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Antibiotic resistance is one of the most important environmental challenges. Microalgae
has been considered as a promising green media for environmental purification.
In this work, sulfadimethoxine (SDM) biodegradation potential of Chlorella sp. L38
and Phaeodactylum tricornutum MASCC-0025 is investigated. Experimental results
indicated that the tested freshwater and marine microalgae strains presented stress
response to SDM addition. For Chlorella sp. L38, it has a good adaptability to SDM
condition via antioxidant enzyme secretion (SOD, MDA, and CAT up to 23.27 U/mg,
21.99 µmol/g, and 0.31 nmol/min/mg) with removal rate around 88%. P. tricornutum
MASCC-0025 exhibited 100% removal of 0.5 mg/L SDM. With increasing salinity
(adding a certain amount of NaCl) of cultivation media, the removal rate of SDM by
microalgae increased. Although its adaptive process was slower than Chlorella sp. L38,
the salinity advantage would facilitate enzyme accumulation. It indicated that microalgae
could be used to remove SDM from freshwater and marine environment via suitable
microalgae strain screening.

Keywords: sulfadimethoxine, Chlorella sp., Phaeodactylum tricornutum, microalgae, NaCl, biodegradation

INTRODUCTION

Sulfonamides are one of the most frequently used antibiotics for therapeutic purposes and are
also used as feed additives in certain intensive farming operations (Peiris et al., 2017). Due to
the continuous consumption, sulfonamides, such as sulfadimethoxine (SDM), sulfamethoxazole
(SMX), and sulfamethazine (SMZ), have been widely found in wastewater, freshwater, and
groundwater (Mulla et al., 2018, 2021). In the last decades, antibiotics utilization in veterinary
and human medicine was widespread (0.1–0.2 million tons per annum of antibiotics have been
utilized all around the world), which increased the risk of environmental contamination (Homem
and Santos, 2011; Kumar and Pal, 2018). For example, being the largest country of antibiotics
consumption and production in the world, China consumed 92,700 tons of antibiotics in which
48% are consumed by humans and the remaining 52% are by animals (Zhang et al., 2015; Qiao
et al., 2018).

Associated with extensive utilization, they pose potential hazards both environmentally and
health wise since they are not easily biodegradable and can cause numerous ecological impacts
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(e.g., promoting the growth of antibiotic-resistant genes and
antibiotic-resistant bacteria) (Shao et al., 2005; Zhou et al.,
2009). Until now, the dominant antibiotics removal technologies
include chemical oxidation, adsorption, membrane and
biodegradation, etc. (Ahmed et al., 2015; Yu et al., 2016; Anjali
and Shanthakumar, 2019; Bilal et al., 2019). The operation and
maintenance cost of chemical oxidation technology is high.
Adsorption method and membrane separation method do not
realize the harmlessness of pollutants, and there is a lack of
reasonable disposal technology for the separated antibiotics. The
growth and metabolism of microorganisms will be affected by
antibiotics, resulting in the low treatment efficiency of antibiotics
by traditional sewage treatment technology (Ali et al., 2018;
Sutherland and Ralph, 2019). In addition, there is also a risk of
secondary pollution due to the substantial dosage requirements
on sorbents, solvent, flocculants, and other agents (Li et al., 2019;
Cheng et al., 2020; Zhang and Li, 2020).

As a green and cost-effective alternative of conventional
antibiotics removal techniques, microalgae-based processes have
attracted more and more attention in the recent years (Cheng
et al., 2017; Leng et al., 2020). Compared with the conventional
chemical and physical technologies, microalgae-based processes
have presented the advantage of lower capital and operational
costs, natural disinfection, and high efficiency (Craggs et al.,
2012; Cheng et al., 2017). Meanwhile, application of microalgae
for bioremediation purpose provides an opportunity to reuse
the contaminants as nutrition via photosynthesis process, and
produce potential value-added biomass (namely polysaccharides,
protein, pigment, and lipid) (Sutherland et al., 2018; Song et al.,
2020). From the existing results, some microalgae strains have the
capacity to resist to antibiotics in the natural environment and
can remove them by various mechanisms (such as biosorption,
bioaccumulation, and intracellular/extracellular biodegradation)
(Nagarajan et al., 2019; Song et al., 2019, 2020).

It should be noted that the antibiotics biodegradation
mechanism would be different for different microalgae species.
The objective of this work is to investigate the biodegradation
of SDM by two different microalgae, derived from freshwater
(Chlorella sp. L38) and marine (Phaeodactylum tricornutum
MASCC-0025) environment. To intensify the biodegradation
performance, algae cultivation condition was studied and
optimized under different SDM initial concentrations.
Meanwhile, the antibiotic removal rate is further intensified
via increasing the salinity of cultivation medium.

MATERIALS AND METHODS

Microalgae Species
Two microalgae (Chlorella sp. L38 and P. tricornutum MASCC-
0025) were used as target strains, since existing literatures
have indicated that Chlorella sp. has an excellent capacity on
environmental purification. Meanwhile, marine environment
is also an important contaminator via antibiotics. Therefore,
P. tricornutum MASCC-0025 is also investigated for antibiotic
removal. Chlorella sp. L38 and P. tricornutum MASCC-025
were obtained from the algae collection of Applied Microalgae

Biology Laboratory of Ocean University of China and the Algae
Collection of Institute of Oceanography, Chinese Academy of
Sciences. SDM is selected as the representative antibiotic for all
the experiments, and it was purchased from Aladdin Chemistry
Co., Ltd. (Shanghai, China).

Cultivation Conditions
The cultivation media for Chlorella sp. L38 and P. tricornutum
MASCC-0025 are BG11 and f/2, respectively. Different SDM
concentrations (0.5, 1, and 3 mg/L) were added to the
cultivation media. To investigate the influence of high salinity
on SDM removal performance, different concentration of NaCl
solution is added into freshwater microalgae cultivation media.
Both SDM and NaCl were added into media after filtration
(0.45 µm polytetrafluoroethylene/PTFE) for bacteria removal.
The temperature and illumination conditions were 25± 1◦C and
5,000 Lux under 24 h. Three parallel samples were set in each
group to eliminate the interference of other factors.

Parameter Determination
The algal biomass variation can be evaluated via optical density
(OD) value and specific growth rate determination, and the
detailed determination and calculation procedures of Chlorella
sp. L38 have been described in our previous work (Song et al.,
2020). The specific growth rate (µ) was measured by fitting the
dry cell weight (DCW, µg/L) to an exponential function using
the equation proposed by Kabra et al. (2014). The relationship
between OD450 and DCW of P. tricornutum (PT) MASCC-0025
was evaluated by the following equation:

DCW of PT (g/L) = 0.3109 · OD450 + 0.0007, R2
= 0.09985

(1)
In addition, pH of cultivation media was measured every

2 days. Chlorophyll (a and b) and carotenoids were detected
every 4 days in the whole cultivation period. The total chlorophyll
content was measured by Kurade et al. (2016). In addition,
the superoxide dismutase (SOD), malondialdehyde (MDA),
and catalase (CAT) enzyme contents were determined via
corresponding methods. The potential degradation product of
SDM is analyzed via LC-MS (e2695 system; Waters Co., Ltd.,
United States).

Statistical Analysis
One-way ANOVA was used for statistical analysis. Results were
expressed as means ± SEM based on parallel experiments and
were considered at 95% CIs.

RESULTS AND DISCUSSION

Microalgae Growth
Microalgae growth performance (OD, specific growth rate, and
pH) of Chlorella sp. L38 and P. tricornutum MASCC-0025
under different SDM concentrations is shown in Figure 1. From
Figure 1A, it can be seen that when the concentration was
lower than 3 mg/L, SDM presented a certain stimulating effect
on the growth of Chlorella sp. L38. Especially, when the initial
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FIGURE 1 | Optical density (OD) variation of Chlorella sp. L38 (A,B) and Phaeodactylum tricornutum MASCC-0025 (C) under different sulfadimethoxine (SDM)
concentrations.
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FIGURE 2 | Specific growth rate variation of Chlorella sp. L38 (A,B) and Phaeodactylum tricornutum MASCC-0025 (C) under different SDM concentration.

concentration of SDM was set at 0.5 mg/L, the growth rate of
Chlorella sp. L38 was significantly higher than that of the control
group (without SDM addition). It could also be observed that
SDM had a significant inhibitory effect on the growth of Chlorella
sp. L38 on the 6th day, and the inhibitory effect increased with
SDM concentration. Associated with growth, from the 8th to the
14th days, Chlorella sp. L38 gradually adapted the cultivation
condition with adding SDM, and the OD value presented an
increased trend and specific growth rate also became higher (as
shown in Figure 2A). According to Figures 1B, 2B, for different
concentration gradients of SDM with and without adding NaCl
solution, it can be seen that the growth rate of Chlorella sp.
38 increased with the increase of salt concentration. When
the addition dosage of NaCl increased to a certain extent, the
growth promotion effect on Chlorella sp. L38 would decrease
with the continuous increase of salt concentration. It indicated
that a certain amount of NaCl can promote Chlorella sp. L38
growth, and it could be also seen that the facilitation effect of
the salt on Chlorella sp. L38 growth would vary with initial
SDM concentration.

For P. tricornutum MASCC-0025, the OD and specific
growth rate variation are shown in Figures 1C, 2C. It could
be found that the presence of SDM had a slight inhibitory
effect on the growth of algae, and the inhibitory effect was
the strongest at the SDM concentration of 3 mg/L. However,
when the concentration of SDM increased to 5.5 mg/L, the
inhibitory effect on microalgae slowed down. It could be observed
that for the different microalgae species, the SDM effect was
also different. Therefore, to select suitable microalgae strain
for antibiotics degradation, more efforts should be paid on
the investigation of the metabolism mechanism and genetic
modification of microalgae.

The pH ofChlorella sp. L38 increased rapidly from about 7.5 to
11 in the initial 2 days of cultivation, and then varied slowly from
4 to 14 days (maintained at 10.5–11.0), as shown in Figure 3A.
It also indicated that Chlorella sp. L38 has a good adaptive
capacity to SDM. For P. tricornutum MASCC-0025, the pH value
of all the groups varied around 9.5, and the control group was
slightly higher than that of the other groups with adding SDM, as
illustrated in Figure 3B. It might be due to the inhibitory effect
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FIGURE 3 | pH variation of Chlorella sp. L38 (A) and Phaeodactylum tricornutum MASCC-0025 (B) under different SDM concentration.
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FIGURE 4 | Superoxide dismutase (SOD) (A), malondialdehyde (MDA) (B), and catalase (CAT) (C) content variation of Chlorella sp. L38 and Phaeodactylum
tricornutum MASCC-0025 under different SDM concentration.

of antibiotics on the growth of P. tricornutum MASCC-0025,
leading to the growth state of the experimental group that was
slightly slower than that of the control group. Overall, the pH
variation trend was consistent with algae biomass accumulation.

Antioxidant Enzyme Variation
Usually, reactive oxygen species (ROS), namely superoxide
anions (O2−) and hydrogen peroxide (H2O2), are important
signaling molecules that control cell metabolism. They play
a key role in the development, growth, differentiation, and
proliferation of multicellular organisms, which are usually
stimulated by organic pollutants (Vaahtera et al., 2014;
Zandalinas and Mittler, 2018). On the other hand, excessive
ROS has a risk to damage the microbial membrane system and
ultimately impedes growth. To protect against and eliminate
the toxicity caused by ROS, microalgae could secrete various
antioxidant enzymes through antioxidant defense mechanisms,
such as SOD and CAT (Xiong et al., 2017a). For example, as
an important antioxidant enzyme, SOD can transfer O2− to
H2O2 and O2 to avoid its accumulation. When algae are stressed

by low concentrations of exogenous pollutants, it can avoid
or reduce oxidative damage by increasing the activity of these
antioxidant enzymes in microalgae cells. However, when the
tolerable threshold is exceeded, serious oxidative damage to cell
structure and even death may result. As the main product of lipid
peroxidation, MDA content can represent the damage degree
of cell membrane.

Figure 4 shows SOD, MDA, and CAT concentration variation
of Chlorella sp. L38 and P. tricornutum MASCC-0025 under
different SDM concentrations. According to Figure 4A, due to
the presence of SDM, O2− increased rapidly associated with
the growth of Chlorella sp. L38, resulting in the corresponding
increase of SOD in the algal cell. The amount of O2− was
positively correlated to the increase of SDM concentration. In
Figure 4B, it could be also seen that the addition of NaCl could
promote the generation of SOD and CAT enzymes in Chlorella
sp. L38. Thus, increasing salinity of growth condition facilitated
to alleviate the toxicity of SDM to Chlorella sp. L38. It should be
noted that when the NaCl concentration increased to 200 mg/L,
the CAT enzyme content would be decreased and lower than that
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FIGURE 5 | Chlorophyll a (A,B), b (C,D), and carotenoid (E,F) content variation of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025 under different
SDM concentrations.
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FIGURE 6 | SDM removal rate variation of Chlorella sp. L38 (A) and Phaeodactylum tricornutum MASCC-0025 (B) under different initial concentration.

of 100 mg/L NaCl. It might be because the high salt concentration
adversely affected the transport of substances. Therefore, under
the action of SOD enzyme, O2− would be transferred into H2O2
but not decomposed into H2O and O2 in time. In Figure 4A,
when the concentration of SDM was set at 0.5 mg/L, the SOD and
CAT enzymatic reactions of algal cells were intensified and the
stress resistance was enhanced. When the concentration of SDM
varied from 1 to 3 mg/L, with the increase of the concentration
of antibiotics, the equilibrium reaction was more destructive,
and thus the content of MDA increased. However, in the group
of adding NaCl, it was observed that salt presented a certain
maintenance effect on the balance of the reaction, and the content
of MDA in algal cells was much lower than that in the group
without adding NaCl.

For P. tricornutum MASCC-0025, as shown in Figure 4C,
it can be seen that with the increase of the concentration
of antibiotics, the content of MDA and SOD also increased,
indicating that the degree of algal cell damage increased.
However, when SDM concentration was set at 1 mg/L, it could
be seen that SOD enzyme concentration was significantly lower
than that in the control group, while CAT enzyme concentration
was the highest. That might be since at the initial stage of
P. tricornutum MASCC-0025 cultivation, part of O2− has been
converted into H2O2. Thus, due to the reduction of O2−, the
content of SOD decreased. Meanwhile, the increased H2O2
content would stimulates the production of CAT enzymes in
algae cells to continuously convert H2O2 into H2O and O2.

Chlorophyll Variation
The photosynthetic processes of microalgae include the
photosystem I (PSI) and the photosystem II (PSII) (Mirkovic
et al., 2017). For PSI, the light collection efficiency of
photosynthesis is related to chlorophyll a. The content of
chlorophyll a is important for assessing the adaptability
of microalgae to environmental stresses such as salinity.
Chlorophyll a, b and carotenoid content variation of Chlorella

sp. L38 under different SDM concentrations is shown in
Figure 5. It should be pointed out that the chlorophyll content
of P. tricornutum MASCC-0025 is too low to be detected.
From Figures 5A,B, it can be seen that SDM had a potential
to promote the synthesis of chlorophyll a at 8–14 days. By
contrast, the addition of SDM would inhibit the synthesis of
chlorophyll b within 0–4 days, and then promoted the synthesis
of chlorophyll b after the later adaptation. Under the same
SDM concentration, with the increase of NaCl concentration,
the synthesis of chlorophyll a in Chlorella sp. L38 cells was
inhibited. Compared with chlorophyll a, chlorophyll b showed
no obvious inhibition or promotion at the initial stage of
culture, as shown in Figures 5B,C. With the increase of time,
the synthesis of chlorophyll b was promoted after 8 days.
Meanwhile, from 12 days of cultivation, the presence of SDM
significantly promoted the synthesis of carotenoids, as illustrated
in Figures 5E,F. Within 0–8 days, the presence of NaCl had
a slight stimulating effect on the synthesis of carotenoids.
However, with the increase of salt concentration, the synthesis of
carotenoids decreased. At 12–14 days, the presence of salt turned
to inhibit the synthesis of carotenoids. The aforementioned
results indicated that Chlorella sp. L38 could adapt to the
cultivation environment containing SDM and NaCl. It should
be noted that the synthesis of chlorophyll and carotenoids in
microalgae might be also inhibited if the NaCl concentration
was too high. The reason might be that except Na+ absorbed
by microalgae, Cl− could not be utilized, and which had a
certain toxic effect on microalgae, thus inhibiting the synthesis of
chlorophyll and carotenoids.

Sulfadimethoxine Removal Performance
Figure 6 presents SDM removal rate of Chlorella sp. L38
and P. tricornutum MASCC-0025 under different initial
concentrations. The experiment proved that SDM almost could
not be degraded under the condition of light alone. Also, the
maximum degradation rate reached about 88% after Chlorella
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sp. L38 were introduced, as shown in Figure 6A. Yu et al.
(2011) proposed that SDM could be removed by 52% through
biological action in the immobilized cell system. By comparing
different NaCl concentration gradients under the same SDM
initial dosage, it could be seen that certain salt concentrations
could stimulate Chlorella sp. L38 to degrade SDM. On the 14th
day of cultivation, the degradation times achieved up to 3.3 times
compared with the group without adding NaCl. For example,
when the initial SDM concentration was set at 1 mg/L, the
degradation rate of microalgae with adding 100 mg/L NaCl
reached 50% after 14 days of cultivation. This was because under
salt-treated conditions, microalgae could regulate their growth at
low NaCl concentrations by altering their biochemical properties,
such as enzyme systems and extracellular polymers (EPS). Xiong
et al. (2017b) also indicated that microalgae could present an
increased photosynthetic activity (enhanced CO2 assimilation by
transferring carbon and energy resource into algal biomass) and
adaptive mechanism under salt stress.

Compared with Chlorella sp. L38, P. tricornutum MASCC-
0025 showed a good SDM removal performance. Under the SDM
concentration at 3.0 mg/L, the SDM removal rates of Chlorella
sp. L38 (adding NaCl) and P. tricornutum MASCC-0025 were
29.45 and 58.59% (1.98 times higher than Chlorella sp. L38),
respectively. It could be seen that marine algae might have a
superiority to be a potential option to remove SDM.

Metabolic Product Analysis
To further investigate biodegradation pathway of SDM, its
microalgal metabolic products were also investigated. Kiki et al.
(2020) proposed that microalgal biodegradation could reduce
the toxicity of antibiotics and then transform them into less
toxic intermediates. Xiong et al. (2019) found that the major
bioconversion pathways of SMZ were hydrolysis, methylation,
dechlorination, and hydroxylation, and the main pathways of
SMX degradation were nitrosation, deamination, methylation,
and hydroxylation. As another typical member of sulfonamide
antibiotics, Sun et al. (2018) proposed that due to the similarity of
SDM and SMX structures (side chain groups of amino substituted
benzene ring), their degradation process and degree might be
similar. According to the identification of metabolites via LC-
MS, metabolic pathway of SDM via Chlorella sp. L38 was
mainly through deamination reaction to generate hydroxyl and
amino compounds.

CONCLUSION

The biodegradation fate of SDM via Chlorella sp. L38
and P. tricornutum MASCC-0025 was investigated and the

biodegradation performance was optimized via cultivation
condition variation. The experimental results indicated that
Chlorella sp. L38 could better adapt SDM addition via antioxidant
enzyme secretion. In addition, moderate salinity condition could
stimulate SOD (25.18 U/mg) and CAT (0.24 nmol/min/mg)
enzyme generation. By contrast, P. tricornutum MASCC-0025
has the advantage of high salinity to stimulate SDM degradation
rate (up to 100%). It could be observed that microalgae
have the potential for antibiotics removal from freshwater
and marine environment under the optimized species and
cultivation conditions.
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