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Alzheimer’s disease (AD) is the most common form of dementia. Although the incidence
of AD is high, the rates of diagnosis and treatment are relatively low. Moreover,
effective means for the diagnosis and treatment of AD are still lacking. MicroRNAs
(miRNAs, miRs) are non-coding RNAs that play regulatory roles by targeting mRNAs.
The expression of miRNAs is conserved, temporal, and tissue-specific. Impairment
of microRNA function is closely related to AD pathogenesis, including the beta-
amyloid and tau hallmarks of AD, and there is evidence that the expression of
some microRNAs differs significantly between healthy people and AD patients. These
properties of miRNAs endow them with potential diagnostic and therapeutic value in the
treatment of this debilitating disease. This review provides comprehensive information
about the regulatory function of miRNAs in AD, as well as potential applications as
diagnostic biomarkers.
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INTRODUCTION

Alzheimer’s disease (AD) is the most frequently occurring dementia in the elderly. It is a
multifactorial and heterogeneous neurodegenerative disease, clinically manifested as progressive
cognitive dysfunction and behavioral impairment (Lane et al., 2018). The typical pathological
features are essentially present with amyloid plaques and neurofibrillary tangles that are associated
with beta-amyloid (Aβ) metabolism and the hyperphosphorylation of tau protein, respectively,
as the core pathological mechanisms. Moreover, AD pathogenesis is closely related to impaired
synaptic plasticity, immune-inflammatory responses, and numerous other processes associated
with the central nervous system (CNS). MicroRNAs (miRNAs, miRs) are abundantly present in
the CNS, and involve in the complicated pathogenesis of AD through a variety of mechanisms. The
diagnosis of AD has great limitations currently. There is an urgent need for reliable biomarkers,
especially in the early stages of the disease so that interventions can be promptly instituted to
improve clinical outcome.

In this review, we summarize the evidence relating to how miRNAs modulate the onset and
pathological progression of AD. Part of the summary is shown in Figure 1 and Table 1. We also
review the potential of using miRNAs as diagnostic biomarkers for AD (Table 2), thereby providing
a perspective of the clinical applications of miRNAs for AD management (Figure 2).
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FIGURE 1 | MicroRNAs (miRNAs) are involved in Aβ metabolism. Amyloid
precursor protein (APP) is a type I integral inner membrane-localized protein.
Under normal conditions, APP is hydrolyzed by α-secretase to produce the
neuroprotective soluble external functional fragments (sAPP), P3 and the APP
intracellular domain (AICD) (no plaque formation); in contrast,
β-secretase-mediated APP hydrolysis generates plaque-forming Aβ, which is
neurotoxic. The γ-secretase enzyme is crucial for both secretase pathways.

BASIC STRUCTURE AND FUNCTIONS
OF MiRNAs

MicroRNAs are small, non-coding, single-stranded RNAs
approximately 22 nucleotides long. Canonical miRNA biogenesis
begins with the transcription of primary miRNAs (pri-miRNAs)
by RNA polymerase II. These pri-miRNAs are processed into
precursor miRNAs (pre-miRNAs) by Drosha in complex with
Pasha/DGCR8, and then transported from nucleus to cytoplasm.
Pre-miRNAs have a hairpin loop structure recognized for
cleavage by dicer, leading to the production of mature miRNAs.
One strand of the mature duplex is loaded onto a member
of the Argonaute (Ago) family of proteins, forming RNA-
induced silencing complexes (RISCs) that mediate gene silencing
by recognizing the 3′ untranslated region (3′ UTR) of target
mRNAs (Schwarz and Zamore, 2002; Friedman et al., 2009;
Jinek and Doudna, 2009; Ipsaro and Joshua-Tor, 2015). Of
specifically note, miRNA binding with AGO can promote gene
expression. For example, miR-346 recruiting AGO2 targets the
5′ UTR of amyloid precursor protein (APP) mRNA, which
competes with the translational suppressor, the iron response
protein1, thus inducing stimulative translation of APP mRNA
(Long et al., 2019).

Besides inhibiting the expression of target genes by binding
to the 3′ UTR of mRNAs, increasing evidence has indicated that
miRNAs also act in a non-canonical manner by changing binding
partner. MiR-181c can target mitochondrial transcription (Das
et al., 2012). MiRNAs can also interact with non-Ago proteins.
Research reports that miR-let-7b activates Toll-like receptors
(TLRs) as a signaling molecule (Lehmann et al., 2012). Apart from
binding with protein, miRNAs can synergistically interact with
non-coding RNAs, including long non-coding RNAs (lncRNAs)
and circular RNAs (cirRNAs). Intriguingly, miRNAs can promote
gene expression, such as miR-589, binding to the promoter RNA
of COX-2 transcript, thus inducing transcriptional upregulation

(Matsui et al., 2013). Another example is that miR-369 activates
TNFα translation by recruiting AGO- FXR1 complex to the
AU-rich elements of mRNA during G1/G0 phase. Finally, some
pri-miRNAs are found to act as peptide encoding RNAs [miRNA-
encoded peptides (miPEPs)], such as pri-miR-165a and pri-miR-
171b (Lauressergues et al., 2015; Dragomir et al., 2018).

MiRNAs ARE CRUCIAL FOR THE ONSET
AND PATHOLOGICAL PROGRESSION OF
AD

miRNAs Are Involved in Aβ Metabolism
In 1984, George Glenner and Caine Wong found that the main
component of senile plaques was a peptide of 39–43 amino acid
residues, known as Aβ, thereby laying the foundation for the
study of AD (Glenner and Wong, 1984). The Aβ hypothesis
holds that Aβ aggregation is the causative factor in AD, leading
to synaptic damage, tau protein phosphorylation, inflammation,
oxidative stress, apoptosis, and eventually nerve cell damage
and death (Sanabria-Castro et al., 2017). Mutations in the APP,
presenilin 1 (PS1), PS2, and apolipoprotein E (APOE) genes all
lead to abnormal APP processing and Aβ metabolism, resulting
in Aβ deposition and subsequent neurocytotoxicity (Hardy and
Higgins, 1992; Hardy and Selkoe, 2002). Other susceptibility
genes for AD, such as CLU, CD2AP, PICALM, and ABCA7, affect
Aβ generation and elimination (Gibson, 2010).

The APP gene is located in the middle segment of the long
arm of chromosome 21 and contains 18 exons. APP is widely
present in tissue cells throughout the body, but most abundantly
expressing in neurons. APP is a type I integral inner membrane
protein, comprising an intracellular domain (AICD) and an
extracellular domain, and the aberrant function of APP can lead
to an increase in Aβ production in AD patients (Goate et al., 1991;
Rovelet-Lecrux et al., 2006). The PS1 and PS2 genes are located
on chromosome 14 and chromosome 1, respectively, and their
protein products have similar structure and function. They both
contain 13 exons, and form PS proteins after transcription. PS1
possesses γ-secretase activity and participates in APP proteolysis.
Mutations in PS1 or PS2 can affect the degradation and transport
of APP, increase Aβ42 production and the Aβ42/Aβ40 ratio, and
affect the interaction between tau protein and other cytoskeletal
proteins, thereby attributing to the pathogenesis of AD (Kumar-
Singh et al., 2006; Campion et al., 2016; Eggert et al., 2018).

APOE has the greatest correlation with late-onset AD (LOAD;
age at onset ≥ 65 years). APOE has three alleles (ε2, ε3, and ε4)
encoding APOE2, APOE3, and APOE4, respectively. APOE is
a secreted glycoprotein consisting of 299 amino acids produced
by astrocytes in the CNS and is associated with cholesterol
transport. APOE2 and APOE3 can bind to Aβ and promote its
clearance across the blood–brain barrier (BBB), while APOE4
has a relatively weak binding affinity for Aβ. The three APOE
isoforms accelerate the deposition of Aβ, regulate the activity
of tau-related kinases such as p35 and CDK5 through binding
to receptors, and further regulate tau protein phosphorylation
(Goate et al., 1991; Corder et al., 1993; Bu, 2009; Zhao et al., 2018).
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TABLE 1 | Mysregulation of miRNAs in AD.

Species of
miRNA

Changes Materials Targets and responses References

miR-101 ↓ HeLa cells Regulates APP expression
specifically via site 1 in 3′-UTR

Long and Lahiri, 2011

miR-106b ↓ SH-SY5Y cells Fyn;
tau hyperphosphorylation ↓

Liu et al., 2016

miR-124-3p ↓ HCN-2 cells and APP/PS1
mice;
N2a/APP695swe cells

CAPN1;
Caveolin-1-PI3K/Akt/GSK3β

pathway
tau hyperphosphorylation ↓

Kang et al., 2017; Zhou et al.,
2019

miR-125b ↑ Primary hippocampal
neurons;
Neuro2a APPSwe/19 cells;
Human fatal cortical tissues;

Bcl-W, DUSP6,
PPP1CA,FOXQ1; CDK5/p35/25;
tau hyperphosphorylation ↑

Banzhaf-Strathmann et al.,
2014; Ma et al., 2017; Jin et al.,
2018

miR-128 ↑ 3×Tg-AD mice
Neuro 2a (N2a) cells

PPARγ ↓ Geng et al., 2018

miR-132 ↓ the hippocampus of APP/PS1
mice

ITPKB;
ERK1/2;
BACE1;
Aβ ↑

tau hyperphosphorylation ↑

Salta et al., 2016

miR-132/miR-
212

↓ APP/PS1 mice and HEK 293
cells; miR-132/212 knockout
(KO) mice;

tau mRNA
NOS1; tau hyperphosphorylation ↑

Smith et al., 2015; Salta and De
Strooper, 2017; Wang et al.,
2017

miR-135a ↑ AppTg (APPswe/PS1/E9
bigenic) mice
U373MG cells

CCAA T/enhancer binding protein
delta (CEBPD)
thrombospondin 1 (THBS1)
CEBPD/miR135a/THBS1 axis

Ko et al., 2015

miR-135b ↓ Primary hippocampal cells of
senescence-accelerated
mouse resistant 1 (SAMR1)
mice

BACE1 ↓ Zhang B. et al., 2016

miR-137 ↓ APP/PS1 mice and SH-SY5Y
cells

CACNA1C;
tau hyperphosphorylation ↓

Jiang et al., 2018

miR-138 ↑ N2a/APP and HEK293/tau cells RARA/GSK-3βsignal pathway;
tau hyperphosphorylation ↑

Wang X. et al., 2015

miR-139 ↑ The hippocampus of SAMP8
mice and primary hippocampal
cells

Modulate CB2-meditated
neuroinflammatory processes.

Tang et al., 2017

miR-140-5p ↑ Two regions of post-mortem
brain (cerebellum and
hippocampus)

ADAM10;
SOX2;
Aβ ↑

Akhter et al., 2018

miR-146a ↑ SH-SY5Y cells and 5×FAD
mice

ROCK1/PTEN signal pathway;
tau hyperphosphorylation ↑
low-density
lipoprotein receptor-related
protein-2 (Lrp2) ↓
Lrp2/Akt pathway
cell apoptosis

Wang et al., 2016; Zhang B.
et al., 2016

miR-15/107
family
(miR-103 and
miR-107)

↓ SK-N-BE cells and HEK-293
cells
post-mortem frozen brain
tissue samples of AD patients

CDK5R1/p35;
Aβ ↑

Moncini et al., 2017

miR-107 ↓ Cerebral cortex of AD patients;
SH-SY5Y cells;

BACE 1 mRNA;
ADAM 10;
APP metabolism

Nelson and Wang, 2010;
Augustin et al., 2012; Goodall
et al., 2013

miR-153 ↓ HeLa cells APP, APLP2; Long et al., 2012

miR−186 ↓ AD rat models;
hippocampal neuronal cells

Interleukin−2 (IL2) ↓;
suppress the JAK–STAT signaling
pathway

Wu et al., 2018

(Continued)
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TABLE 1 | Continued

Species of
miRNA

Changes Materials Targets and responses References

miR-188-5p ↓ 5×FAD mice and primary
hippocampal neuron

Synaptic dysfunction Lee et al., 2016

miR-19 ↓ SH-SY5Y cells PTEN ↑
phosphorylated AKT ↓
p53 and Bax ↑
Bcl-2 ↓
neural cell apoptosis

Zhu M. et al., 2016

miR-200b/c ↑ APP/PS1 mice and PC12 cells;
murine primary neurons
SH-SY5Y cells

Ribosomal protein S6 kinase B1
(S6K1), PTEN;
PI3K/mTOR signal pathway;
Aβ ↓

Wu et al., 2016; Higaki et al.,
2018

miR-219 ↓ Drosophila model that
produces human tau SH-SY5Y
cells and PC12 cells

MAPT;
tau protein production ↓

Santa-Maria et al., 2015

miR-219-5p ↓ APP/PS1 mice and SH-SY5Y
cells

TTBK1;
Gsk-3β;
tau hyperphosphorylation ↑

Li et al., 2019

miR-221 ↓ SH-SY5Y cells ADAM10 ↑ Manzine et al., 2018

miR-29c ↓ Hippocampus and the frontal
cortex of the APPse/PS1E9
mouse brain

BACE1;
PKA/CRE signal pathway;
Aβ ↑

Zong et al., 2015

miR-302 / SK-N-MC cells PTEN
Akt signaling
Aβ-induced apoptosis

Li et al., 2016

miR-322 ↑ The hippocampus of Tg2576
AD transgenic mouse

BDNF-TrkB;
tau hyperphosphorylation ↑

Zhang et al., 2018

miR-33 ↑ Brain of miR-33 (−/−) mice
and primary neural cells

ABCA1;
Metabolism of ApoE and Aβ;
Aβ ↑

Kim et al., 2015

miR-330 ↓ AD mouse and primary neuron
cells

VAV1;
MAPK signal pathway;
Aβ ↑

Zhou et al., 2018

miR-339-5p ↓ heLa cells and U373 MG cells BACE1;
Aβ ↑

Long et al., 2014

miR-34a ↓ APP/PS1 Tg mice and primary
neural cells

Cyclin D1 ↑
regulate cell cycle apoptosis

Modi et al., 2016

miR-34c ↑ C57BL/6JNarl (B6) mice
hippocampal primary cells

Influences dendritic spine density
and synaptic plasticity

miR-431 / Cortico-hippocampal cells
isolated from 3×Tg-AD mice

Kremen1 (Krm1);
Wnt/β-cateninsignal pathway;
regulate neurite outgrowth and
synapse formation;

Ross et al., 2018

miR-4487 ↓ SH-SY5Y cells Cell apoptosis Hu et al., 2018

miR-511 ↓ HEK293T
IMR-32 cells
M17 cells
Neuro-2a cells
SH-SY5Y cells
and HeLa cells

3′UTR of FKBP5 neuronal
differentiation

Zheng et al., 2016

miR-603 ↑ HEK293 cells and HeLa cells LRPAP1 mRNA prevent HeLa cells
from apoptosis

Zhang C. et al., 2016

miR-92a ↑ The human tau-transgenic
mice; The vGAT-ChR2
(H134R)-EYFP mice

vGATmRNA;
vGAT↓(vesicular GABA transporter
(vGAT).

Li et al., 2017

miR-98 ↓ Hippocampal tissues of AD
mice
hippocampal neuronal cells

HEY2
Notch-HEY2
signaling pathway.

Chen et al., 2019

↑ indicates increased levels; ↓ indicates decreased levels.
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TABLE 2 | MiRNAs in the circulation and cerebral-spinal fluid (CSF) of AD patients.

Species of miRNA Changes Material analyzed for miRNA References

miR-146b-5p ↓ Peripheral blood Wu et al., 2020

miR-15b-5p ↓ Peripheral blood Wu et al., 2020

miR-9 ↓ Peripheral blood Souza et al., 2020

miR-1233-5p ↓ Platelet Lee et al., 2020

miR132 ↓ Neural EVs Cha et al., 2019

miR-212 ↓ Neural EVs Cha et al., 2019

miR-339 ↑ PBMC Ren et al., 2016

miR-425 ↑ PBMC Ren et al., 2016

miR-29b ↓ PBMC Villa et al., 2013

miR-135b ↓ Peripheral blood Zhang et al., 2016b

miR-29c ↓ Peripheral blood Yang et al., 2015

miR-106b ↓ Serum Madadi et al., 2020

miR-125b ↓ Serum Tan et al., 2014

miR-132 ↑ Serum Xie et al., 2015

miR-133b ↓ Serum Yang et al., 2019

miR-193a-3p ↓ Serum Cao et al., 2020

miR-19b-3p ↓ Serum Wu et al., 2017

miR-206 ↑ Serum Xie et al., 2015

miR-222 ↓ Serum Zeng et al., 2017

miR-223 ↓ Serum Jia and Liu, 2016; Wei et al., 2018

miR-223 ↓ (exosomes) Serum Wei et al., 2018

miR-22-3p ↑ Serum Guo et al., 2017

miR-29c-3p ↓ Serum Wu et al., 2017

miR-34c ↑ Serum Shi et al., 2020

miR-384 ↑ (exosomes) Serum Yang et al., 2018

miR-4422 ↓ Serum Hajjri et al., 2020

miR-455-3p ↑ Serum Kumar et al., 2017; Kumar and Reddy, 2019

miR-501-3p ↓ Serum Hara et al., 2017

miR-127-3p ↑ Plasma Piscopo et al., 2018

miR-146a ↓ Plasma Kiko et al., 2014

miR-181c-5p ↑ Plasma Siedlecki-Wullich et al., 2019

miR-200a-3p ↓ Plasma Wang et al., 2019

miR-206 ↑ Plasma Kenny et al., 2019

miR-210-3p ↑ Plasma Siedlecki-Wullich et al., 2019

miR-342-3p ↓ (exosomes) Plasma Lugli et al., 2015

miR-34a ↓ Plasma Kiko et al., 2014

miR-34a-5p ↓ Plasma Cosin-Tomas et al., 2017

miR-34c ↑ Plasma Bhatnagar et al., 2014

miR-545-3p ↓ Plasma Cosin-Tomas et al., 2017

miR-92a-3p ↑ Plasma Siedlecki-Wullich et al., 2019

miR-125b ↑ CSF Dangla-Valls et al., 2017

miR-125b-5p ↑ (exosomes) CSF McKeever et al., 2018

miR-125b-5p ↓ CSF Lusardi et al., 2017

miR-146a ↓ CSF Kiko et al., 2014; Lusardi et al., 2017

miR-222 ↑ CSF Marchegiani et al., 2019

miR-27a-3p ↓ CSF Sala Frigerio et al., 2013

miR-29a ↑ CSF Muller et al., 2016

miR-34a ↓ CSF Kiko et al., 2014

miR-451a ↓ (exosomes) CSF McKeever et al., 2018

miR-598 ↓ CSF Riancho et al., 2017

miR-9-5P ↓ CSF Riancho et al., 2017

miR-let-7b ↑ CSF Liu et al., 2018

↑ indicates increased levels; ↓ indicates decreased levels.
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FIGURE 2 | MiRNAs play a role to diagnose AD.

MiRNAs have roles in APP degradation and Aβ metabolism
through regulating the expression of related genes and associated
pathways (Millan, 2017). APP degradation occurs mainly
through the secretase pathway. APP is hydrolyzed by α-secretase
to produce the neuroprotective soluble external functional
fragments (sAPP), P3 and the AICD; in contrast, β-secretase
hydrolyzes APP to produce the Aβ40 and Aβ42 forms. Aβ42
accumulates at a higher rate than Aβ40, thereby forming plaques
and exerting neurotoxic effects. The γ-secretase enzyme is a key
determinant of the Aβ40/Aβ42 ratio (Kaether et al., 2006; Cirrito
et al., 2008; Haass et al., 2012; Roher et al., 2017).

MiRNAs can regulate the activities of key enzymes involved
in APP lysis. Several miRNAs, including miR-339-5p, miR-
29c, miR-15b, miR-195, and miR-124, participates in Aβ

metabolism by modulating the activity of β-secretases such
as BACE1 (Das et al., 2016; Selkoe and Hardy, 2016).
Downregulation of miR-339-5p results in increased expression
of BACE1, thus promoting Aβ deposition (Long et al., 2014).
Moreover, both miR-29c and miR-135b negatively regulate
BACE1 expression and show neuroprotective effects (Zhang et al.,
2016b). Overexpression of hippocampal miR-188-3p reduces
BACE1, Aβ, and neuroinflammation levels in APP transgenic
mice (Zhang et al., 2014). AD-related ADAM metallopeptidase
domain 10 (ADAM10), a member of the ADAM family of
α-secretases, hydrolyzes APP to produce non-pathogenic Aβ.
MiR-221 is downregulated in AD, which increases ADAM10
content (Manzine et al., 2018). MiR-140-5p is a negative
regulator of ADAM10 and its transcription factor SOX2, is
activated by Aβ (Akhter et al., 2018). MiRNAs have complicated
interactions. MiR-107 targets BACE1 and ADAM10 also regulate
APP metabolism, which suggested that single miRNA can target
different genes or pathways producing additive effects (Nelson
and Wang, 2010; Augustin et al., 2012; Goodall et al., 2013).
BACE1 which is regulated by at least 10 more species of
miRNA like miR-29c, miR-107, and miR-339-5p mentioned
above. These miRNAs are both downregulated in AD showing
negative correlation with BACE1. In addition, miR-221 and miR-
140-5p can regulate ADAM10 negatively. However, miR-221 are

downregulated in AD while miR-140-5p are upregulated, thus
playing different roles. PS1 is an important component of the
γ-secretory proteolytic system, and the PS1/γ-secretase system
protects neurons by regulating miR-212 and PEA15 (Huang
et al., 2018). Aph-1 homolog A (APH1A), a major mammalian
APH1 subtype and a subunit of the γ-secretase complex.
Overexpression of APH1A increases γ-secretase complex activity
and consequently the levels of Aβ. MiR-151 involves in the
formation of long-term episodic memory in the hippocampus
by reducing the protein level of its target, APH1A (Xu et al.,
2019). Increased β-secretase levels and activity elevate the levels
of the AICD, which then stimulates the expression of APP
and BACE1, thereby providing more substrate and enzyme
for the amyloidogenic pathway. The AICD generated from
the amyloidogenic pathway can translocate to the nucleus
and function as a transcriptional regulator. AICD/miR-663
directly downregulates the expression of FBXL18 and CDK6,
which affects the growth and differentiation of neuronal cells
(Konietzko, 2012; Shu et al., 2015).

MiRNAs also involves in Aβ metabolism. MiR-15/107 family
members, including miR-103 and miR-107, are downregulated
in AD hippocampi, and enhance the generation of Aβ

and phosphorylation of APP. This increases the levels of
CDK5R1/p35 and, consequently, activates cyclin-dependent
kinase 5 (CDK5) and finally leads to deterioration (Jiao
et al., 2016; Moncini et al., 2017). MiR-132 is significantly
downregulated in the middle and late stages of AD, leading to the
upregulation of inositol 1,4,5-trisphosphate 3-kinase B (ITPKB)
and increased ERK1/2 and BACE1 activity in AD patients (Salta
et al., 2016; Zhu Q. B. et al., 2016). MiR-330 exerts a negative
regulatory effect on vav guanine nucleotide exchange factor 1
(VAV1) via the MAPK signaling pathway, which promotes Aβ

generation in the AD brain (Zhou et al., 2018). Upregulation
of miR-33 in AD reduces ATP-binding cassette transporter A1
(ABCA1) levels, which can regulate APOE lipidation and Aβ

metabolism, thus enhancing Aβ levels (Kim et al., 2015). MiR-
128 targets peroxisome proliferator-activated receptor gamma
(PPARG), which promotes Aβ pathology (Muller et al., 2014;
Geng et al., 2018). Some miRNAs play neuroprotective roles by
reducing the secretion and toxicity of Aβ. MiR-153 reduces the
expression of APP (Long et al., 2012), while miR-200b/c and miR-
302 inhibit PTEN to activate Akt via the PI3K/mTOR pathway
and downstream Nanog signaling, thus alleviating Aβ-induced
neurotoxicity (Li et al., 2016; Wu et al., 2016; Higaki et al., 2018).

In turn, aberrantly high levels of Aβ can affect the expression
of miRNAs. Overexpression of APP inhibits miR-107 (Moncini
et al., 2017), and Aβ42 oligomerization can reduce the expression
of miR-188-5p in hippocampal neurons (Lee et al., 2016). When
cortical neurons of APP/PS1 mice are exposed to Aβ, the levels
of miR-34a initially increases, and then subsequently decreases
(after 48 h) (Modi et al., 2016).

miRNAs Contribute to Abnormal Tau
Protein Function
Tau is the most abundantly expressed microtubule-associated
protein in neurons of the cerebral cortex, hippocampus, and
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axons of peripheral nerves in the human brain. There are
six tau isomers in the human brain and are derived from
exons 2, 3, and 10 by selective splicing (Goedert et al., 1992).
Tau phosphorylation is important for its normal physiological
functions, such as stabilizing the cytoskeleton, maintaining cell
morphology, and ensuring intracellular transport; it also plays
an important role in maintaining the protein composition of the
PSD in dendritic spines in healthy neurons (Crimins et al., 2013;
Iqbal et al., 2016). Aberrantly phosphorylated tau shows reduced
binding affinity for microtubules, leading to tau aggregation and
neurofibrillary tangle (NTF) formation, and also competitively
binds to other normal microtubule-related proteins; this leads to
the loss of the dynamic balance between microtubule assembly
and disassembly, affects axonal transport and cell function,
and results in neuronal degeneration (Sanabria-Castro et al.,
2017). A variety of mechanisms, including gene mutation and
an imbalance in tau protein-mediated regulation of enzyme
function, lead to abnormal tau protein phosphorylation (Alonso
et al., 2018; Davila-Bouziguet et al., 2019; Penke et al., 2019).

MiRNAs can not only directly affect tau protein synthesis,
such as miR-219 directly targeting MAPT (Santa-Maria et al.,
2015), but can also affect tau phosphorylation by regulating
the activity of the relevant enzymes. GSK3, PKA, and CDK5
protein kinases can reveal or hide phosphorylation sites to
synergistically adjust tau protein phosphorylation, primarily on
serine and threonine residues, while phosphatases such as PP2A,
PP2B, and PP1 dephosphorylate tau protein at multiple sites
to varying degrees (Lee et al., 2011). CDK5, a proline-directed
serine/threonine kinase, can regulate tau phosphorylation.
P35/P25 are activators of CDK5, and calpain (CAPN)-induced
cleavage of p35, which generates p25, gives rise to the aberrant
activation of CDK5 and promotes tau hyperphosphorylation
(Lopes and Agostinho, 2011). MiR-124-3p, which reduces in
AD, inhibits the translation of CAPN1 mRNA, prevents the
conversion of p35 to p25 and the subsequent formation of the
p25/CDK5 complex, and reduces abnormal tau phosphorylation
(Zhou et al., 2019). Overexpression of miR-125b leads to the
upregulation of the p35, CDK5, and p44/42 MAPK (Erk1/2)
signaling pathways, while the phosphatases DUSP6 and PPP1CA
and the antiapoptotic factor Bcl-W are downregulated as direct
targets of miR-125b, which promotes tau hyperphosphorylation
(Banzhaf-Strathmann et al., 2014; Ma et al., 2017). GSK3 is also
an important kinase for tau protein phosphorylation, and miR-
219-5p downregulates GSK3 to inhibit tau phosphorylation in
AD (Li et al., 2019).

Additional mechanisms are reported via which miRNAs can
affect tau phosphorylation. MiR-132/212 plays an important role
in memory formation and maintenance (Hernandez-Rapp et al.,
2015). Its downregulation affects the balance of S-nitrosylation
and induces tau phosphorylation and aggregation in a NOS1-
dependent manner in vivo (Pichler et al., 2017; Salta and
De Strooper, 2017; Wang et al., 2017). MiR-322, a rodent
homolog of human miR-424, promotes tau phosphorylation
by negatively regulating brain-derived neurotrophic factor
(BDNF)-TrkB receptor activation (Zhang et al., 2018). MiR-146a
upregulation results in tau hyperphosphorylation in neurons
through modulation of the ROCK1/PTEN signaling pathway

(Wang et al., 2016). MiR-138 overexpression induces tau
hyperphosphorylation by targeting the RARA/GSK3β pathway,
increasing tau phosphorylation at Thr231, Ser396, and Ser404
(Wang X. et al., 2015). MiR-106b inhibits Aβ42-induced tau
phosphorylation at Tyr18 by targeting Fyn (Liu et al., 2016),
while miR-137 exerts inhibitory actions on tau phosphorylation
by suppressing CACNA1C expression (Jiang et al., 2018).
Changes in tau protein levels also affect miRNA expression. Tau
accumulation increases miR-92a levels in AD, thereby inducing
anxiety through the miR-92a/vGAT/GABA signal in the mouse
(Li et al., 2017).

miRNAs Regulate Synaptic Plasticity
Synapse formation is the basis of neural signal transduction,
while synaptic plasticity is the basis of learning and memory.
Memory impairment in AD patients is recognized to be
a result of abnormal synaptic plasticity. Overexpression of
miR-34c in hippocampal neurons influences AD pathogenesis
by negatively regulating dendritic length and spine density
(Kao et al., 2018). An increase in the level of soluble Aβ

enhances glutamate release and excitatory toxicity (Edwards,
2019). Synapses are vulnerable to Aβ-induced neurotoxicity, and
miRNAs regulates Aβ-mediated synaptic toxicity and plasticity.
The CAMKK2/AMPK/Tau pathway is a key mediator of Aβ42
oligomer-mediated synaptic toxicity (Mairet-Coello et al., 2013).
MiR-431 protects synapses and neurites from Aβ-induced toxic
effects via the Wnt/β-catenin signaling pathway (Ross et al.,
2018). MiR-188-5p can also alleviate Aβ42-mediated synaptic
damage and dysfunction (Lee et al., 2016). The N-methyl-
D-aspartate receptor (NMDAR) is an ion channel protein
localized in the postsynaptic membrane and an important
“molecular switch” for learning and memory. The excitation of
NMDAR leads to a continuous increase in Ca2+ concentration,
impairment of long-term potentiation (LTP), toxic damage,
and loss of synapses. NMDA receptors drive glutamate-induced
neuroexcitotoxicity, and a variety of factors, including p38
kinase, contribute to Aβ-mediated neurotoxicity (Hardingham
and Bading, 2010). BDNF also contributes to the regulation of
synaptic function. Inhibiting miR-132 reduces the increase in
BDNF-dependent postsynaptic protein expression. MiR-132/212
family members play important roles in neural function and
synaptic plasticity, and are continuously downregulated in early
AD (Kawashima et al., 2010; Pichler et al., 2017). A potential
target of miR-132 in cholinergic neurons may be a regulator
of cholinergic transmission and synaptic plasticity, which may
indirectly promote Aβ42 production and lead to cholinergic
neurodegeneration (Zhu L. et al., 2016). MiR-200c is also
downregulated in the frontal and temporal lobes of AD brains,
exerting a protective effect against endoplasmic reticulum stress
(ERS)-induced loss of cholinergic neurons (Wu et al., 2016).

miRNAs Participate in Neuronal Growth,
Differentiation, and Apoptosis
Neural stem cells (NSCs) are characterized by their capacity
to proliferate and differentiate into multiple neuronal cell
types, including neurons, astrocytes, and oligodendrocytes. How
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to promote the differentiation of NSCs into neurons as a
means of replacement therapy in AD is currently the subject
of intensive research efforts. MiRNAs modulate the growth,
development, maturation, and differentiation of neurons to
varying degrees. MiR-142a-5p, miR-146a-5p, miR-155-5p, and
miR-455-5p are upregulated in the AD brain and regulate
neuronal function, and may also have a role in brain development
and neurodegeneration (Arena et al., 2017; Sierksma et al.,
2018). MiR-135a targets the thrombospondin 1 (THBS1) 3′
UTR, thereby promoting angiogenesis (Ko et al., 2015). MiR-
511 increases neuronal differentiation and development as a
functional regulator of FKBP5 in primary neurons (Zheng et al.,
2016). MiR-302/367 induces the reprogramming of reactive
astrocytes to neurons, contributing to neural repair, and may
represent a potential therapeutic strategy to restore learning and
memory (Ghasemi-Kasman et al., 2018).

In the AD brain, miRNAs play a two-way regulatory role in
apoptosis, one of the main causes of neuronal loss in AD patients.
On the one hand, miRNAs can promote apoptosis. For example,
the downregulation of miR-512 in AD leads to an imbalance in
proapoptotic/antiapoptotic factors, thereby promoting apoptosis
and further deterioration (Mezache et al., 2015). Aβ also induces
the downregulation of miR-34a, enhances the expression of
cyclin-D1, and promotes the neuronal cell cycle through the
MEK/ERK signaling pathway, which leads to apoptosis (Modi
et al., 2016). MiR-146a inhibits LRP2 translation, which also leads
to cell apoptosis (Zhang B. et al., 2016). On the other hand,
miRNAs can also inhibit apoptosis. MiR-19 is a key component of
the miR-17-92 cluster and inhibits aluminum-induced neuronal
apoptosis (Zhu M. et al., 2016). MiR-214-3p negatively regulates
the expression of ATG12 by targeting its 3′ UTR, inhibits
autophagy, and reduces the levels of apoptosis in hippocampal
neurons (Zhang et al., 2016a). Increased expression of miR-4487
decreases Aβ-induced apoptosis in neurons (Hu et al., 2018).
Furthermore, miR-98 reduces Aβ production, inhibits the Notch
signaling pathway, and suppresses the apoptosis of hippocampal
neurons, thereby promoting their survival (Chen et al., 2019).
MiR-124-3p attenuates tau phosphorylation-induced neuronal
apoptosis by targeting the caveolin-1/PI3K/Akt/Gsk3β pathway
(Kang et al., 2017). MiR-125b regulates inflammatory factors and
oxidative stress through SphK1, thereby mediating the growth
and apoptosis of neuronal cells (Jin et al., 2018). MiR-603 is an
intronic miRNA of KIAA1217, a gene that is highly expressed in
the human brain and elicits protective effects on neuroanl cells
(Zhang C. et al., 2016).

miRNAs Mediate Immuno-Inflammatory
Responses in AD
Immuno-inflammation is one of the pathological hallmarks
of AD. Microglia and astrocytes both participate in the
physiological function of central neuritis. Microglia, an immune
effector cell in the brain, protects neurons from neuronal
loss by eliminating harmful substances, but also exerts toxic
effects on neurons through the activity of proinflammatory
factors. Microglia neuroinflammation may act as an early
trigger or as a sustained vulnerability factor that aggravates

pathophysiological processes driving AD, leading to neurol loss.
Aβ and oxidative stress can activate microglia and astrocytes,
leading to Ca2+ influx and mitochondrial damage in synapses,
followed by neurodegeneration. However, microglia effectively
clears damaged synapses to prevent further extensive axonal
damage (Kuchibhotla et al., 2008), and also releases cytokines
and chemokines through a process known as “synaptic pruning,”
assists and guides the process of neuronal differentiation, and
mitigates Aβ-mediated toxic damage (Nayak et al., 2014; Salter
and Beggs, 2014).

Numerous SNPs and rare coding variants in immune-related
genes thought to be involved in microglial function have been
identified as risk factors for AD in whole-genome sequencing
and GWAS analyses, including TREM2, CR1, SHIP1, BIN1,
CD33, PICALM, CLU, and the MS4A gene cluster (Gibson, 2010;
Rosenberg et al., 2016; Bis et al., 2018). TLR-associated gene
polymorphisms have been linked with susceptibility to LOAD
(Sohrabifar et al., 2015). MiRNAs may activate TLRs and play a
role in neuroinflammation under certain conditions (Bryniarski
et al., 2015). TREM2 is an immunoglobulin superfamily receptor
found in microglia, and mutations in the TREM2 gene increase
the risk of LOAD (Cheng-Hathaway et al., 2018; Parhizkar
et al., 2019). MiR-34a targets 299 nucleotides of the 3′ UTR
of the TREM2 mRNA, resulting in the downregulation of
TREM2 and microglia phagocytosis (Bhattacharjee et al., 2016).
Knocking out TREM2 reduces neuroinflammation in AD mice
(Leyns et al., 2017).

MiRNAs can play both protective and pathogenic roles
by influencing neuroinflammatory responses through
inflammation-associated cytokines. MiR-9, miR-34a, and miR-
155 exhibit an anti-inflammatory effect through the modulation
of downstream targets of proinflammatory mediators in the
brain, including TNF receptor-associated factor 6 (TRAF6)
and interleukin 1 receptor-associated kinase 1 (IL1R-AK1).
Complement factor H (CFH) is a suppressor of the inflammatory
response, and miR-125, miR-146a, and miR-155 enhance
harmful CFH-induced proinflammatory events in AD, which
may be associated with oligomeric Aβ induced inflammatory
responses (Millan, 2017). MiR-139 has a negative regulatory
effect on responses to proinflammatory stimuli, and prevent
AD progression through the regulation of cannabinoid receptor
type 2 (CB2)-mediated neuroinflammation (Tang et al., 2017).
Prostaglandin E2 (PGE2) is a key mediator of the inflammatory
response. PGE2 regulates CCAAT/enhancer-binding protein
delta (CEBPD) in astrocytes through the EP4 receptor and
protein kinase A, and CEBPD activation is associated with
AD. Following PGE2 treatment, CEBPD induces miR-135a
activation in astrocytes to inhibit THBS, suggesting that the
CEBPD/miR135a/THBS1 axis may be a therapeutic target for the
treatment of AD (Ko et al., 2015).

SPATIAL AND TEMPORAL EXPRESSION
OF MiRNAs IN AD

As outlined above, miRNAs participate in the onset and
pathological progression of AD. The expression levels of miRNAs
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show spatial and temporal differences in AD patients. MiRNAs
like miR-9, miR-124, miR-125b, and miR-132, are expressed
specifically in the CNS (Millan, 2017), and their dysregulation is
associated with neurodegenerative diseases, such as AD.

MiRNA expression differs between gray matter and white
matter in AD, although relatively few miRNAs are specifically
altered in the white matter of AD brains. For example, the levels
of miR-132 and miR-212 in AD brain reduce to different degrees
in gray matter and white matter and more prominent in gray
matter compared with healthy subjects (Pichler et al., 2017).
Different miRNA species have different physiological functions,
and their expression and distribution in AD also differ. The level
of miR-107 in the hippocampus and temporal lobe decreases,
while that of miR-146a increases during AD (Millan, 2017).
Moreover, even the same miRNA shows different expression
patterns between cerebral regions. MiR-29c is upregulated in
the hippocampus of mice in the early stages of AD, but is
significantly downregulated in the cortex (Zong et al., 2015). The
difference can be partly explained by different cell composition
and functions, as well as the properties of the different types
of miRNA and differences in research methods (Smith et al.,
2015; Salta et al., 2016). Gray matter and white matter are
important components of the CNS. Gray matter comprises
mostly neurons, astrocytes, endothelial cells, microglia, and
relatively few oligodendrocytes, while white matter functions
mainly in conduction (Wang et al., 2010). The cerebral cortex,
closely related to learning and memory, is composed of gray
matter. Moreover, the neural-specific pathological changes in AD,
including amyloid plaques and NFTs, are primarily found in
gray matter (Cech and Steitz, 2014). The pathological changes
occurring in AD show temporal continuity, beginning in the
entorhinal cortex at the base of hippocampus, and subsequently
spreading to frontal lobe, temporal lobe, and occipital cortex with
continued disease development, leading to impaired learning and
memory function, as well as personality changes. This may also
underlie the spatial and temporal changes of miRNA profiles.
One example is that hippocampal MiR-128 elevates in the middle
stage of AD, whereas decreases in the late stage (Muller et al.,
2014; Geng et al., 2018). The expression of miR-132 in the
nucleus basalis of Meynert is fairly stable in the early stage of
AD, but is significantly downregulated in late stage (Zhu Q. B.
et al., 2016). MiR-212 expression is similar to that of miR-132
(Pichler et al., 2017).

miRNAs HELP WITH THE DIAGNOSIS OF
AD

AD is a pathophysiological continuum and can be divided
into three stages according to clinical and pathological changes:
the early preclinical stage, mild cognitive impairment (MCI),
and subsequent dementia. Two commonly applied diagnostic
criteria, NIA-AA and IWG-2, both recommend the application
of a variety of biomarkers and methods for the stratification,
classification, and differential diagnosis of AD. Most biomarkers
and methods focus on the late stage of the disease, and can be
summarized as follows: (1) Neuropsychological tests: Cognitive

assessments such as the Mini-Mental State Examination (MMSE)
can be used for early diagnosis to quantitatively assess the
severity of cognitive impairment and record cognitive changes
over time; however, this method depends on factors such as the
patient’s education level and familiarity with the test, which limits
its specificity and sensitivity. (2) Neuroimaging examination:
Magnetic resonance imaging (MRI) and fluorodeoxyglucose
(FDG)–positron emission tomography (PET) can be used to
observe the pathological changes and functional abnormalities
that can occur without obvious cognitive impairment, including
medial temporal lobe atrophy and metabolic abnormalities.
Although this method can be practical, it has important
limitations in terms of time and cost. (3) Other biomarkers:
Aβ1−40, Aβ1−42, total tau (t-tau), and phosphorylated tau (p-
tau) proteins in the cerebrospinal fluid (CSF) are currently the
best biomarkers for clinical research and the monitoring of AD.
However, CSF acquisition requires a lumbar puncture, which is
invasive and not easily accepted by the patients. Additionally, the
detection of disease-causing genes also can be used. AD diagnosis
still lacks efficient, simple, and inexpensive biomarkers, especially
for the early stages of the disease.

In this respect, miRNAs have several advantages over classical
biomarkers. Several studies have shown that specific species of
miRNAs detected in the biofluid of AD patients are consistent
with the observed pathological changes (Keller et al., 2016;
Swarbrick et al., 2019; Takousis et al., 2019; Wiedrick et al., 2019).
MiRNAs in serum, plasma, or CSF show great stability when
they are enwrapped in liposomes or bound to lipoproteins, which
prevents their degradation and allows them to withstand severe
environmental conditions (van den Berg et al., 2020). Moreover,
miRNAs can be easily obtained and quantified using real-time
PCR, next-generation sequencing (NGS), or microarray. Some of
the findings are summarized in Table 2.

The main potential applications are as follows: (1) A
biomarker for the diagnosis of AD. A systematic review and
meta-analysis of 10 studies comprising 770 AD patients and
664 normal controls indicated that miRNAs display excellent
diagnostic performance, showing an overall sensitivity of 0.80
(95% CI: 0.75–0.83), a specificity of 0.83 (95% CI: 0.78–0.87),
and a diagnostic odds ratio of 14 (95% CI: 11–19) (Zhang
et al., 2019). Serum miRNA biomarkers related to AD prognosis
show consistency with neuropsychological and neuroimaging
assessments, and plasma levels of miR-34a-5p and miR-545-
3p have potential as biomarkers in early AD; however, further
large-scale research is still needed to confirm this (Cheng et al.,
2015; Cosin-Tomas et al., 2017). Serum miR-133b levels in AD
patients are positively correlated with the simple intelligence
status test score. The area under the ROC curve of miR-133b in
the diagnosis of AD was 0.907, with 1.7 as the critical value, with a
sensitivity of 90.8% and a specificity of 74.3% (Yang et al., 2019).
There was a significant positive correlation between the serum
level of miR-193a-3p and the MMSE score in AD patients (Cao
et al., 2020). Although some studies showed connection between
miRNAs and cognition tests, there are inadequate studies directly
focusing the combination of miRNAs and MMSE, as well as other
clinical diagnosis including CSF Aβ and tau, PET imaging. MiR-
193a-3p has potential for use as a new biomarker to distinguish
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AD patients from healthy people. The serum concentrations of
miR-222, miR-29c-3p, and miR-19b-3p also have potential as
biomarkers for AD (Wu et al., 2017; Zeng et al., 2017), as do
miR-455-3p, miR-29a, miR-107, miR-106a-5p, and miR-324-3p
(Wang T. et al., 2015; Muller et al., 2016; Yilmaz et al., 2016;
Cai et al., 2018; Kumar and Reddy, 2018). Combining between
two and four miRNAs can distinguish AD from controls with
an accuracy of 75–82% (Lusardi et al., 2017). Discrimination
analysis using a combination of miR-100, miR-103, and miR-
375 could detect AD in CSF by positively classifying controls
and AD cases with 96.4 and 95.5% accuracy, respectively (Denk
et al., 2015). The combination of serum miR-223 and miR-125b
levels provided improved sensitivity/specificity for AD prediction
than either miRNA alone (Jia and Liu, 2016). A 54 months study
found that an AD-specific 16-miRNA signature can predict AD
with a sensitivity and specificity of 87 and 77%, respectively.
Each participant were assessed by cognitive assessments and Aβ

neuroimaging during this study, and those AD participants with
normal clinical manifestations diagnosed by Aβ neuroimaging
suggested a higher risk of progression toward AD (Cheng et al.,
2015). Changes in plasma APOE, miR-107, and miR-650 levels
may be a marker of neurodegeneration during AD associated
with amyloid metabolism and cell cycle disorders (Prendecki
et al., 2019). (2) A predictor of the conversion from mild
cognitive impairment (MCI) to AD. Approximately 10–15% of
MCI patients enter the dementia stage each year, and amnestic
MCI (aMCI) patients may have a higher risk of developing AD
(Giau et al., 2019). A 5-year follow-up study showed that an
increased serum level of miR-206 may be a potential predictor
of aMCI-to-AD conversion. There was a positive correlation
between serum miR-206 levels and the rate of progression
from aMCI to AD (Kenny et al., 2019). However, these results
need to be confirmed in more studies. Bioinformatic analysis
indicated that the serum levels of miR-519d-3p could be the
bridge regulator between MCI and AD; however, this requires
further verification (Tao et al., 2020). Plasma miR-92a-3P, miR-
181c-5p, and miR-210-3p levels are significantly upregulated in
MCI and AD patients. Patients with MCI progressing to AD
had higher plasma levels of these miRNAs (Siedlecki-Wullich
et al., 2019). MiR-135a and miR-384 levels were increased and
miR-193b levels were decreased in patients with AD and MCI,
while the combination of these three miRNAs could predict the
risk of MCI onset and conversion to AD (Giau et al., 2019).
However, no study has evaluated the diagnostic performance of
differentially expressed miRNAs between MCI/AD patients and
healthy controls (Pena-Bautista et al., 2019). Indeed, the lack of
recognized and reliable reference genes in the analysis of miRNAs
in patients with MCI seriously hinders the analysis and limits
research on circulating miRNAs (Piscopo et al., 2019). (3) A tool
to differentiate AD from other neurodegenerative diseases. The
expression levels of exosomal miRNA-384 in the serum of AD
and non-AD patients differ significantly. In addition, the serum
level of exosomal miR-384 has potent differential diagnostic
ability for AD and Parkinson’s disease dementia (PDD), as well as
for AD and vascular dementia (VaD), with sensitivity/specificity
indices of 97.2%/100% and 99.1%/100%, respectively (Yang et al.,
2018). Using this 12-miRNA signature, the differentiation of

AD from other neurological diseases is possible with accuracies
of between 74 and 78%. The differentiation of the other CNS
disorders from controls yields even higher accuracies (Leidinger
et al., 2013). Gender differences have been found in the analysis
of plasma miRNA in patients with frontotemporal dementia
(FTD) (Grasso et al., 2019), but not in those with AD. Indeed,
miRNA biomarkers show considerable inconsistencies between
studies, and results are hard to reproduce. Studies with the same
sample source and subjects of similar demographic background
can generate different or even contradictory results (Jain et al.,
2019; Pena-Bautista et al., 2019). This can be explained by the
different procedures and methods of sample collection, miRNA
detection, and data analyses. Differences in miRNA isolation
procedures, cell contamination and hemolysis, quantitative
methods, reference genes, and sample quality control can all
affect the final results (Piscopo et al., 2019). For example, platelets
are rich in miRNAs and release large amounts of miRNAs into the
circulation during the coagulation process, leading to differences
between serum and plasma miRNA concentrations (Wang et al.,
2012). Additionally, miRNAs are more stable in platelets than
in the corresponding plasma and serum samples, as indicated
by the higher miRNA concentration in platelets (Lee et al.,
2020). Similarly, CSF contamination with blood cells is a major
confounding factor when analyzing CSF-derived miRNAs. In
such a scenario, the analysis of cell-free CSF-derived exosomes
could be superior to total CSF analysis and may also explain some
of the discrepancies among the results (Müller et al., 2016). In
addition, miRNA profiles vary with the biofluid or the exosome.
A major reason for this variation is the selective transportation of
miRNAs. Specifically, mature miRNAs can be actively sorted into
microvesicles (MVs) by specific proteins (membrane-localized
proteins, RNA-binding proteins) and then released into the
biofluid (Li et al., 2018; Groot and Lee, 2020). Neuron-derived
exosomes can cross the blood–brain barrier (BBB) and transfer
their cargo to the CSF (Barbagallo et al., 2020). MiRNAs are
also passively released from apoptotic bodies or platelets during
coagulation. Biomarkers in exosomes are suggested to have
higher diagnostic efficiency and be of better quality than those
in biofluid (Nie et al., 2020). Notably, different approaches used
for exosome purification may also lead to differences in results
(Lee et al., 2019).

SUMMARY AND OUTLOOK

MiRNAs display wide distribution patterns throughout the
CNS. They mainly interact with non-coding sequences of target
messenger RNAs, and play important regulatory roles in the
development, maturation, differentiation, and gene expression
of neuronal cells. MiRNAs with different physiological functions
are differentially expressed between brain regions, and influence
various aspects of AD pathogenesis through different pathways.
MiRNAs can collectively exert more pronounced effects. Several
studies have noted that one miRNA acts on hundreds of targets,
while multiple miRNAs also coordinate to act on the same
mRNA sequence, resulting in an intricate network (Ameres and
Zamore, 2013; Barry, 2014). These data suggest that, although

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 August 2020 | Volume 13 | Article 160

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-13-00160 August 19, 2020 Time: 20:15 # 11

Wei et al. Role of miRNA in AD

the expression of individual miRNAs may have specific effects,
the overall effect of miRNAs will not be fully understood
until the global miRNA expression patterns in the brain have
been elucidated. How to identify simple and effective pathways
in this complex network, and then guide the theory and
practice, is a future subject requiring intensive investigation.
Although the mechanisms underlying the effects of miRNA
dysregulation in AD are increasingly identified, research is still
in the early stages. Most studies are relatively scattered. The
breadth and depth of related studies need to be expanded to
further screen the key mechanisms involving in the interactions
between miRNAs and AD to provide new insights for the
study of pathogenesis, to identify effective indicators and
targets for diagnosis, and to administrator as a cognition-
improving treatment.

In this review, we summarized existing evidence about
miRNAs serving as diagnostic biomarkers in AD. The use
of miRNAs as AD biomarkers still faces many challenges,
even though a substantial number of miRNAs have been
identified that have relatively high efficiency, specificity, and
sensitivity for diagnosing AD. The following points need to be
further clarified: (1) whether the changes in miRNA content
in different brain regions, cerebrospinal fluid, and serum are
related and whether the changes are AD-specific; (2) some
miRNAs may show opposing trends during different stages
of AD, and how to effectively divide the boundaries remains
a major challenge; (3) because miRNAs exert a multitarget
effect, and many key factors of AD are influenced by more
than one species of miRNA: this is exemplified by BACE1
which is regulated by at least 10 more species of miRNA.
Hence, it is important to effectively identify the individual
roles of specific miRNAs, as well as the collective role of

multiple miRNAs in AD. In addition, procedures for sample
collection, miRNA detection, and data handling need to be
standardized to increase the repeatability of results. Finally,
the use of a combination of multiple miRNAs as markers,
or combining miRNAs with other biofluid biomarkers, may
perform better in the diagnosis, differentiation, and prediction
of AD. Large sample trials are required to reach a robust
conclusion (Figure 2).
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