-fold lower for ceftriaxone, ceftazidime, and cefotaxime,
respectively, compared to wild-type cells expressing BKC-1A. Carbapenem MICs were
also 2-fold lower for cells expressing BKC-1A compared to those that expressed BKC-1
(Table 4), and this difference was preserved in the absence of TatC. Overall, this sug-
gests that BKC-1 might be better suited for delivering a cephalosporin resistance phe-
notype than BKC-1A in the presence or absence of TatC.

To assess the relative levels of the carbapenemase in cells producing either BKC-1
or BKC-1A, immunoblotting was performed with whole-cell lysates using an antibody
raised against BKC-1 (Fig. 3B). In each case, it appears there is more carbapenemase
present in cells lacking TatC than in wild-type cells. For BKC-1, this increase in protein
level does not appear to drastically affect the mature (periplasmic localized) form of
the protein, but corresponds to an abundance of the precursor form of BKC-1.
However, for BKC-1A, levels of precursor and mature forms of the protein are compara-
ble, but there is a marked reduction in the amount of mature protein in the absence of
a functional Tat translocon. Additionally, BKC-1A levels appeared to be lower than
those of BKC-1 in the presence or absence of TatC (Fig. 3B). This is consistent with the
MIC data (Table 4), where the expression of BKC-1 favors a more resistant phenotype
than BKC-1A.

Assessing the importance of the twin arginine motif in BKC-1 in conferring
resistance to b-lactams in K. pneumoniae. In order to determine whether the twin ar-
ginine motif was required for BKC-1 to confer a b-lactam resistant phenotype in K.

TABLE 4MIC assessment of E. coli expressing BKC-1 and BKC-1A in the presence and absence of TatC

Drug

MIC (mg/ml)

BW25113 BW25113 DtatC

No plasmid

Induced

No plasmid

Induced

pJPCmR +BKC-1 +BKC-1A pJPCmR +BKC-1 +BKC-1A
Ampicillin 4 4 .1,024 .1,024 4 4 512 512
Ceftriaxone #0.0625 #0.0625 .64 64 #0.0625 #0.0625 64 32
Cefotaxime #0.0625 #0.0625 .64 64 #0.0625 #0.0625 32 16
Ceftazidime 0.25 0.25 8 2 0.25 0.25 0.25 0.25
Imipenem 0.125 0.125 4 2 0.125 0.125 2 1
Meropenem 0.03125 0.03125 1 0.5 #0.015 #0.015 0.5 0.25
Ertapenem #0.015 #0.015 0.5 0.25 #0.015 #0.015 0.25 0.125
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pneumoniae, the organism in which BKC-1 was discovered (59), we modified the signal
peptide of BKC-1 by substituting the essential arginines for two lysines, a substitution
known to abolish interaction with the Tat translocon (55, 69). Because we noted that
BKC-1-dependent ceftazidime resistance in E. coli was dependent on a functional Tat
translocon (Table 3 and 4), we assessed whether expression of this modified variant,
BKC-1KK, in K. pneumoniae B5055 would similarly fail to confer resistance to ceftazi-
dime. Indeed, the MIC measured in cells producing this variant was indistinguishable
from cells lacking BKC-1 (MIC of 0.25mg/ml; Table 5). While this signal peptide substitu-
tion prevents Tat translocation, it did not prevent BKC-1KK from being targeted to the
Sec translocon because ampicillin resistance was not affected (MIC of .1,024mg/ml;
Table 5). We then assessed whether the 16-residue deletion in the signal peptide h-
region (BKC-1A) would alter ceftazidime MICs in K. pneumoniae, and again found a 4-
fold reduction (i.e., MIC of 2mg/ml) compared to native BKC-1, similar to what was
observed for E. coli (Table 4). Overall, this demonstrates that ceftazidime resistance
conferred by BKC-1 is dependent on the Tat translocon in both K. pneumoniae and E.
coli.

DISCUSSION

Theoretically, there are a number of restrictions to the dissemination of AMR and
virulence phenotypes in bacteria by LGT (4, 5, 7). Our initial interest in BKC-1 was
piqued by the observation that two related enzymes, BKC-1and GPC-1, have each been
identified only once and, despite being carried by highly transmissible plasmids, have
not spread further by LGT or arisen more broadly than in the distinct countries where
each was first found (59–61, 71). With only a few related sequences available, it is diffi-
cult to trace the exact origins of this lineage of carbapenemases, but a very recent
report suggested that the plasmid-encoded BKC-1 may have originated from Shinella,
given the oddity of its sequence (72). Whatever the ancestral reservoir for BKC-1 and
related carbapenemases, genes transferred by LGT are often initially silenced by regu-
latory factors since they pose a potential risk to the host bacterium (1, 7, 73). It has
been argued previously that one such risk to the host is that codon usage differences
would impact on translation rates in these naive host species, or that protein transloca-
tion rates in cells expressing proteins acquired through LGT will block the biosynthetic
machinery (74). Indeed, studies in E. coli showed that the overall assembly rates for vir-
ulence factors like FimD and UshC are dependent on how well features in these protein
sequences can be handled by the components of the host cell’s biosynthetic machin-
ery (74). Similarly, for b-lactamases, a substantial fitness cost of carbapenem resistance
has been quantified and linked to amino acid starvation due to codon usage incompat-
ibility and other issues associated with maintaining sufficiently high expression levels
of the carbapenemase (75).

For enzymes such as b-lactamases that function in the periplasm, translocation
across the inner membrane can be achieved via either of two protein complexes, Sec

TABLE 5MIC assessment of K. pneumoniae B5055 expressing BKC-1, BKC-1A and BKC-1KK

Drug

MIC (mg/ml)

No plasmid

Induced

pJPCmR +BKC-1 +BKC-1A +BKC-1KK
Ampicillin 4 4 .1,024 .1,024 .1,024
Ceftriaxone #0.0625 #0.0625 .64 .64 .64
Cefotaxime #0.0625 #0.0625 64 64 32
Ceftazidime 0.25 0.25 8 2 0.25
Imipenem 0.5 0.5 4 2 4
Meropenem 0.03125 0.03125 1 1 1
Ertapenem #0.015 #0.015 1 0.5 0.5
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or Tat (39, 50). Here, the carbapenemase KPC-2 was found to engage with the Sec sys-
tem for translocation into the periplasm, where it is presumably folded by periplasmic
chaperones such as DsbA, which helps introduce disulfide bridges that are known to
stabilize carbapenemases for optimum carbapenem hydrolysis (76), as is the paradigm
for b-lactamase assembly reported in Enterobacteriaceae (47). Conversely, the Tat ma-
chinery translocates proteins folded in the cytoplasm, and L2 activity in the periplasm
was shown to be wholly dependent on a functional Tat system, as reported previously
(47). The increased sensitivity to b-lactams of E. coli harboring BKC-1 in the absence of
TatC indicates that BKC-1 uses both translocation systems. Based on our findings, we
suggest a dual-translocon targeting model for the export of BKC-1 (Fig. 3C). An inter-
pretation of our data in terms of this model would be that BKC-1 is not yet especially
adapted to either Sec or Tat in Enterobacteriaceae, but can deliver a highly b-lactam re-
sistant phenotype only by using both arms of the host cell’s protein translocation ma-
chinery. This implies that a subset of precursor BKC-1 remains unfolded in the cyto-
plasm (likely due to interactions with cytoplasmic chaperones), translocates via the Sec
translocon, and later folds in the periplasm to assume its functional form, while the
remaining subset of precursor BKC-1 folds in the cytoplasm, translocates via the Tat
translocon, and assumes its functional form in the periplasm.

Experiments with BKC-1 and the truncated BKC-1A suggest that the extended signal
peptide is advantageous in promoting the dual transport of BKC-1 to the periplasm.
This was reflected as lower MICs of ceftriaxone, cefotaxime, and ceftazidime in cells
expressing BKC-1A compared to those that expressed BKC-1 (Table 4). Given that this
duplication was reported in BKC-1 obtained from K. pneumoniae isolates and is not
present in its proposed ancestral counterparts (72), this feature may be an evolutionary
snapshot of an adaptation optimizing BKC-1 phenotypes in K. pneumoniae.
Inexplicably, under b-lactam selection in the laboratory, we observed a propensity for
the signal peptide coding region of the gene encoding BKC-1 to undergo in-frame tri-
ple-nucleotide insertions (data not shown), suggesting a mechanism by which this
region can enhance the compatibility between BKC-1 and the new host E. coli. It was
also shown very recently that BKC-1 was able to hydrolyze ceftazidime in E. coli, better
than its putative Shinella counterpart enzymes (72), perhaps suggesting that this dupli-
cation might have occurred under selection in the more closely related Klebsiella,
thereby enhancing the activity of BKC-1 against ceftazidime. Given that BKC-1 activity
against ceftazidime in E. coli was abolished in the absence of TatC (Table 3 and 4), and
otherwise greatly reduced for the other cephalosporins tested in E. coli, we suspect
that BKC-1 could have adapted its signal peptide to confer a stronger resistance phe-
notype against ceftazidime and related cephalosporins. The observation of a similar
phenotype with K. pneumoniae cells expressing the variant of BKC-1 that avoids the
Tat translocon (Table 5) further supports this possibility.

The concept of dual targeting as exemplified by BKC-1 is further supported by
observations of LGT-induced translocon switching for b-lactamases. For example, the
b-lactamase BlaC from M. tuberculosis is exclusively translocated via the Tat system
(48). When BlaC is expressed in E. coli, its translocation into the periplasm is exclusively
via the Sec translocon (47). This speaks to the requirement of cytoplasmic folding in M.
tuberculosis and further suggests that this particular polypeptide is prevented from
folding in the cytoplasm of E. coli. The exact mechanism underpinning the ability of
BKC-1 to interact with components of both the Tat and Sec pathways and the evolu-
tion of its unique signal peptide remains unknown, and understanding the folding
intermediates of this dual translocon targeting enzyme would warrant further studies.

In principle, the carbapenem-resistance phenotype is readily transmissible on plas-
mids via LGT. Outbreaks of CRE having been reported in various countries (77–81) and
CRE (K. pneumoniae) have become endemic in various parts of the world (22, 79,
81–83). While LGT is usually considered in terms of its benefits for the recipient, the re-
cipient bacteria also suffer fitness costs with plasmid carriage because of the burdens
associated with acquisition and maintenance of large quantities of DNA, as well as the
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need to correctly express, fold, and localize the “alien” proteins that these plasmids
encode. In a given host scenario, the protein sequence features in a b-lactamase that
increase protein folding efficiency do not necessarily correlate with enzyme efficiency
and phenotype (84, 85), meaning the factors that drive the adaptability of b-lacta-
mases in different species warrant further studies to better understand the spread of
AMR phenotypes given current investments into next-generation antibiotics.

MATERIALS ANDMETHODS
Bacterial strains and plasmids. Strains and plasmids used in this study are listed in Table S1 and

Table S2, respectively, in the supplemental material. Plasmid construction details are described in Text
S1. Primers used in this study are listed in Table S3. All cultures were grown in LB with the appropriate
antibiotics at 37°C, shaking at 200 rpm unless otherwise mentioned (2.5 cm orbit). Growth curves were
performed as described previously (67).

Protein expression, extraction, and analysis. All strains containing pJPCmR and related vectors
were grown to mid log-phase in LB supplemented with 34mg/ml chloramphenicol and, if required, 35ng/
ml of anhydrotetracycline (ATc) for 4 h to induce protein expression. Crude cell lysates were prepared by
harvesting 1ml of cell culture and resuspending the pellets in an appropriate volume of SDS loading
buffer (using a volume of 100 ml � the value of the optical density at 600 nm [OD600]). Periplasmic protein
extracts were prepared using Tris-sucrose-EDTA (TSE) as described previously (86). Protein fractionation
was performed as described previously (87). BL21 Star (DE3) cells harboring pETBKC-1 to express soluble
cytoplasmic C-terminally hexahistidine-tagged BKC-1 were grown to an OD600 of 0.4 at 37°C in terrific
broth (1.2% wt/vol tryptone, 2.4% wt/vol yeast extract, 0.4% vol/vol glycerol, 17mM KH2PO4, and 72mM
K2HPO4) supplemented with 100mg/ml ampicillin. BKC-1 expression was induced by adding isopropyl-
b-D-thiogalactopyranoside (IPTG) to a final concentration of 0.2mM and growing the culture for 4 h at 37°
C. Cell lysis, protein extraction, purification, and quantification were performed as described previously
(88). Using this protein, rabbit polyclonal antibodies against BKC-1 were obtained. SDS-PAGE and immuno-
blotting were performed as described previously (89) using the antibodies listed in Table S4.

Antibiotic sensitivity assays. Cultures were grown to an OD600 of 0.6 to 0.7 and MICs were deter-
mined and analyzed using the broth microdilution method as outlined by CLSI (90). For cells that con-
tained pJPCmR and its derivatives, cultures were grown to an OD600 of 0.3 to 0.4 and then induced with
ATc at a final concentration of 35 ng/ml until an OD600 of 0.6 to 0.7 was reached before performing MIC
assays in the continued presence of ATc.

Sequence analysis. Plasmid DNA comparison was performed using Easyfig 2.2.5 (91). Sequences of
BKC-1 and other b-lactamases were obtained from BLDB (63). The sequence of BKC-1 was used as a
query sequence to probe the database using the inbuilt BLDB BLAST function, and the top 200 hits were
collected after setting a 40% sequence identity cutoff. Phylogeny trees were visualized using iTOL v4
(64) from alignments generated using Clustal Omega (92). Signal peptide analysis of BKC-1, BKC-1A,
KPC-2, and L2 was performed using TatP 1.0 (93) and SignalP 5.0 (94) and all sequence alignments were
visualized using ESPript (95).
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