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Simple Summary: Loss of SMARCB1 has been identified as the sole mutation in a number of rare
pediatric and adult cancers, most of which have a poor prognosis despite intensive therapies including
surgery, radiation, and chemotherapy. Thus, a more robust understanding of the mechanisms driving
this set of cancers is vital to improving patient treatment and outcomes. This review outlines recent
advances made in our understanding of the function of SMARCB1 and how these advances have
been used to discover putative therapeutic vulnerabilities.

Abstract: SMARCB1 is a critical component of the BAF complex that is responsible for global
chromatin remodeling. Loss of SMARCB1 has been implicated in the initiation of cancers such as
malignant rhabdoid tumor (MRT), atypical teratoid rhabdoid tumor (ATRT), and, more recently, renal
medullary carcinoma (RMC). These SMARCB1-deficient tumors have remarkably stable genomes, of-
fering unique insights into the epigenetic mechanisms in cancer biology. Given the lack of druggable
targets and the high mortality associated with SMARCB1-deficient tumors, a significant research
effort has been directed toward understanding the mechanisms of tumor transformation and pro-
liferation. Accumulating evidence suggests that tumorigenicity arises from aberrant enhancer and
promoter regulation followed by dysfunctional transcriptional control. In this review, we outline
key mechanisms by which loss of SMARCB1 may lead to tumor formation and cover how these
mechanisms have been used for the design of targeted therapy.

Keywords: SMARCB1-deficient cancer; structure; therapeutics; rhabdoid tumor; epigenetics;
chromatin

1. Introduction

All eukaryotic cells arrange their genomic DNA into a highly organized and compact
structure known as chromatin. Spatial compaction occurs when ~147 base pairs of DNA
wrap around a histone protein octamer to form the basic subunit of chromatin, known
as the nucleosome. These nucleosomes become further compacted as they aggregate into
higher-order structures such as chromosomes. For gene expression to properly occur,
transcriptional activators need to physically bind to regulatory DNA elements such as
enhancers and promoters. To promote accessibility, nucleosomes need to be repositioned so
that the underlying regulatory DNA sequences are unwound. Nucleosome repositioning
can be mediated by a variety of chromatin-remodeling complexes such as BAF, CHD, INO80,
and ISI. The BAF (BRG1/BRM-associated factor) complex has been found to play a critical
tumor-suppressive role in humans and is mutated in up to 25% of cancers. This review is
focused on one of these BAF subunits, SMARCB1, which has been identified as the sole
recurrent genetic alteration present in a variety of cancers known as SMARCB1-deficient
cancers.
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The protein SMARCB1 can be referred to by a variety of names originating from the
context of its discovery: SNF5, INI1, and BAF47. This review uses the Human Genome
Organization-derived name of SMARCB1, which abbreviates the full gene name of SWI/SNF
Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily B, Member 1.
SMARCB1 is a highly conserved core subunit of the mammalian ATP-dependent BAF chro-
matin remodeling complex, a key regulator of nucleosome positioning and gene expression.
SMARCB1 was initially identified in a screen of Saccharomyces cerevisiae as a gene required
for sucrose fermentation in 1984, subsequently named Snf5 (sucrose-nonfermenting 5)
in 1990 [1,2]. The human ortholog, originally termed INI1 (integrase interactor 1), was
subsequently shown in 1994 to bind and stimulate HIV-1 integrase in vitro [3]. Fourteen
years after its initial discovery in S. cerevisiae, SMARCB1 was characterized in humans as
a bona fide tumor suppressor gene biallelically inactivated in particularly rare and lethal
early childhood cancers known as malignant rhabdoid tumor of the kidney (MRT) and
atypical teratoid rhabdoid tumor (ATRT) [4].

Modern advances in diagnostic techniques have identified SMARCB1 loss in numerous
other cancers broadly referred to as SMARCB1-deficient cancers [5]. These tumors have
surprisingly stable genomes, with SMARCB1 often being the only genetic alteration present.
This genomic stability contrasts with the idea that cancer is the accumulation of DNA
mutations that affect the function of numerous genes [6], instead revealing that global
changes in epigenetic regulation can potently transform diverse cell types into highly
lethal and malignant tumors [7]. While the role of SMARCB1 within the BAF complex
is not entirely understood, it appears to facilitate BAF complex binding and promote its
remodeling activity at key regulatory regions such as enhancers and promoters. Upon
loss of SMARCB1, many of these regulatory regions become inactive, which leads to
genome-wide transcriptional deregulation.

There is still much to understand about the downstream effects of SMARCB1 loss, but
recent advancements have furthered our understanding of the molecular mechanisms of
oncogenesis. For example, SMARCB1 has been identified as a critical regulator of genome-
wide enhancer activation but does not appear to affect the activity of super-enhancers. The
identification of novel SMARCB1 interactions has expanded our understanding of how
it functions as a tumor suppressor. Advancements in our ability to perform large-scale
screens have led to the discovery of various therapeutic vulnerabilities that were previously
unknown. This review covers major advancements in each of these areas and discusses
gaps in our knowledge that remain to be answered.

2. SMARCB1-Deficient Cancers

The first indication that the loss of a tumor suppressor may be involved in atypical
teratoid-rhabdoid tumors (ATRTs) came from cytogenetic characterizations of these tumors
in 1990. Chromosomal analysis suggested that the sole cause of these rhabdoid tumors
was the loss of genes on chromosome 22, and subsequent studies showed more specific
alterations in chromosome band 22q11.2 [8,9]. It was later shown in 1998 that biallelic
alterations to SMARCB1 were present in the vast majority of MRT cases (90%), consistent
with the recessive “two-hit” tumor suppressor model of oncogenesis [4]. Since then,
widespread sequencing efforts and the use of immunohistochemistry (IHC) have identified
numerous other cancers with the depletion or loss of SMARCB1 [10,11]. Current estimates
indicate that 1.4% of all cancers contain SMARCB1 alterations (1152 out of 84,646 queried
samples found on AACR Project GENIE Cohort v11.0) [12]. However, a recent meta-
analysis examining 10,849 patients from 15 studies found that 5% of cases had alterations
in SMARCB1 [13].

2.1. Types of SMARCB1-Deficient Cancers

SMARCB1-deficient cancers are characterized by the biallelic loss of function in both
SMARCB1 alleles. The prototypical SMARCB1-deficient cancer is MRT, but numerous
other tumor types with the complete loss of SMARCB1 have been described such as renal
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medullary carcinoma (RMC), epithelioid sarcoma (ES), and pediatric poorly differentiated
chordoma, almost all of which have a poor prognosis [11,14–17]. Other cancers with dis-
rupted SMARCB1 function include synovial sarcoma (SS), myoepithelial carcinomas, and
sinonasal carcinomas [18–24]. Interestingly, schwannomatosis and cribriform neuroepithe-
lial tumor have also been found to have alterations in SMARCB1, but overall outcomes
remain high [16,25].

2.2. Initiation of SMARCB1-Deficient Tumors

SMARCB1 was first confirmed as a potent in vivo tumor suppressor when a condi-
tional gene knockout of Smarcb1 led to fully penetrant cancer formation in adult mice,
resulting in CD8+ mature lymphoma [26]. While this model demonstrates the potent
tumor-suppressive function of SMARCB1, the resulting lymphomas do not offer a faithful
model for most human SMARCB1-deficient cancers. The unexpected development of
lymphomas may have been due to reduced knockout efficiency in the adult brain or kidney
and the late developmental stage at which Smarcb1 deletion was induced. Later studies
were able to faithfully reproduce ATRT-like tumors by inducing SMARCB1 deletion in
earlier embryonic developmental time points (between E6 and E10) with Cre expression
driven by the ubiquitous Rosa26 promoter [27]. This age-specific development of ATRT
suggests that transient populations of neural progenitor cells are capable of transformation
upon Smarcb1 loss.

In fact, recent studies have proposed that rhabdoid tumors arise from a small pop-
ulation of neural crest cells that lose SMARCB1 during development [28]. This model
suggests that loss of SMARCB1 blocks the ability of neural crest cells to differentiate into
mesenchyme, locking them in a partially differentiated state. This hypothesis is further
supported by the observation that the re-expression of SMARCB1 in rhabdoid tumor cells
leads to the upregulation of genes associated with the epithelial to mesenchymal transi-
tion [29]. This proposed mechanism raises a critical question: could pushing these tumors
toward a more mesenchymal cell state, akin to SMARCB1 re-expression, be a therapeutic
target? While there are no current methods to restore SMARCB1 function in tumors, this
mechanism offers a way to mimic the effects of SMARCB1 reconstitution. Further studies
are needed to validate these mechanisms, but current studies offer promising new insights
that may be used for future therapeutics [30].

Familial cases of rhabdoid tumor can occur when an individual has a condition known
as rhabdoid tumor predisposition syndrome (RTPS). In RTPS, a germline variant arises
in either SMARCB1 (known as RTPS1) or the ATPase subunit found in the BAF complex,
SMARCA4 (known as RTPS2) [31,32]. Having a germline mutation in one allele of either
SMARCB1 or SMARCA4 increases the risk of developing rhabdoid tumors in children and
schwannomas in adults because only one functional copy is present in each cell.

While these findings confirm the developmental origin of rhabdoid tumors, it fails to
elucidate how SMARCB1-deficient cancers arise in adults. Both ES and RMC diagnosis
occur in adolescents and young adults [33,34]. The origins of these two cancer types are
much less understood. RMC arises in the kidney and is known to be associated with the
sickle cell trait, although the mechanism by which this predisposition promotes tumor
formation is unknown [35]. Even less is known about the initiation of ES, except that 90%
of cases have loss of SMARCB1 and it typically arises in extremities [36]. Further work is
needed to understand how loss of SMARCB1 drives tumor formation in ES and RMC as
compared to rhabdoid tumors.

2.3. Unique Role of SMARCB1 in Synovial Sarcoma

Synovial sarcoma (SS) is a rare cancer of mesenchymal origin that frequently arises in
soft tissues of the extremities [37]. SS is driven by a recurrent chromosomal translocation,
t(X; 18)(p11.2; q11.2), that fuses the SS18 gene on chromosome 18 with a related SSX gene
located on the X chromosome, forming the SS18-SSX fusion protein [38–40]. Similar to
how SMARCB1 inactivation is the sole driver of MRT, this translocation is present in 95%
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of SS cases [41]. Interestingly, synovial sarcoma is also defined by the loss of SMARCB1
protein levels when observed by immunohistochemistry [18]. However, synovial sarcoma
samples with reduced SMARCB1 protein levels had high levels of SMARCB1 mRNA [18].
This suggests a post-transcriptional role for the degradation of SMARCB1 in the setting of
synovial sarcoma.

A proposed mechanism for this SMARCB1 depletion in SS is that the SS18-SSX fusion
protein outcompetes SMARCB1 binding in BAF-family complexes, leading to SMARCB1
ejection from BAF and subsequent degradation [42]. Under this model, known as the
SMARCB1 ejection model, BAF complexes lacking SMARCB1 are aberrantly targeted to
proliferative genes, such as Sox2, driving the overexpression and proliferation of cells.
Subsequent studies have suggested a more nuanced understanding of SMARCB1 in SS.
In this newer model, SMARCB1 is still able to associate with SS18-SSX containing BAF
complexes [23]. Instead, these SS18-SSX fusion BAF complexes bound to SMARCB1 are
targeted for whole-complex proteasomal degradation through an unknown mechanism,
rendering the cells BAF-deficient. In response, cells upregulate the formation of another
BAF complex lacking SMARCB1, known as GBAF (GLTSCR1/like-containing BAF), as
a survival mechanism. This recently proposed BAF deficiency model agrees with the
GBAF-specific BRD9 dependency found in SS as well as other SMARCB1-deficient tumors.
This BRD9 dependency is further discussed in Section 7.2 [43,44].

3. Structure of SMARCB1

SMARCB1 is a 47kDa nuclear protein with a length of 385 amino acids. Structurally,
it has four distinct domains: an N-terminal Winged Helix DNA binding domain (WHD),
followed by two highly conserved repeat domains referred to as Repeat (RPT) 1 and 2,
and a C-terminal coiled-coil domain (CTD). There have been many proposed biological
interactions with each of these regions, and in this section, we review recent findings and
potential questions that remain (Figure 1).

Cancers 2022, 14, x FOR PEER REVIEW 4 of 20 
 

 

2.3. Unique Role of SMARCB1 in Synovial Sarcoma 
Synovial sarcoma (SS) is a rare cancer of mesenchymal origin that frequently arises 

in soft tissues of the extremities [37]. SS is driven by a recurrent chromosomal transloca-
tion, t(X; 18)(p11.2; q11.2), that fuses the SS18 gene on chromosome 18 with a related SSX 
gene located on the X chromosome, forming the SS18-SSX fusion protein [38–40]. Similar 
to how SMARCB1 inactivation is the sole driver of MRT, this translocation is present in 
95% of SS cases [41]. Interestingly, synovial sarcoma is also defined by the loss of 
SMARCB1 protein levels when observed by immunohistochemistry [18]. However, syno-
vial sarcoma samples with reduced SMARCB1 protein levels had high levels of SMARCB1 
mRNA [18]. This suggests a post-transcriptional role for the degradation of SMARCB1 in 
the setting of synovial sarcoma. 

A proposed mechanism for this SMARCB1 depletion in SS is that the SS18-SSX fusion 
protein outcompetes SMARCB1 binding in BAF-family complexes, leading to SMARCB1 
ejection from BAF and subsequent degradation [42]. Under this model, known as the 
SMARCB1 ejection model, BAF complexes lacking SMARCB1 are aberrantly targeted to 
proliferative genes, such as Sox2, driving the overexpression and proliferation of cells. 
Subsequent studies have suggested a more nuanced understanding of SMARCB1 in SS. 
In this newer model, SMARCB1 is still able to associate with SS18-SSX containing BAF 
complexes [23]. Instead, these SS18-SSX fusion BAF complexes bound to SMARCB1 are 
targeted for whole-complex proteasomal degradation through an unknown mechanism, 
rendering the cells BAF-deficient. In response, cells upregulate the formation of another 
BAF complex lacking SMARCB1, known as GBAF (GLTSCR1/like-containing BAF), as a 
survival mechanism. This recently proposed BAF deficiency model agrees with the GBAF-
specific BRD9 dependency found in SS as well as other SMARCB1-deficient tumors. This 
BRD9 dependency is further discussed in Section 7.2 [43,44]. 

3. Structure of SMARCB1 
SMARCB1 is a 47kDa nuclear protein with a length of 385 amino acids. Structurally, 

it has four distinct domains: an N-terminal Winged Helix DNA binding domain (WHD), 
followed by two highly conserved repeat domains referred to as Repeat (RPT) 1 and 2, 
and a C-terminal coiled-coil domain (CTD). There have been many proposed biological 
interactions with each of these regions, and in this section, we review recent findings and 
potential questions that remain (Figure 1). 

 
Figure 1. Cancer-associated mutations and molecular interactions of SMARCB1. Data obtained from 
COSMIC (v95) reveal a clustering of mutations in the C-terminal coiled-coiled domain as well as a 
high preponderance of truncation mutations on the N-terminal end. (a) Frequency of cancer associ-
ated mutations in SMARCB1. Nonsense mutations and frameshift mutations are denoted by (*). The 
four known functional domains of SMARCB1 and their reported molecular interactions are shown. 

Figure 1. Cancer-associated mutations and molecular interactions of SMARCB1. Data obtained
from COSMIC (v95) reveal a clustering of mutations in the C-terminal coiled-coiled domain as well
as a high preponderance of truncation mutations on the N-terminal end. (a) Frequency of cancer
associated mutations in SMARCB1. Nonsense mutations and frameshift mutations are denoted
by (*). The four known functional domains of SMARCB1 and their reported molecular interactions
are shown. (b) The proportion of each mutation type within the COSMIC dataset. In-frame and
frameshift mutations include both deletions and insertions.
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3.1. Winged Helix Domain

Germline missense mutations and in-frame deletions within the WHD of SMARCB1
have been linked to schwannomatosis, a condition predisposing patients to forming benign
tumors that develop in the CNS called schwannomas [45–49]. These mutations contrast
with the large deletions or truncations found in many other SMARCB1-deficient cancers.
The WHD of SMARCB1 shows structural similarity to the winged helix domain found in
many DNA binding proteins, particularly the well-characterized MBP1 family of yeast cell
cycle regulators [50–52]. In fact, NMR studies suggest that the SMARCB1 WHD alone was
sufficient to bind to dsDNA [51]. Despite these findings, structural studies indicate that the
WHD of SMARCB1 is deeply buried within the BAF complex far away from nucleosomal
DNA [53,54]. Given these seemingly conflicting pieces of data, it remains unclear how the
WHD of SMARCB1 functions within the BAF complex and why germline mutations in the
WHD predispose patients to tumor formation.

3.2. Tandem Repeat (RPT) Domains

SMARCB1 contains two highly conserved ~60-amino-acid imperfect repeat regions
referred to as RPT1 and RPT2. RPT1 consists of a two-stranded antiparallel β-sheet followed
by two α-helices [55]. Both repeat domains appear to be critical for various protein-protein
interactions including cellular machinery and viral proteins [56–59]. Perhaps most notably,
RPT1 has been shown to be necessary for MYC and HIV-1 integrase (IN) binding to
SMARCB1 [3,56,60] and RPT2 has been shown to interact with XPO1 via a nuclear export
signal [61]. These interactions are discussed further below.

The RPT2 domain is a highly conserved region composed of a three-stranded antipar-
allel β-sheet and two α-helices. A recent study utilizing both cryo-EM structures alongside
immunoprecipitation assays suggests that RPT2 is required for DPF2 association with
the BAF complex [54]. They provide robust molecular data demonstrating that mutant
SMARCB1 constructs lacking RPT2 are unable to associate with DPF2. Conflicting cryo-EM
studies, notably with higher resolution, postulate that both RPT1 and RPT2 interact with
SMARCC2 as opposed to DPF2, perhaps as a mechanism to stabilize core BAF complex
formation [53,55]. These differing hypotheses raise the possibility that the RPT2 region of
SMARCB1 has varied context-dependent interactions, although further study is needed to
fully characterize its interactions. A nuclear export signal within the RPT2 domain has also
been identified, which is discussed in further detail in Section 5.3.

3.3. C-terminal Coiled-Coil Domain (CTD)

The CTD of SMARCB1 is composed of a dense region of basic amino acids that
has been shown to physically interact with the nucleosome acidic patch opposite of
SMARCA4 [62]. The CTD has been shown to have mutations that are associated with
Coffin-Siris-syndrome, a rare intellectual disability [63–65]. Cancer-associated mutations
within the CTD have also been found in meningioma, adenocarcinoma, and schwannoma,
particularly R374Q and R377H, but low-frequency cancer-associated mutations are found
throughout SMARCB1 [66–68]. Due to the relatively low number of currently sequenced
patient tumor samples with SMARCB1 mutations, it is difficult to identify the pathogenic
variants due to low signal. To circumvent this difficulty, high-throughput methods can be
used to identify pathogenic SMARCB1 variants in vitro [69].

3.4. Conservation of SMARCB1

SMARCB1 is conserved in nearly all eukaryotic species [70]. The winged helix domain
appears dispensable within the plant species, A. thaliana, while the other three domains,
RPT1, RPT2, and CCD, have numerous conserved regions throughout (Figure 2).
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Figure 2. Conservation of SMARCB1 across seven eukaryotic species: H. sapiens-NP_003064.2,
M. musculus-BAB12427.1, D. rerio-NP_001007297.1, C. elegans-NP_001369845.1, S. cerevisiae-
ONH79494.1, and A. thaliana-NP_001189918. Light green boxes represent amino acid residues
that match the H. sapiens SMARCB1 sequence. Dark green residues represent amino acid residues
that are conserved in all seven eukaryotic species used in this analysis.

4. SMARCB1 and the BAF Complex

The BAF complex is one of four mammalian ATP-dependent chromatin remodelers,
the others being INO80/SWR1, CDH, and ISI [71]. The BAF complex is composed of at least
15 subunits and is primarily responsible for regulating gene expression and development
by positioning nucleosomes at gene regulatory regions [72]. SMARCB1 is a critical subunit
of the BAF complex, particularly in complexes that localize to promoters and enhancers.
The two BAF subunits SMARCA4 and SMARCB1 directly bind opposing sides of the
nucleosome in a mechanism resembling a clamp [62]. The ATPase subunit SMARCA4 then
moves the DNA along the nucleosome as SMARCB1 holds the BAF complex tightly to the
nucleosome [62,73,74]. Upon loss of SMARCB1, the BAF complex is unable to recognize
and bind its target regions, leading to widespread transcriptional deregulation.

4.1. Three Different BAF Sub-Complexes

Within the BAF complex family, there are three known subcomplexes: canonical BAF
(cBAF) [75,76], polybromo-associated BAF (PBAF) [77–79], and the newly characterized
GLTSCR1/like-containing BAF (GBAF or ncBAF) [44,80–82]. All three of the BAF complex
members have distinct functions determined by the incorporation of complex specific
subunits [83]. Notably, SMARCB1 is present in cBAF and PBAF complexes while being
absent from GBAF complexes [44,81]. SMARCB1 acts as an anchor that binds to the
nucleosome acidic patch via a highly basic C-terminal alpha helix, while the ATPase
subunit SMARCA2/4 binds to the opposing side of the nucleosome [53,62,84]. With
the nucleosome held on both sides, the ATPase subunit is able to slide DNA along the
nucleosome. Mutations in the highly basic SMARCB1 C-terminal alpha helix disrupt
nucleosome binding and reduces remodeling efficiency [62]. Interestingly, these C-terminal
mutations have little effect on global BAF localization, suggesting that this particular
interaction is not critical for BAF targeting.
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4.2. Transcriptional Regulation by SMARCB1

While much prior work has generally implicated BAF complexes in the regulation of
promoters [85] and lineage-specific enhancers [86–90], emerging evidence points to distinct
localization patterns for each subcomplex. cBAF complexes predominantly localize to
active distal enhancers regions [29,91,92], while PBAF complexes are enriched at active
proximal-promoters regions [44]. GBAF has been shown to predominantly localize at CTCF
motifs and promoters, suggesting a unique regulatory role in CTCF-mediated 3D chromatin
architecture [44,82,93–96].

The cBAF and PBAF-specific subunit SMARCB1 is critical for genome-wide BAF sta-
bility on chromatin and on enhancers (Figure 3) [29,91,92]. The reintroduction of SMARCB1
into MRT cell lines substantially increases cBAF localization at distal enhancer sites [29,92],
and promotes active enhancer marks such as H3K27ac and H3K4me1 [91]. By promoting
these activating marks, enhancers more readily promote the gene expression of target
genes by facilitating formation of the preinitiation complex [97–100]. Similarly, PBAF is
preferentially recruited to bivalent promoters upon SMARCB1 expression and promotes
the transcription of target genes. BAF is able to promote the expression of transcription-
ally poised genes in a matter of minutes by removing the polycomb repressive complex
(PRC2) and its repressive H3K27me3 mark from both promoters and enhancers [101,102].
The rapid BAF-dependent activation and repression of bivalent promoters and enhancers
allows for an exquisite temporal regulation of gene expression.
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Loss of SMARCB1 causes the widespread loss of BAF localization, which leads to
unchecked PRC2-mediated transcriptional repression at enhancers and promoters [103,104].
However, there appears to be residual BAF complexes lacking SMARCB1 that are essential
to the survival of SMARCB1-deficient lines [105]. Interestingly, these residual BAF com-
plexes are able to maintain active chromatin organization even at regions also bound by
EZH2 [106]. Thus, while loss of SMARCB1 generally leads to widespread transcriptional
repression, there appears to be a critical subset of genes driven by residual BAF complex ac-
tivity that is required for cancer progression. This finding raises two potential possibilities.
Either the residual BAF remodeling activity is solely carried out by GBAF, or the cBAF and
PBAF complexes lacking SMARCB1 can achieve reduced remodeling activity. Nevertheless,
it remains generally unclear how BAF is able to achieve remodeling activity while lacking
SMARCB1.

4.3. SMARCB1 Regulation of Super Enhancers

The role SMARCB1 plays in the regulation of cell lineage-specific super-enhancers
is much less well defined. Typical enhancers can range anywhere from 1 to 4 kilobases
and typically only regulate a small set of genes [107]. In comparison, super enhancers
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span large genomic regions between 10 and 60 kilobases and regulate cell identity tran-
scriptional states through extraordinarily high levels of transcription factors and H3K27ac
that synergistically combine to regulate gene activity [108,109]. One group reported that
SMARCB1 has largely no impact on the accessibility of super-enhancers [92], while others
have reported that SMARCB1 re-expression promotes active marks on super-enhancers [29].
A recent study reported that SMARCB1 promotes repressive chromatin at super-enhancers
in human embryonic stem cells (hESCs), while still acting as a transcriptional activator
at enhancers [110]. This finding raises the nuanced possibility that SMARCB1 acts as a
transcriptional repressor only in the setting of hESC super-enhancers. Still though, further
work is needed to characterize the role SMARCB1 has in regulating super-enhancers.

4.4. SMARCB1-Dependent BAF Complex Stability

The BAF complex stability in the presence or absence of SMARCB1 has yet to be com-
pletely resolved. Some studies suggest that loss of SMARCB1 leads to the dissociation of
complex subunits [92,111,112], while others suggest that loss of SMARCB1 leaves complex
assembly relatively unaltered [29,83,101,105,113,114]. These conflicting results are most
likely due to variable cellular fractionation procedures, but accumulating evidence points
to residual BAF complex stability without the presence of SMARCB1. Interestingly, even
in studies that suggest SMARCB1 does not play a major role in BAF complex stability,
DPF2 seems to have a highly SMARCB1-dependent association with BAF in both mice and
humans [29].

5. Molecular Functions of SMARCB1

5.1. SMARCB1 Acting as a Tumor Suppressor via Regulation of p16INK4a

SMARCB1 has been shown to regulate the critical tumor suppressor, p16 (also known
as p16INK4a) [115]. p16 is a cyclin-dependent kinase inhibitor that binds to CDK4/6 and
prevents activation of the CDK4/6-cyclin D1 complex [116]. Active Cdk4/6-cyclin D1
is able to phosphorylate pRB, which releases E2F1 to promote gene expression profiles
associated with S phase progression [117]. SMARCB1-deficient cells have reduced p16
expression, which ultimately leads to increased cellular proliferation due to unchecked S
phase progression. Upon re-expression of SMARCB1, there is increased p16 expression
levels, presumably due to increased BAF localization and remodeling activity at p16
regulatory regions [118]. This increase in p16 expression leads to cell cycle arrest at the
G0/G1 phase due to increased Cdk4/6 inhibition.

5.2. SMARCB1 Inhibits MYC Target Activation

In addition to its role within the BAF complex, SMARCB1 has been shown to bind di-
rectly to MYC, a master regulator of genome-wide transcription that potentiates oncogenic
transformation when overexpressed [56,119]. It was originally shown through a yeast two-
hybrid screen that the Rpt1 domain of SMARCB1 binds to the basic helix-loop-helix (bHLH)
and leucine zipper (Zip) of c-Myc [56]. The interaction between c-Myc and SMARCB1 was
hypothesized to facilitate the expression of c-Myc targets, presumably through the recruit-
ment of the BAF complex to target promoters. This hypothesis, however, conflicts with
the established tumor suppressor role of SMARCB1. Moreover, subsequent studies have
shown that SMARCB1 loss is associated with activation of MYC target genes [120–122].

More recent studies have opposed this idea of transactivation, instead proposing that
SMARCB1 and MYC function antagonistically [123,124]. Biochemical and structural studies
have shown that the presence of SMARCB1 reduces the DNA binding affinity of the MYC-
MAX complex in vitro by inhibiting the E-box binding activity [124,125]. Genomic analysis
revealed that the re-expression of SMARCB1 led to reduced binding of MYC genome-wide,
particularly at promoters. Notably, this interaction was shown to be independent of the
remodeling function of the BAF complex. These findings suggest that SMARCB1 has a
separate tumor-suppressive activity outside of its regulation of chromatin accessibility.
Within this model, SMARCB1 typically acts as an inhibitor of MYC DNA binding, which
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prevents MYC target gene expression in a wild-type setting. Yet, upon loss of SMARCB1,
MYC can freely bind to its targets and promote oncogenesis. These findings ultimately
point to MYC inhibition as a potential therapeutic target in patients with SMARCB1-
deficient cancer.

5.3. Exportin 1 (XPO1)-Mediated Localization of SMARCB1

The BAF complex exerts its biological function only in the nucleus, so SMARCB1
requires nuclear localization to properly function as a tumor suppressor. While many
cases of ATRT/MRT are characterized by a complete loss of SMARCB1 [126], a growing
preponderance of ATRT cases appear to be caused by aberrant cytoplasmic localization of
SMARCB1, particularly in the ATRT-TYR subgroup [127]. In fact, a recent study analyzing
a series of 102 ATRT patient samples identified that 19% of the cases had cytoplasmic
SMARCB1 localization [128].

A nuclear export signal (NES-residues 266–276) was found in the Rpt2 domain of
SMARCB1, which is normally masked by the C-terminal domain (residues 319–385) [61].
Introduction of a truncated SMARCB1 lacking the C-terminal domain into an MRT cell line
leads to the dramatic cytoplasmic localization of SMARCB1. The re-expression of this same
truncated SMARCB1 does not induce the expected flat cell phenotype normally seen upon
full-length SMARCB1 expression, indicating that the cytoplasmic localization of SMARCB1
eliminates its tumor suppressor function.

This cytoplasmic localization was found to be dependent upon exportin 1 (XPO1),
which directly interacts with the NES sequence found in the Rpt2 domain of SMARCB1
causing cytoplasmic localization. Upon inhibition of XPO1 with leptomycin B, nuclear
localization occurred in cells transduced with these truncated SMARCB1 mutants. These
results were recently recapitulated with another nuclear export inhibitor, selinexor (KPT-
330), a more clinically viable drug that was also shown to inhibit growth of these truncated
SMARCB1 cells [128]. Further study is needed to determine the clinical efficacy of nuclear
export inhibition in C-terminal truncated SMARCB1 rhabdoid tumors.

6. Advances in Molecular Subgrouping of ATRT

ATRTs primarily affect young infants or children, often with dismal prognosis [129–131].
Despite the genetic similarity between ATRT cases, they surprisingly present differing
molecular and clinical features [132–135]. Due to the relatively limited number of ATRT
cases, there have been challenges in the characterization of biological and molecular hetero-
geneity.

With each prior study using various sequencing platforms and subtyping parameters,
an international effort has combined the results of numerous studies to reach a consensus
on the molecular subtypes present in ATRT cases as well as their clinical features to
facilitate future clinical studies and research (Table 1) [127]. Analysis of both transcriptomic
and methylation datasets in this meta-analysis has identified three well-defined ATRT
subgroups each with their own distinct clinical and molecular presentations: ATRT-TYR,
ATRT-MYC, and ATRT-SHH [136].

The ATRT-TYR subgroup (34%) is named due to the overexpression of tyrosinase, an
enzyme involved in the synthesis of melanin. Often, tyrosine immunohistochemistry can
be used to diagnose ATRTs in this subgroup [137]. Global accessibility assays of ATRT-
TYR samples suggest that this subgroup has more open chromatin than other subgroups,
indicating that ATRT-TYR may originate from earlier developmental cell types [134]. This
subgroup often presents with a whole or partial deletion in one SMARCB1 allele, with an
inactivating point mutation in the other allele.

The ATRT-SHH subgroup (41%) is named due to the overexpression of both sonic
hedgehog (SHH) and Notch members, both pathways known to be conserved key reg-
ulators of development [138,139]. Gene ontology analysis of this subtype suggests that
these tumors often arise from neuronally differentiated cells, as compared to the other
subgroups. This tumor subtype most often presents with compound point mutations in
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both SMARCB1 alleles. Additionally, this subtype has the highest rate of metastasis and
lowest overall survival [136].

Table 1. ATRT subtypes and their respective clinical and molecular characteristics.

KERRYPNX ATRT-MYC ATRT-SHH ATRT-TYR Reference(s)

Median age at diagnosis
(years) 3.4 1.4 1.5 [136]

% with RTPS 0% ~36% ~20% [136]

% Metastatic ~30% ~46% ~10% [136]

Predominant CNV at
SMARCB1 locus

Focal loss (50%) Focal loss (50%) Focal (5%)

[133,136]
Broad loss (7%) Broad loss (7%) Broad loss (62%)
Small loss (29%) Small loss (29%) Small loss (20%)
None (14%) None (14%) None (24%)

Site of tumor
Infratentorial (22%) Infratentorial (30%) Infratentorial (80%)

[133,136]Supratentorial (64%) Supratentorial (70%) Supratentorial (20%)
Spine (14%)

Molecular characterization Overexpression of the MYC
oncogene and HOX cluster

Overexpression of sonic
hedgehog and notch
members

Overexpression of
tyrinosinase and
melanosomal gene

[127,133]

Sex
Male (54%) Male (47%) Male (62%)

[136]Female (46%) Female (53%) Female (38%)

5-year Overall Survival 16.7 ± 10.8% 15 ± 9.8% 58.8 ± 11.9% [136]

Methylation Status Hypomethylated Hypermethylated Hypermethylated [133]

The ATRT-MYC subgroup (23%) is named due to the overexpression of the MYC
oncogene, not to be confused with MYCN, a tissue-specific transcription factor typically
found during early development and is found to be overexpressed in the ATRT-SHH
subgroup and other pediatric solid tumors such as neuroblastoma. These tumors often
present with a large homozygous deletion in both SMARCB1 alleles, and rarely present
point mutations within SMARCB1. This subtype often arises in slightly older children
(3.4 years old) compared to the other subtypes.

A rarer fourth subgroup has been proposed, ATRT-SMARCA4 (~0.5–2%), which has
biallelic SMARC4 inactivation yet retains wild-type SMARCB1 [140]. This subgroup of
ATRTs is predominantly caused by germline mutations in SMARCA4, unlike the other
subgroups, and mostly affects males.

Recent studies have suggested that these subgroup-specific epigenetic and transcrip-
tomic profiles may be utilized to identify therapeutic vulnerabilities and provide targeted
treatment that may improve current clinical outcomes [141]. Some of these novel molecular
therapies for ATRT are discussed in the following section.

7. Therapeutic Vulnerabilities of SMARCB1-Deficient Cancers

There have been significant gains in our understanding of the molecular function of
SMARCB1 in recent years. These novel insights have propelled the discovery of numerous
potential therapeutic vulnerabilities of SMARCB1-deficient cancers. Several of these dis-
coveries are based upon our increased understanding of how the epigenome is deregulated
upon SMARCB1 loss. Other targets have been discovered through unbiased orthogonal
screens that have identified targets that are cellular dependencies. This section outlines the
recent advances in the therapeutic targeting of SMARCB1-deficient cancers (Figure 4).

7.1. Opposing Overactive PRC2 Repression by Inhibiting EZH2

Clinical benefits of PRC2 targeting, through inhibition of the catalytic EZH2 subunit,
have been reported in preclinical data and clinical trials [103,142,143]. As previously
described, the BAF complex opposes the repressive PRC2 complex to facilitate coordination
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of genome-wide gene expression [101]. Upon loss of SMARCB1, the BAF complex loses
its ability to oppose PRC2 repression. This uncontrolled PRC2 repression leads to the
widespread inhibition of BAF target genes. To oppose this uncontrolled repression by
PRC2, inhibitors such as tazemetostat have been developed to inhibit the catalytic PRC2
subunit, EZH2 [143]. Tazemetostat has recently received FDA approval for the treatment of
SMARCB1-deficient epithelioid sarcoma [144,145].
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7.2. Targeting GBAF Dependency through BRD9 Degradation

Targeting the GBAF-complex-specific BRD9 or GLTSCR1 subunits has been proposed
as a target for antitumoral potential [146]. GBAF can efficiently remodel at CTCF sites
as well as promoters without SMARCB1. Genomic analysis indicates that the residual
GBAF activity in SMARCB1-deficient cancers maintains the expression of retained BAF
targets. In vitro assays indicate that rhabdoid tumors and synovial sarcoma are dependent
on the residual remodeling activity of GBAF for proliferative maintenance. Furthermore,
degradation or inhibition of the BRD9 or GLTSCR1 subunits selectively reduces cell viability
in rhabdoid tumors [44,82,146].

7.3. Tyrosine Kinase Inhibition (PDGFRα/β and FGFR2)

The inhibition of overactive tyrosine kinases is an attractive target due to the numer-
ous clinically approved compounds. Molecular profiling of rhabdoid tumors shows that
PDGFRα/β and FGFR2 are coactivated, and that there is a dual blockade of these signals
via the tyrosine kinase inhibitor (TKI), ponatinib [147]. A prior chemical inhibitor screen
countered these findings, reporting that some ATRT cell lines were not susceptible to dual
PDGFRα/β and FGFR2 inhibition [148]. These conflicting studies raise the possibility that
the specific molecular subgrouping of ATRT samples may predict the response to kinase
inhibition. Further studies are still needed to confirm if TKIs are a viable therapeutic target
for SMARCB1-deficient cancers.
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7.4. MYC Inhibition

MYC inhibition has been demonstrated to inhibit ATRT tumor growth in vivo and
in vitro, particularly in the ATRT–MYC subgroup [124,149,150]. In vitro studies show
that direct inhibition of MYC through the overexpression of OmoMYC seems to parallel
the effects seen when SMARCB1 is reintroduced and reduces cell viability [124]. In vivo
studies show that the treatment of orthotopic ATRT xenografts with the BET inhibitor, JQ1,
mimics the effects observed when MYC is directly depleted and ultimately reduces tumor
growth [150]. Based on these findings, MYC inhibition may be a viable therapeutic in
rhabdoid tumor cases with high expression of MYC.

7.5. Immune Checkpoint Inhibition

Emerging evidence suggests that SMARCB1-deficient cancers may have anti-tumor im-
munogenicity and may be susceptible to immunotherapy [151–153]. In a study examining
30 pediatric patient samples with SMARCB1 loss, 47% of samples were positive for PD-L1
expression [154]. Clinical benefits of immune checkpoint inhibition in SMARCB1-deficient
cancers are currently being studied in several clinical trials [155]. For this reason, further
work is needed to understand how SMARCB1-deficient cancers respond to immunotherapy,
especially when used in combination with other anti-tumor agents.

7.6. High-Throughput Screens to Identify Therapeutic Vulnerabilities

High-throughput screens are an efficient unbiased approach to identify putative drug
targets in many different cancer types. In these screens, a library of drug compounds,
shRNAs, and sgRNAs are used to perturb the function of a wide set of genes. By probing
the abundance of the shRNA/sgRNAs over a time course, potential genetic vulnerabilities
can be identified. Two recent studies have utilized these methods to identify putative
therapeutic vulnerabilities in both rhabdoid tumors and renal medullary carcinoma. This
section discusses the results of each of these studies.

7.6.1. MDM2/4 Inhibition

Pre-clinical results indicate that the inhibition of MDM2/4 with idasanutlin or ATSP-
7041 reduces rhabdoid tumor cell growth in vitro and increases survival in vivo [156]. This
study utilized a high-throughput orthogonal screen with RNAi, CRISPR-Cas9-mediated
knockout, and small molecules to identify potential drug targets in a set of 8–10 rhabdoid
tumor cell lines. MDM2 and MDM4 were shown to be dependencies across many of the cell
lines. Moreover, this dependency was shown to be more pronounced in rhabdoid tumors.
More pre-clinical studies are needed to elucidate the clinical benefit of MDM2/MDM4
inhibition in SMARCB1-deficient cancers.

7.6.2. Proteasomal Inhibition

A similar but focused orthogonal screen revealed that proteasomal inhibition reduces
tumor cell growth of SMARCB1-deficient cancers in vitro and increases survival in vivo [15].
Gene targets involved in the ubiquitin-proteasome system were highly enriched for reduc-
ing cell growth. Treatment with the proteasome inhibitor, MLN2238 or ixazomib, reduced
the function of the anaphase promoting complex (APC) E3 ligase subunit, UBE2C, leading
to accumulation of cyclin B1. The inability of UBE2C to target cyclin B1 for degradation
leads to G2/M cell cycle arrest. Another group had similar findings, showing that protea-
somal inhibition paired with genetic suppression of autophagy led to durable responses
in a faithful rhabdoid tumor mouse model [157]. These effects of proteasomal inhibition
were similarly validated within the context of rhabdoid tumors, yet the synergistic effects
when paired with autophagy inhibition were not observed in the context of ATRT [158].
Further studies are still needed to elucidate the clinical benefits of proteasomal inhibition
in SMARCB1-deficient cancers.
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8. Conclusions

Since the initial discovery of SMARCB1 as a tumor suppressor in the 1990s, our under-
standing of SMARCB1 and its molecular interactions has grown tremendously. Despite
these major advancements, an effective treatment for patients with SMARCB1 deficient
cancers has remained elusive. With the advent of widespread sequencing technologies in
cancer diagnosis, the number of diseases and subsequent cases that involve SMARCB1 alter-
ations has grown. Therefore, it is important that we utilize these gains in our understanding
to push forward potential therapeutic treatments.

In recent years, there has been a shift toward a more personalized molecular subtyping
of each SMARCB1-deficient cancer, such as those four subgroups defined for ATRT. This
trend is likely to continue as more SMARCB1-deficient tumor samples are sequenced and
analyzed, hopefully leading to more targeted therapies that are suited for each molecular
subtype. Within each subtype, there may also be targeted treatments dependent on specific
SMARCB1 alterations, such as those cases with the cytoplasmic localization of SMARCB1.
These novel molecular insights discussed in this review have set the stage for future clinical
trials that may soon lead to effective treatments for SMARCB1-deficient tumors.
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