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ABSTRACT

Forkhead Box (Fox) DNA binding proteins control multiple genome activities, including
transcription, replication, and repair. These activities are organized spatially and temporally in the
nucleus, and Fox proteins Fkh1 and Fkh2 have emerged as regulators of long-range chromosomal
interactions involved with these activities, such as the clustering of replication origins programmed
for early initiation. Fkh1 and Fkh2 bind a subset of replication origins and are thought to dimerize to
mediate long-range chromosomal contacts between these origins. The binding of Fkh1 and/or Fkh2
(Fkh1/2) to replication origins and the recombination enhancer (RE), which is involved in DNA repair
required for mating-type switching, is cell cycle-regulated and thus appears to be more dynamic
than Fkh1/2 binding at regulated target genes. Here we report the identification of Fkh1/2 binding
sequence variants at replication origins and the RE compared with Fkh1/2 binding sequences found
at target genes of the CLB2 group. These different binding sequences have previously been
characterized as weak and strong, respectively, suggesting that the presence of weak sites
contributes to more dynamic interactions at replication origins and RE, possibly facilitated by Fkh1/2
dimerization and cooperative interactions with accessory proteins. We discuss the wealth of
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regulatory potential imbued in these features of the DNA and its binding proteins.

Introduction

Genome architecture is increasingly recognized as an
important contributor to the regulation of fundamen-
tal genomic tasks, including DNA replication, repair
and transcription." We have recently identified the
Forkhead Box (Fox) transcription factors, Fkh1l and
Fkh2, as key regulators of replication origin initiation
timing in the S. cerevisiae genome.> Fkh1 and/or Fkh2
(Fkh1/2) bind a subset of replication origins referred
to as Fkh-activated origins to stimulate their early
initiation in S phase.” Deletion of FKHI and FKH2 or
their binding sites proximal to Fkh-activated origins
results in delayed activation of these origins; as a con-
sequence, other origins, referred to as Fkh-repressed
origins are increased in activity in the absence of
FKHI and FKH2, likely due to reduced competition
from Fkh-activated origins for dose-limiting replica-
tion initiation factors.> While it remains unclear
exactly how Fkh1/2 stimulate origin initiation (or

“firing”), Fkh1/2 are required for the spatial clustering
of early replication origins in G1 phase, suggesting a
role in establishing chromosomal architecture with
functional consequence for origin firing.” We have
proposed that origin clustering enables cooperativity
between origins in the recruitment of limiting initia-
tion factors, thus stimulating early firing.*

We have recently discovered the presence of
a domain-swapping motif in Fkhl and Fkh2 that
allows for homo-dimerization of Fkhl and thereby
provides a plausible mechanism to establish physical
contacts between origins for clustering in anticipation
of replication.” Mutation of specific residues to create
“domain-swap minus” (dsm) alleles of FKHI and
FKH?2 that cannot dimerize results in loss of Fkh-
activated origin clustering and early firing, supporting
a causal relationship between origin architecture and
activation. In contrast, the dsm mutations appear to
have a limited or minimal effect on the functions of
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FKHI and FKH2 in gene regulation.” For example,
unlike fkh1A fkh2A cells, fkh1-dsm fkh2A and fkh1A
fkh2-dsm cells do not exhibit pseudohyphal growth
that is attributable to mis-regulation of Fkh1/2 target
genes. Because of the very high similarity of Fkh1 and
Fkh2 amino acid sequences in the Forkhead domain,
and because the dsm mutations affects the function of
both Fkhl and Fkh2, we infer that both Fkhl and
Fkh2 are capable of homo-dimerization, though our
previous analysis centered on Fkh1 as the major player
in replication origin control. We also cannot rule out
potential Fkh1-Fkh2 hetero-dimerization, however,
the finding that deletion of FKH2 alone has no effect
on replication origin function indicates that Fkhl-
Fkh2 hetero-dimers, should they occur, are not
required for origin regulation. Thus, we will limit
discussion to the potential function of Fkhl and/or
Fkh2 homo-dimers.

Fkh1/2 binding sequence variants are associated
with replication origins

Attempting to explain the differential requirement for
domain-swapping in replication versus transcription,
we considered the following: Fkh1/2 binding to replica-
tion origins is cell cycle-regulated, peaking during Gl
and S phases,” suggesting a dependence on origin-
licensing, which occurs in G1 phase and persists until
the origin replicates in S phase.’ In contrast, Fkh1/2
binding to target genes occurs throughout the cell
cycle.’ To gain further insight, we examined the DNA
sequences of putative Fkh1/2 binding sites proximal to
replication origins and to Fkhl/2-regulated genes, in
particular the “CLB2 cluster” genes that are expressed
in S and G2 phases to regulate mitotic functions.”

We identified potential Fkh1/2 binding site by
searching for sequences matching the core consensus
RYMAAYA within 500 bp regions surrounding ori-
gins or within 500 bp regions upstream of CLB2 clus-
ter genes. We identified two main variants of the
consensus sequence differing at the first position:
GYMAAYA and AYMAAYA, which appeared to dif-
fer in their relative abundance at origins versus genes
(Fig. 1A). Previous analysis of Fkh1/2 binding sites
in the SWI5 promoter identified GTAAACA as a
“strong” Fkh1/2 binding site and ATAAACA as a
“weak” Fkh1/2 binding site.® Accordingly, CLB2 clus-
ter genes are significantly enriched for strong binding
sites relative to a simulated random distribution
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whereas Fkh-activated origins are not (Fig. 1A). In
comparison, Fkh-repressed origins are significantly
depleted of weak sites relative to a random distribu-
tion (Fig. 1A). These findings suggest that differences
in the density of Fkh1/2 binding sequence variants
play a role in controlling the aforementioned binding
characteristics of Fkh1/2 to these genetic elements.
Indeed, the combination of weak binding sites and
proximal licensing proteins at origins may cooperate
to regulate loading of Fkh1/2 onto origins only during
Gl and S phases. It will be interesting to determine
whether altering weak to strong sites will alter Fkh1/2-
origin binding dynamics or origin activity.

We extended the analysis of Fkhl/2 binding
sequence variants to the recombination enhancer (RE)
for donor preference in mating-type switching, which
depends on FKHI’. The minimal 700bp RE contains
numerous Fkh1/2 consensus binding sequences and we
find that the AYMAAYA motif is greatly enriched and
the GYMAAYA motif is mildly enriched (Fig. 1A). As
with replication origins, there is evidence that Fkhl
binding to the RE is cell cycle-regulated,™° consistent
with the idea that the AYMAAYA motifs may facilitate
more dynamic binding. Again suggesting a link
between the AYMAAYA motif and domain-swapping,
we have found that fkhl-dsm strains are defective in
donor preference (S.K. Villwock et al., in review).

Hierarchies of Fkh1 and Fkh2 chromatin binding?

Fkh1 and Fkh2 are relatively abundant proteins, how-
ever, their consensus DNA binding sequences are in
great excess relative to protein.3 AL12 Thys, Fkh1/2 are
likely to select binding sites based on sequence varia-
tion and context. For example, it is well known that
Mcml binds DNA cooperatively with Fkh2 (but not
Fkh1),"* distinguishing the in vivo distributions of
Fkh1 and Fkh2, and replication origin proteins physi-
cally interact with and are required for Fkhl binding
to Fkh-activated origins.z’14 Moreover, DNA bases
immediately flanking the seven base-pair consensus
sequence we have used for analysis also contribute to
binding specificity of Forkhead DNA binding
domains.'>'® We further propose that a hierarchy of
Fkh1/2 binding affinities for different sequences indi-
rectly influence binding site selection due to spatial
constraints established by robustly bound and dimer-
ized “primary” sites that place some weaker “second-
ary” sites in favorable locations for binding, such as
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Figure 1. Density of Fkh1/2 binding motif variants correlates with differential regulation of Fkh1/2-chromatin binding. (A) For actual
results, genomic sequences of 500 bp centered on the indicated features were queried for the presence of AYMAAYA or GYMAAYA
motifs. Significance was calculated by comparison with simulation results, entailing searches (10,000 iterations per feature-binding motif
combination) of n random 500 bp genomic regions; n is indicated for each feature class. For the Recombination Enhancer, n = 2
because two non-overlapping, 500 bp regions on each side of the center point were used to calculate mean motifs per window. For
each feature class, search results for both motifs were recorded from the same simulation. Fkh-activated and —repressed origins were
defined in [2], and CLB2 cluster genes were defined in’. (B) Model depicting the possible effect of Fkh1/2 dimerization and presence of
DNA motif variants on binding site hierarchies. Fkh1-dsm binds CLB2 cluster promoters and Fkh-activated origins similarly to Fkh1, but
fails to cluster early origins in G1, potentially leaving Fkh-activated origins with a lower density of Fkh1/2 binding motifs unbound. In
G2/M phase (right panel), origins are unbound while CLB2 cluster promoters (enriched for GYMAAYA motifs) remain bound by either
Fkh1 or Fkh1-dsm. Intra-chromosomal origin clustering is likely to be much more frequent than inter-chromosomal origin cluster, which
is depicted for emphasis. Cell cycle phase and Fkh1 genotype are depicted above.

loci near concentrations of Fkh1/2, and others in less
favored locations (Fig. 1B). Such an effect is consistent
with and may be responsible for the linear grouping

chromosomal architecture re-localizing these sites to
more favorable positions.
Much remains to be learned about the regulation

along chromosomes of Fkh-activated origins sepa-
rately from Fkh-repressed origins.> Consistent with
the notion of spatial constraints established by dimer-
ized, primary sites, Fkhl-dsm binds certain loci
more avidly than Fkh1,” possibly due to an altered

of Fkh1/2 binding to replication origins in addition
to numerous other genomic elements, including centro-
meres and tRNA genes, which both exhibit spatial clus-
tering.'”'®

dimerization allosterically regulates binding specificity

A very intriguing possibility is that



and/or avidity. In this case, dimerization itself may be
regulated, for example, by cell cycle kinases, to restrict
dimerization and consequently DNA binding spatially
and temporally. A related possibility is that the DNA
sequence influences dimerization such that only a subset
of Fkh1/2 binding sites are bound to dimerized Fkh1 or
Fkh2. For example, DNA sequence can influence DNA
shape that may in turn influence the structure of the
bound protein through an induced-fit mechanism."**°
Moreover, the Forkhead DNA binding domain induces
abend in DNA*"*? such that a change in Fkh1/2 confor-
mation resulting from dimerization might enhance
DNA bending to facilitate unwinding, and hence, initia-
tion rate. Clearly, these non-exclusive, hypothetical
mechanisms have great potential to regulate genome
structure and function. Indeed, dynamic regulation by
Fkh1/2 may allow coordination of cell cycle regulation
with stress responses to protect against genome instabil-
ity and replicative aging.”> Along these lines, a recent
study has reported that Fkhl is degraded during
mitosis under stress conditions.”* Though we have
no information on how Fkhl domain-swapping
influences stress responses, one possibility is that
dimerization might protect Fkhl from degradation,
thereby protecting replication initiation potential
upon cell cycle entry following recovery from stress.
On the other hand, degradation of Fkhl without
cell cycle arrest would potentially enable deregulated
replication as in fkhl1A cells, and while this might
be expected to lengthen S phase and provoke a rep-
lication stress response, the length of S phase is not
substantially altered and we have not detected repli-
cation stress resulting from FKHI deletion or over-
expression (unpublished and).*®

Discovery of the domain-swap motif in Fkh1 and
Fkh2 in S. cerevisiae was based on its prior identifica-
tion exclusively in the human FoxP family from
amongst the 18 Fox protein subfamilies.”® The other
well conserved Fox protein in yeast, Hcml, shares the
a-helix-breaking proline (i.e., domain-swap minus)
found in virtually all other human Fox subfamilies,
leading to the remarkable realization that exclusively
monomeric as well as dimer-capable Fox proteins are
conserved from yeast to humans.” Thus, a deeper
understanding of Fkh1/2 function in yeast should con-
tinue to reveal important insights into the wide array
of molecular functions controlled by Fox proteins,
particularly the still obscure area of genome
architecture.
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