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Spinal cord injury (SCI) often results in abnormal sensory and motor functions.
Current interventions for SCI in the clinical setting are not effective partly due to
the complexity concerning its pathophysiological mechanism. In the wake of SCI,
considerable inflammatory cells assemble around the injured area that induces a series
of inflammatory reactions and aggravates tissue lesions, thereby affecting the recovery
of the damaged nerve tissue. Therefore, the inhibition of inflammatory responses can
improve the repair of the injured spinal cord tissue. Safflower Yellow (SY) is the main
active ingredient of Carthamus tinctorius. SY has anti-inflammatory effect, as it can
inhibit IκBα phosphorylation to impede the NF-κB signaling pathway and p53 nuclear
translocation. Besides, SY can limit the release of pro-inflammatory factors, which in
turn may alleviate secondary SCI and prevent further complications. In this report, we
analyze the pathophysiological mechanism of SCI, the role of inflammatory responses,
and how SY interferes with the HMGB1-TLR-4-NF-κB signaling pathway to attenuate
inflammatory responses in SCI.

Keywords: safflower yellow, spinal cord injury, inflammatory reaction, glial scar, the HMGB1-TLR-4-NF-κB
signaling pathway

INTRODUCTION

Spinal cord injury (SCI) is a serious central nervous system injury (Ahuja et al., 2017; Hodgetts and
Harvey, 2017). In the past decade, significant number of people have suffered from SCI, with its
incidence rate still on the rise. According to the National Spinal Cord Injury Statistical Center, there
are about 12,500 new SCI cases each year in the North America (Alizadeh et al., 2019). SCI impairs
sensorimotor circuits, culminating in motor and sensory dysfunctions (Hilton and Tetzlaff, 2018;
Ganzer et al., 2020). SCI considerably affects an individual’s quality of life, and causes an immense
social and economic burden (Schattling et al., 2019). To date, the neuron-regenerative repair of SCI
continues to be a challenge in the clinical setting (Lindsay et al., 2020). Although several factors
could be attributed to this problem, the two main factors concerning the ineffective treatment of
SCI are persistent neuro-inflammation and glial scar formation (Yoshizaki et al., 2021). After SCI,
astrocytes around the lesion are activated under the action of inflammatory factors. These reactive
astrocytes aggregate around the lesion and form glial scars to protect undamaged spinal cord tissue
that impedes axonal regeneration (Okada et al., 2018).
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Physical trauma can cause the rupture of blood vessels of the
spinal cord, damage the blood spinal cord barrier, and result
in local bleeding and ischemia, edema, and inflammation, and
cell-death (Tran et al., 2018). SCI has two phases: primary SCI
and secondary SCI (Hachem et al., 2017). Primary SCI is usually
a mechanical damage that causes the destruction of the blood
spinal cord barrier and induces local inflammatory responses
(Stahel et al., 2012). Secondary injury occurs several hours, days
or weeks after the primary SCI. This happens under the action
of inflammatory factors, with secondary injury aggravating the
damage to the spinal cord tissue (Fan et al., 2013; Tran et al.,
2018). Cells within the lesion sites release ATP, DNA, glutamate
and free radicals, leading to the formation of a post-damaged
cytotoxic environment (Ahuja and Fehlings, 2016). In view of
this, inflammatory responses are significant players in secondary
SCI (Bethea and Dietrich, 2002).

THE ROLE OF INFLAMMATORY
REACTION IN SCI PROGRESSION

Inflammatory reaction is a protective mechanism of the
body. However, excessive and persistent inflammatory
microenvironment can hinder spinal cord repair (Li X.
et al., 2020). In the wake of SCI, myelin debris are formed,
which triggers complement-mediated inflammatory reaction
(Kopper and Gensel, 2018). A distinctive consequence of
SCI is the upregulation of multiple families of inflammatory
molecules that involve cytokines and chemokines (Rice et al.,
2007). Inflammatory reaction may aggravate SCI, and cause
neuronal cell death, neurodegeneration, and neuroinflammation
(Polcyn et al., 2020). Neuroinflammation is one of the key
factors that drives secondary SCI (Gaojian et al., 2020). SCI can
give rise to a comprehensive inflammatory cascade response
induced by the activation of innate immune cells (microglia
and astrocyte), leukocytes (neutrophil and macrophage),
and neuronal cell death. These cells release pro-inflammatory
cytokines, chemokines, free radicals, excitatory toxic amino acids,
and nitric oxide (NO) (Hausmann, 2003; Anwar et al., 2016).
The pro-inflammatory macrophage and the anti-inflammatory
phenotype of the immune cells aggregate at the damage sites
to initiate an immune inflammatory response following SCI
(Rice et al., 2007; Fan et al., 2020). After SCI, astrocytes play
a vital role in SCI pathology through a phenotypic change
called reactive cells (Hara et al., 2017). Reactive astrocytes
are commonly divided into A1 and A2 types, which are
analogous to macrophages M1 and M2 (Liddelow and Barres,
2017; Liddelow et al., 2017; Vismara et al., 2020). Microglia
refers to macrophage in the central nervous system (CNS)
(Yu et al., 2021). Noteworthy is that invasive macrophages
have different functions from microglia (Milich et al., 2019).
Classical activated neuro-inflammatory microglia can induce
the production of A1 reactive astrocytes (Liddelow et al., 2017).
Activated macrophage/microglia are polarized into M1 and M2
sub-types, exhibiting pro-inflammatory and anti-inflammatory
effects following SCI (Ransohoff, 2016; Lin et al., 2020). For
instance, M1 phenotype generate pro-inflammatory cytokines

(such as TNF-α and IL-1β), while M2 phenotype may curtail
inflammation via IL-4 and IL-10 cytokines (Jiang et al., 2017).
The ratio of M1 to M2 influences the microenvironment of
the spinal cord tissue after injury, as the augmentation of M1
phenotype after SCI will negatively affect the injury repair
(Fan et al., 2018). Besides, reactive oxygen species (ROS) can
lead to cell and tissue dysfunction through the oxidation of
DNA and cell membranes, which further causes inflammation
(Hervera et al., 2018; Kertmen et al., 2018). SCI comprises of
three stages; acute stage, acute secondary stage, and chronic stage
(Nukolova et al., 2018).

The Role of Inflammatory Reaction in
Acute Spinal Cord Injury
Acute SCI is one of the stages of SCI. At this stage, cell fragments
are formed and intracellular proteins are released as potent
inflammatory stimuli. These injury-exposed fragment signals,
also known as damage-associated molecular patterns (DAMPs),
activate pattern recognition receptors (PRRs) on inflammatory
cells after SCI (Orr and Gensel, 2018). The acute SCI includes
primary and secondary injuries. Oxidative stress leads to
the release of cytoplasmic components and mitochondrial
dysfunction in primary SCI. Secondary injury begins as early
as minutes after the primary SCI, and involves spinal cord
ischemia and free radical-mediated peroxidation (Albayar et al.,
2019; Pinchi et al., 2019). Oxidative stress is the main cause
of neuronal tissue damage, as it can initiate cytotoxicity by
enhancing lipid peroxidation in damaged neuronal tissue (Guan
et al., 2020). In particular, lipid peroxidation is extremely
important in acute SCI (Kwon et al., 2004). Secondary SCI has
inflammatory reaction that leads to edema and hemorrhage,
which in turn aggravates the injured area. Macrophages,
neutrophils and T-cells invade damaged sites, leading to blood-
brain barrier disruption (Lambrechts and Cook, 2021; Figure 1).
The first infiltrated inflammatory cells are neutrophils, which
peak around day 1 after acute SCI. Neutrophils decrease
within 1 week of injury, while monocytes increase in the
spinal cord. Similarly, T and B-lymphocytes being to gradually
increase during the first week after injury (Wu et al., 2019;
Figure 1). Subsequent to acute SCI, ischemia leads to the
formation of an acidic environment. Moreover, macrophage
infiltration and the activation of microglia further promote
the release of pro-inflammatory factors, including TNF-α, IL-
1β, and interleukin 6 (IL-6) (Xi et al., 2021; Figure 1). The
microglia are the key immune cell type in CNS (DiSabato
et al., 2016). Under normal circumstances, microglia perform
immune defense mechanisms, regulate neuronal and synaptic
activities, secrete nutritional factors and support neuronal
survival and axon growth in CNS (DiSabato et al., 2016;
Gaudet and Fonken, 2018). The microglia can be strongly
activated and carry out double-edged tasks following SCI
(Gaudet and Fonken, 2018). The microglial and macrophages
can have beneficial roles in acute SCI. A large number of
macrophages and microglia are recruited in the lesion epicenter
within 7 days after SCI (Stirling and Yong, 2008). Activated
microglial and macrophages secrete products that promote
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FIGURE 1 | The inflammatory reaction in acute SCI areas. The macrophage, T-cell, neutrophil invade damaged sites following SCI, T and B cells being to gradually
increase within 1 week of injury. Moreover, macrophage infiltration and the activation of microglia regulate the release of pro-inflammatory factors, such as TNF-α,
IL-6, and IL-1β in acute SCI.

axon growth. Zymosan-activated macrophages create a growth-
microenvironment to increase the density of axons in vivo
(Gensel et al., 2009). A study has showed that M1 phenotype
cells can produce proteases and oxidative metabolities to kill
neurons and glia, conversely, M2 phenotype cells can contribute
to tissue repair via downregulating inflammatory responses in
SCI (Kigerl et al., 2009). Acute SCI leads to chronic SCI,
and chronic complications after acute SCI are detrimental
(Chen et al., 2020).

The Role of Inflammatory Reaction in
Chronic Spinal Cord Injury
Systemic inflammation is key to chronic SCI (Diaz et al.,
2021). Systemic inflammatory markers, such as c-reactive protein
(CRP) and IL-6, are increased after chronic SCI (Hart et al.,
2016; Lynch et al., 2017; Dugan et al., 2021). Chronic SCI
can intensify IL-2 and TNF-α levels to upregulate the NF-
κB transcriptional activity (Yarar-Fisher et al., 2016). Microglia
appears to be strongly related to chronic neuroinflammation after
SCI, and microglial cells expressing TNF-α may transform the
polarization of astrocytes to neurotoxic phenotypes (Yoshizaki
et al., 2021). Besides, natural killer cell numbers, cytotoxic activity
levels, and T-lymphocytes in patients with chronic SCI exhibit
abnormal function (Figure 2). There are indications that CD4+
T cells are increased in the spinal tissue (Monahan et al., 2015;

Herman et al., 2018). Therefore, several factors such as IL-2,
IL-6, CRP, TNF-α and CD4+T cells can be activated, however,
NK cells can be inhibited in chronic SCI (Figure 2). Chronic
SCI is a period of stabilization and low activity, where the
nerve function around the injured areas gradually decreases
(Rodríguez-Barrera et al., 2017).

SAFFLOWER YELLOW CAN INHIBIT
INFLAMMATORY REACTION

The Biological Role of Safflower Yellow
Carthamus tinctorius is a plant of Compositae or Asteraceae
family (Delshad et al., 2018). Safflower is the dry flower of
Cathamus tinctorius, a commonly used traditional Chinese
medicine that has been reported to improve trauma,
gynecological disease, cardiovascular conditions, blood
circulation, and remove blood stasis (Wang et al., 2011). SY is
the effective component of safflower water-soluble extract, with
its main component being hydroxysafflower yellow (Asgarpanah
and Kazemivash, 2013; Li H. et al., 2020; Wang et al., 2020).
The molecular formula of SY is C60H74O38, contains hydroxyl
groups, carbonyl groups, aromatic rings and conjugated carbonyl
groups. Hydroxysafflor yellow A-4′-O-b-D-glucopyranoside and
3′-hydroxyhydroxysafflor yellow A are separated from the SY
(Zhang et al., 2020). SY has anti-infection and anti-inflammatory
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FIGURE 2 | The inflammatory reaction in chronic SCI areas. CD4 + T-cell, CRP, IL-6 are increased, IL-2 and TNF-α are activated to enhance the NF-κB
transcriptional activity in chronic SCI. Meanwhile, the activity of NK cell is inhibited.

properties, and has been used for the clinical treatment of
patients who suffer from severe sepsis and septic shock (Li et al.,
2016). Furthermore, SY has anti-fibrotic (Wang et al., 2011),
anti-oxidative (Wang et al., 2020), anti-coagulative (Sun et al.,
2010), anti-obesity (Yan et al., 2020), anti-calcium-antagonist
(Du et al., 2019), and neuroprotective effects (Pang et al., 2020).
In recent times, the mediation of SY in inflammation has
attracted significant attention.

Safflower Yellow Inhibits the
HMGB1-TLR4-NF-κB Signaling Pathway
High mobility group box 1 protein (HMGB1) is a nuclear non-
histone DNA-binding protein expressed in all nuclear animal
cells, and can be used as a potent inflammatory late mediator
when passively secreted during inflammatory response (Scaffidi
et al., 2010; Li et al., 2015). HMGB1, which can stimulate
neuroinflammatory responses under deleterious conditions, is
a damage-associated molecular pattern (DAMP) molecule (Yu
et al., 2019). HMGB1 can induce intracellular signaling pathway
by interacting with at least three pattern recognition receptors:
Toll-like receptor-2 (TLR-2) and TLR-4, and the receptor for
advanced glycation products (PAGE) (van Zoelen et al., 2009).
Among them, TLR-2 and TLR-4 are key players, while PAGE
has a minimal role (Park et al., 2004). The migration ability
of breast cancer cells is closely related to HMGB1 (Lv et al.,
2016). HMGB1 can be released from the nucleus to the cytoplasm

under damage conditions to activate TLR4 signaling pathway
and play a biological role (Lv et al., 2016; Antón et al., 2017;
Xu et al., 2020). HMGB1 and TLR-4 interactions may lead to
NF-κB upregulation, which results in producing and releasing
inflammatory cytokines, such as IL-1β, TNF-α and IL-6 (Zhang
et al., 2007; Kang et al., 2015; Wang et al., 2015; Xu et al.,
2020; Figure 3). The HMGB1-TLR4-NF-κB signaling pathway
is an inflammatory signaling pathway that mediates multiple
inflammation-related pathways (Sun et al., 2019). NF-κB is a
well-established inflammatory transcription factors produced by
almost all animal cells. More importantly, the NF-κB signaling
pathway has a significant number of target genes that can
regulate a variety of biological functions, including inflammation,
apoptosis, cell adhesion, cell stress response, and immunity (Jing
and Lee, 2014). More importantly, the NF-κB signaling pathway
is instrumental in inflammation (Ma and Hottiger, 2016). There
is a positive feedback mechanism between inflammation and
the NF-κB signaling pathway after SCI (Karova et al., 2019).
Exposing neutrophils or macrophages to HMGB1 can lead
to enhanced NF-κB signaling pathway and pro-inflammatory
cytokine expression (Park et al., 2004). Interestingly, SY can
improve inflammatory response and exert effect on inflammatory
factors, like TNF-α, IL-1(IL-1β), and IL-6 (Zhou et al., 2018;
Du et al., 2019; Figure 3). Furthermore, SY can inhibit the
activation of the NF-κB signaling pathway by suppressing IκBα

phosphorylation and cell nucleus translocation of p65 (Li et al.,
2013; Figure 3). Moreover, SY may suppress the NF-κB signaling

Frontiers in Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 803885

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-803885 December 22, 2021 Time: 10:28 # 5

Wang et al. Safflower Yellow and Spinal Cord Injury

FIGURE 3 | The role of SY in SCI. SY moderates the release of pro-inflammatory factors (TNF-α, IL-6, and IL-1β). Additionally, SY inhibits IκBα phosphorylation and
p53 nuclear translocation. Thus, SY can suppress the TLR-4-NF-κB signaling pathway.

TABLE 1 | Beneficial effects of SY in diseases.

Diseases Species Doses Outcome References

Pulmonary fibrosis Rats 0.25 mg/ml SY can inhibit α-SMA mRNA expression in lung fibroblast. Wang et al., 2011

Osteoarthritis Rats 50 µg/ml SY can regulate NF-κB/SIRT1/AMPK signaling pathway, and
prevent inflammation.

Wang et al., 2020

Focal cerebral Rats 8 mg/kg HSYA suppresses thrombin formation and inflammatory responses. Sun et al., 2010

Obesity Mice 120 mg/kg SY may improve insulin sensitivity. Yan et al., 2020

Cerebral ischemia Rats 8 mg/kg SYB can activate AMPK and reduce NF-κB mediated inflammation. Du et al., 2019

Alzheimer’s disease (AD) Mice 30 mg/kg SY can improve learning and memory functions. Pang et al., 2020

CNS Cell 80 µg/ml SY can inhibit inflammatory response. Yang et al., 2016

AD Mice 100 mg/kg SY can improve AD by decreasing the expression of proteins
related to β-amyloid formation.

Shi et al., 2018

ROS Cell / SYB can effectively reduce ROS generation by decreasing NADPH
oxidase activity.

Wang et al., 2013

Bone fracture Cell 18 µg/ml SY can promote angiogenesis to improve bone fracture. Tang et al., 2018

Obesity/diabetic Mice 80 µg/ml SY can reduce body fat mass and improve insulin sensitivity. Zhu et al., 2016

Cardiovascular disease (CVD) Mice 25 µg/ml SY has an effect on angiotensin II-induced adventitial fibroblast
proliferation.

Liu et al., 2014

CVD Cell 20 µg/ml HSYA can decrease PDGF-BB-induced proliferation, migration, and
Akt signaling pathway.

Song et al., 2014

AD Cell 10 µg/ml HSYA can inhibit neuroinflammation by reducing Aβ1-42-induced
cytotoxicity in BV-2 cells.

Zhang et al., 2014

SCI Rabbits 90 µg/ml SY can improve SCI by enhancing Bcl-2 expression and inhibiting
Bax and caspase-3 activation.

Zhou et al., 2013
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pathway by restricting the TNF-α (Wang et al., 2020). SY has
a significant role in the minimization of ROS level (Lu et al.,
2019). Also, SY can downregulate the TLR-4 expression (Yang
et al., 2015; Figure 3). Besides, SY can transform microglia from
inflammatory M1 to anti-inflammatory M2, which then plays an
anti-inflammatory role by hindering the TLR-4-NF-κB signaling
pathway (Yang et al., 2016). SY has been widely studied in various
diseases, most especially, SCI (Table 1).

CONCLUDING REMARKS

Inflammation plays an important role in SCI, which have
been expounded in this report. The NF-κB is a central
transcription factor of inflammatory mediators, and the
neuroinflammatory response caused by activated microglia
through the NF-κB pathway is a consequential contributing
factor to secondary injury (Chen et al., 2018). The HMGB1-
TLR-4-NF-κB signaling is an inflammatory pathway upregulated
during SCI. Particularly, HMGB1 and TLR-4 interactions
can lead to NF-κB upregulation, which in turn results in
the formation and release of inflammatory cytokines at
increasing levels in secondary SCI (Zhang et al., 2007;

Wang et al., 2015). SY has several pharmacological effects, such
as anti-inflammation and anti-oxidation. SY may mitigate
the release of pro-inflammatory factors, TNF-α, IL-1β, and
IL-6. Far more, SY can inhibit the HMGB1-TLR-4-NF-
κB signaling pathway to ameliorate inflammatory response
and offer protection to the spinal cord in the event of an
injury. Notwithstanding, the specific molecular mechanism
of HMGB-TLR-4-NF-κB following SCI are presently unclear,
and warrants further thorough investigations using appropriate
experimental models.
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