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Abstract: Parkinson’s disease (PD) is a disabling neurodegenerative disease whose manifestations
span motor, sensorimotor, and sensory domains. While current therapies for PD include pharma-
cological, invasive, and physical interventions, there is a constant need for developing additional
approaches for optimizing rehabilitation gains. Mental imagery is an emerging field in neuroreha-
bilitation and has the potential to serve as an adjunct therapy to enhance patient function. Yet, the
literature on this topic is sparse. The current paper reviews the motor, sensorimotor, and sensory
domains impacted by PD using gait, balance, and pain as examples, respectively. Then, mental
imagery and its potential for PD motor and non-motor rehabilitation is discussed, with an emphasis
on its suitability for addressing gait, balance, and pain deficits in people with PD. Lastly, future
research directions are suggested.

Keywords: Parkinson’s disease; rehabilitation; mental imagery; motor; sensorimotor; sensory;
dynamic neuro-cognitive imagery; motor imagery

1. Introduction

Whether called daydreaming, imagining, or fantasizing, creating and using mental
images—known as mental imagery—is ubiquitous in many people’s day-to-day activi-
ties [1]. This cognitive process of mentally imaging motor acts, sensations, or sights, be
them realistic or imaginary, has been shown to positively affect (and even re-shape) the
body and mind and to result in improved quality and functionality of both [1,2]. Two
mental imagery subtypes are motor imagery and dynamic neuro-cognitive imagery, both
discussed in detail below. One population who may benefit greatly from mental imagery
as a rehabilitative approach is people with Parkinson’s disease (PwP).

Parkinson’s disease (PD) impacts more than 6 million people worldwide and its
prevalence is quickly increasing [3]. While clinical diagnosis of PD is based upon the
presence of bradykinesia and other cardinal motor features, PD is more than just a motor
disorder [4]. In fact, one can identify features of PD that range from motor to sensory.
Treatments for PD are often aimed at controlling motor and non-motor manifestations using
pharmacological and surgical means, which are only partially effective. Rehabilitation and
exercise complement these treatments [5]. The purpose of this paper is to highlight the
role of mental imagery as one rehabilitative approach and detail its unique qualities that
potentially allow it to explicitly and specifically address PD manifestations that span from
motor to sensorimotor to sensory. Given their high prevalence and clear impact on function
and quality of life, we specifically highlight gait, balance and pain, arguing that each of
these may be effectively addressed using mental imagery.
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2. Gait as an Example of Motor Dysfunction in PD

Gait impairment may present relatively early in the course of PD and is viewed as
a red flag for emerging disability [6]. Early changes in gait include: reductions in arm
swing, gait speed and step length; increases in interlimb asymmetry [7] and variability;
and losses of gait automaticity [7] reflected in difficulty performing complex gait tasks such
as turning or dual tasking [7]. With disease progression, gait slows further with shuffling
steps, increased cadence, and more time spent in double limb support. Automaticity
also continues to deteriorate, as problems emerge with gait initiation and turning is more
disrupted. PwP may also begin to experience festination and freezing of gait (FOG). In late
stages of the disease, as gait continues to worsen, FOG may become more prevalent and
individuals may rely on assistive devices or eventually utilize a wheelchair for mobility [8].

The mechanisms underlying gait dysfunction in PD are not fully understood, and
many different brain regions with the cerebral cortex, subcortical areas and cerebellum
have been implicated. Imaging studies have shown changes in neural activity, connectivity
and tissue volume. A recent meta-analysis of gait neuroimaging studies in PD concluded
that decreased activation of the supplementary motor area along with activation of the cere-
bellar locomotor region are consistent findings [9]. However, firm conclusions regarding
mechanisms of gait dysfunction are difficult given the variety of study methods, the relative
lack of studies relating specific gait features to specific neural changes, and the paucity
of prospective longitudinal studies that track changes in neuroimaging findings along
with changes in gait. What is clear is that gait disorders are complex and multifactorial.
Given this complex, multifactorial nature of gait disorders in PD, a multimodal approach
to treatment is advisable [10].

Commonly recommended treatment approaches include dopaminergic and choliner-
gic medications, neurostimulation, physical activity and exercise, physical therapy, cueing
and cognitive/behavioral therapy [10]. Mental imagery falls within this category of cog-
nitive/behavioral therapy and is an approach that merits greater attention as a means of
addressing gait difficulties in PD.

3. Postural Instability as an Example of Sensorimotor Dysfunction in PD

Sensorimotor deficits in PD [11] include, among others, impaired proprioception [12,13],
disrupted sensitivity to motion [14], and altered awareness of limb position (i.e., kinesthe-
sia) [15] and bodily orientation [16]. Although often unobserved, such deficits precede the
onset of the motor [17] signs in approximately 20% of patients [18]. Such deficits can directly
impact afferent sensory inputs and/or their processing in the central nervous system [19]
as well as affect proper use of internal, proprioceptive stimuli and feedback [11,14].

Sensorimotor dysfunction contributes to postural stability and balance control deficits
common among PwP [20]. A study with 109 participants noted that 68.3% of PwP expe-
rienced a single fall and 50.5% experienced at least two falls over a one-year period [21].
Falls may result in physical injury and in psychological complications, such as fear of
falling, which itself could further compromise balance and postural control [22]. Typical
characteristics of balance deficits in PD include diminished sway, reduced base of support,
rigidity, abnormal inter-segmental coordination, and postural malalignment [20,23–27].
Related somatosensory deficits in PwP include problems with orientation to sensory and
somatosensory information as well as processing issues [25,28]. Such deficits negatively
impact sensorimotor integration [20] thus degrading proprioception, joint position sense,
and tactile stimulus estimation [29–31], all of which are involved in balance control. In
PD, such sensorimotor deficits interrelate with cognitive concerns, such as challenges with
attention and temporal orientation [32].

Considered as a whole, this range of deficits faced by PwP seems to negatively
impact the use of somatosensory information [20,24–26] for selecting a proper postu-
ral motor strategy [33], including switching between strategies [34,35]. The observed
over-reliance on visual information seen in PwP [36] for controlling posture [37] could,
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therefore, be a compensatory strategy to overcome deficits in the somatosensory [38] and
cognitive realms [30].

Current pharmacologic (e.g., levodopa) and invasive (e.g., deep brain stimulation)
therapies do not adequately address sensorimotor and balance deficits in PwP [39,40].
Multiple non-pharmaceutical and non-invasive therapies, including physical therapy [41],
dance [42], Tai Chi [43], and music-based movement therapy [44] have all shown beneficial
effects on balance in PwP. However, the literature on this topic is inconclusive due to a
lack of studies with long-term follow-up [45] and gaps in synthesis of research findings
across the spectrum of PD disability [46]. Aligning with previous literature [47], these gaps
include a lack of studies to determine the impact of innovative adjacent therapies, such as
mental imagery, as a means of addressing balance deficits in PwP.

4. Pain as an Example of Sensory Dysfunction in PD

Among the sensory impairments experienced by PwP is pain, defined by the In-
ternational Association for the Study of Pain as an unpleasant sensory and emotional
experience associated with, or resembling that associated with, actual or potential tissue
damage [48]. More than 60% of PwP experience pain [49], which may be present at or prior
to diagnosis [50,51]. Pain ranks as a highly bothersome symptom throughout the course of
PD [52]. Despite the high prevalence and devastating impact of pain in PD, it remains an
under-reported and under-treated non-motor symptom.

Though the pathophysiology of pain in PwP is not fully understood, there are certain
structures and circuits implicated. PwP who report having pain may demonstrate a reduced
threshold for pain compared to those without pain [53–55]. Studies suggest irregularities
in both transmission and processing of pain signals at the levels of the spinal cord [56] and
cortex [57], respectively. In PwP, the impact of dopaminergic deficiency on pain remains
under investigation. Given that pain may increase in “OFF” periods of the medication cycle
compared to on [58] and that pain may be reduced following deep brain stimulation [59],
dopaminergic dysfunction likely plays a key role in pain in PwP.

There are multiple types of pain in PwP. Ford reports five classifications of pain
in PD: (1) musculoskeletal, (2) radicular, (3) dystonic, (4) akathisia, and (5) central [60].
Musculoskeletal pain complaints are the most common among people with PD, with the
low back as one of the most frequently reported sites of pain [61,62]. Given that low back
pain (LBP) is highly prevalent and is negatively associated with self-reported physical
activity [63] and quality of life in PD [61,63], we suggest LBP in PwP may be appropriately
targeted with mental imagery, especially when combined with movement-based therapy.

5. Distorted Body Schema as a Target for Rehabilitation Using Mental Imagery

Perceptual factors such as attentional focus, proprioception, awareness, and self-
motion perception are all inter-related [17,64–66] and impact motor, sensorimotor, and
sensory functions and the dynamic interaction between them [17,64–68] in PD [69–76]. One
possible path through which these factors could impact motor and non-motor functions
in PwP is via the body schema, which is the online mental representation of one’s body
segments in space and their spatial relationships to each other [77]. Body schema has a
vital role in perception and action [78], motor control [79], and mental imagery [80] (see
below). Body schema is governed by a set of fronto-parietal brain networks which code for
the online dynamic proprioceptive representation of the body [79,80], an essential factor
for proper daily life functioning.

In PwP, body schema may be distorted [74,75,81] and may include inaccurate mental
estimates of body part size [81,82] and location and position in space [83]. Body schema
deficits could, in turn, affect motor planning and execution processes [84], thus promoting
motor deficits (e.g., hypometric movements [12,19], postural malalignments [85,86]) and
non-motor changes such as increased nociceptive sensitivity [87], altered nociceptive
integration [88], and altered mental imagery abilities [89,90].
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The perception–motor pathway is thought to be bidirectional [17,89,91] and seems
to align with motor learning and control theories in people with and without PD [19,92].
Among PwP, for example, reduced volume and quality of movement (e.g., hypometric
movements, diminished movement repertoire, lack of physical activity) could reduce
peripheral kinesthetic (and other) afferent stimuli [93], thus potentially impeding body
schema, given the importance of such information flow to body schema formation and
maintenance [94].

The full spectrum of associations between perceptual and motor deficits, and especially
the role of the former on PD symptoms and rehabilitation, is yet to be fully revealed [89].
Current PD therapies—pharmaceutical, invasive, and physical alike—are limited in their
ability to alleviate motor (gait, balance) and non-motor symptoms [95]. Simultaneously,
therapies that promote patients’ cognitive and motor independence and self-potency via
providing them with practical explicit tools and strategies that can be consciously used
in daily life scenarios are limited. Specifically, non-pharmaceutical and non-invasive
therapies that explicitly address body schema deficits and their reframing in PwP are
sparse. Therefore, development of therapeutic approaches that can be specifically tailored
to PwP and provide a structured framework for patient-based stimuli and training [96]
to include cognitive–perceptual components (e.g., attention, proprioception, awareness,
self-motion perception) is essential [17,97–101]. One such potential approach is mental
imagery, which has the potential to address distortions in body schema.

6. Mental Imagery: Background

Mental imagery is a term used to describe the cognitive process of simulating sensa-
tions, actions, or other types of experiences [102] through generating and using mental im-
ages, including metaphors. Mental imagery can be performed in the absence of appropriate
sensory input [103,104] or while the imaged stimulus is available to the imager [105–107].
When related to movement, mental imagery can be done with or without physical execution
of the imaged movement [108,109] as well as while observing the movement performed
by another individual or a video (aka “action observation”) [110,111]. A strong linear cor-
relation exists between overt physical execution and mental imagery [112,113], spanning
temporal (i.e., similarity in time to complete actual and imaged tasks) and spatial (i.e., acti-
vated neural pathways and brain regions) spheres [104,114,115]. Such similarities give rise
to sensory and motor experiences and effects that are associated with both mental imagery
and perception [68,116] and could explain mental-imagery-related effects on peripheral and
central neural events, including in PwP [117]. Therefore, mental imagery appears to have
potential as a means of approaching novel and learned motor tasks alike [118] and can be
used for motor planning, execution, and control purposes, including performance enhance-
ment. Among the advantages of mental imagery as a rehabilitation method are no risk of
physical injury, independence of level of motor capability, high availability/accessibility,
low financial costs, and no need for equipment. Furthermore, mental imagery can ex-
plicitly and precisely target various motor (e.g., range-of-motion [119]) and non-motor
(i.e., sensory and cognitive) aspects of performance, including pain [119], motivation, and
self-confidence [120]. Specifically relevant for PD, mental imagery can be used even when
physical mobility is limited, such as in advanced stages of the disease. Mental imagery
offers PwP and therapists a wide range of delivery possibilities: individually or in a group,
and physically or remotely/virtually. These options make mental imagery highly relevant
for various PD communities, including remote and under-served ones, thus addressing
gaps and future directions identified by the previous literature [121–123].

Mental imagery’s mechanisms of effect are not fully understood and include both
psychological and physiological ones [103,115,124]. Suggested psychological mechanisms
of effect include facilitating cognitive elements regarding the skill (i.e., learning what to
do), such as breaking down the skill into its components [125], attentional focus [124],
(Gose and Abraham, under review), and different execution patterns to promote learning
of movement strategies [92,115]. Suggested physiological mechanisms of effect include
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neural changes in the central nervous system, resulting in greater relaxation and altered
programming of the motor system [126].

Given that: (1) perception relies on motor action [91,127]; and (2) motor functioning is
impacted by somatosensory information [17], mental imagery could serve as a promising
rehabilitative approach toward improving both perceptual–cognitive and motor function-
ing. This is based on mental imagery’s engagement of neural circuits that overlap with
overt motor execution [124,128]; and on MI’s reliance on and usage of sensory and so-
matosensory (i.e., kinesthetic and proprioceptive) information [128,129]. Further, prior
studies [107,130] and evidence obtained from a focus group of PwP indicate that the self-
selected use of mental imagery in everyday activities [131] support the benefits that may
stem from integrating mental imagery in PD rehabilitation.

Two subtypes of mental imagery are motor imagery practice (MIP) and dynamic neuro-
cognitive imagery (DNI). MIP, which consists of the mental rehearsal of a motor act without
overt physical execution, is the most widely used and researched approach to mental
imagery [115,124,132]. Less well known and less studied is DNI, a systematized mental
imagery method for motor and cognitive retraining which was adapted from “the Franklin
Method” [133,134]. DNI utilizes a variety of mental imagery categories (e.g., emotional,
anatomical, biomechanical, metaphorical), modalities (e.g., visual, kinesthetic, auditory)
and mental-imagery-related assistive tools (e.g., self-touch [135] and self-talk [136]). DNI
combines mental imagery (including MIP) with actual movement execution within various
motor contexts, ranging from basic activities of daily living (e.g., standing up from a chair,
lifting arms) to more advanced functions (e.g., single-leg balance, turning) [130]. The
DNI pedagogical process introduces participants to the concept of mental imagery, its
advantages and ease of use, and teaches them various ways to utilize it along with motor
performance during functional tasks (e.g., sitting down, standing up, walking and turning).
In doing so, DNI addresses various cognitive aspects associated with motor planning
and performance, such as efficiency, proprioception, body schema, attentional focus, and
dual tasking. The beneficial effects of DNI on motor and non-motor functions have been
recently demonstrated in dancers and PwP [106,107,130]. Given that DNI, unlike MIP, has
been empirically studied only in recent years and is less known by both clinicians and
researchers, the current paper focuses on introducing its qualities that may be specifically
relevant for PD rehabilitation and that should be further investigated.

7. The Suitability of Mental Imagery for PD Rehabilitation

Mental imagery is a recommended method for neurorehabilitation [137,138] and is
especially promising for PD rehabilitation [99,139–141] as supported by: (1) its core role
in motor, sensorimotor, and cognitive functioning [142–144], and (2) its ability to repro-
duce [145] and even potentially enhance [105] availability and quality of afferent sensory
information from the body, including specific tissues and body parts [105]. Care should be
taken to ensure that individuals with cognitive symptoms receive an appropriate neuro-
psychiatric assessment to verify that they may benefit from a mental imagery approach.
For those with adequate cognitive capacity, mental imagery may play a role in sensory
re-weighting processes [146,147] relevant for gait, balance, and pain. The following sec-
tions specifically review evidence to date regarding the use mental imagery in each of
these areas.

8. Mental Imagery to Address Gait in PD

PwP maintain the ability to image walking tasks as evidenced by performance on the
Gait Imagery Questionnaire [148], which assesses visual and kinesthetic motor imagery.
The ability to mentally image gait vividly and accurately is similar in PwP and controls and
does not seem to correlate with actual walking performance, though PwP may perform
mental imagery tasks more slowly than controls [90]. Mental imagery speed and vividness
may be enhanced through use of visual cues [149] and potentially through using action
observation [110,111]. The preserved ability for mental imagery and use of cueing suggests
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that even those with poor walking performance may still be able to image walking effec-
tively and therefore potentially benefit from mental imagery as a strategy to compensate
for gait impairments [150]. However, patterns of brain activation during imaged walking
differ between controls and PwP. For example, those with PD have reduced activity in
globus pallidus and increased activity in the supplementary motor area during imaged
gait, particularly for complex tasks like imaged turning [151] and imaged backward walk-
ing [152]. Both reports did not provide details regarding the type of imagery used. Of
note, the investigation of imaged visual cues (i.e., using the mental image of the visual cue
without it being perceptually available) and its potential benefits on gait in PwP is at its
infancy [107,130].

Among PwP with FOG, there is evidence of alterations in motor imagery that are not
noted in those without FOG. Neuroimaging studies suggest that during imaged walking,
those with FOG have greater activity in the mesencephalic locomotor region than those
without freezing of gait, and this hyperactivity in MLR correlates with severity and duration
of FOG [153]. Those with FOG have also been noted to have reduced activity in the
globus pallidus during mentally imaged gait [154]. Perceptual motor studies demonstrate a
mismatch between imaged and actual walking times when passing through doorways [155],
a problem that may be uniquely associated with FOG. It remains to be seen whether training
in mental imagery could facilitate different brain activation patterns that rely less on the
MLR and/or a better match between mentally imagined and actual walking times and be
used as a means of addressing FOG.

Relatively few studies have directly asked whether mental imagery training can
improve walking performance in PwP. We think that the area holds much promise and
emerging evidence supports the use of DNI for this purpose [107,130]. DNI not only
provides the combination of mental imagery and movement, it also provides participants
with mental imagery-based cues which are based on scientific information (e.g., anatomy,
biomechanics, motor control) that may help individuals with mental imagery use and
retrieval when necessary in their daily life functioning which includes gait tasks [149].
Specifically, the DNI process allows for the conversion of externally-generated cues, known
to be effective for PwP [156,157], into internally-generated ones. Internally-generated cues
are readily accessible, enhance autonomy and self-empowerment, and are known to be
effective for improving walking [71]. Furthermore, DNI delivered over multiple sessions
across multiple weeks improved mental imagery abilities as well as motor and spatial
cognitive functions relevant to gait [130]. Similarly, a 12-week program of combined visual–
kinesthetic motor imagery practice combined with physical practice proved superior to a
physical practice only condition for improving bradykinesia during the Timed Up and Go
task [141]. However, a single session of MIP with a kinesthetic emphasis did not result in
effects on gait [158]. Another study found that visual MIP was no different from relaxation
in terms of effects on gait in a 6-week intervention [159]. Clearly, the verdict is still out as
to the best mental imagery approach (including content, modality, perspective, etc.) for
use in PD rehabilitation and additional evidence is needed. Related to this, a recent survey
showed that only 60% of healthcare professionals have an awareness of mental imagery as
a strategy to address gait impairments in PD, and only 45% of them actually apply mental
imagery within their practice [160].

9. Mental Imagery to Address Balance in PD

Mental imagery could be an advantageous method for balance retraining in PwP
as it can explicitly address specific psychological (e.g., self-confidence, attentional fo-
cus, and self-efficacy) [161] and motor (e.g., center of mass, base of support, and central
axis) [162,163] determinants associated with balance. Mental imagery’s specificity was fur-
ther demonstrated via resultant brain activity which corresponded with the varying levels
of difficulty of an imaged balance task [143]. This sensitivity of mental imagery [139] adds
to its potential for specificity in balance retraining, a component previously recommended
in PD rehabilitation [97].
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Studies assessing the effect of mental imagery training on balance measures in PwP
are limited. In a study assessing the effect of group treatment of combined MIP–physical
therapy versus physical therapy only, positive trends toward improvements in balance
were noted in the combined group [141]. In a case-study of a single participant with
PD, a 3-month neurocognitive rehabilitation program involving mental imagery which
included 20 sessions (one hour each, twice per week; no further details regarding the type
of imagery were provided) resulted in improvements in balance and reduction of risk of
falls during both “OFF” and “ON” phases, as measured with the Tinetti Balance and Gait
Evaluation Scale [164]. In another study, the effect of a 2-week DNI compared to reading
and exercise interventions on balance (using self-reported questionnaires) and balance
confidence (using the Activities-Specific Balance Confidence Scale) in individuals with
mild–moderate PD [130] was examined and no significant differences between groups
were noted following the intervention. However, participants in the DNI group reported
self-perceived improvements in balance following the intervention [130].

10. Mental Imagery to Address Pain in PD

People with pain, who do not have PD, have reported vivid mental images associated
with their pain [165]. Additionally, the mental images of pain were associated with anxiety,
depression, and catastrophizing [165]. Mental imagery training has the potential to influ-
ence the sensory and emotional experience in people with pain. Volz and colleagues suggest
that mental imagery may alter motor cortex activity resulting in pain modulation [166].

Studies using mental imagery as a means for reducing pain in PwP are limited. In one
study, investigators studied the effect of DNI on mental imagery ability, PD severity, and
motor and non-motor function in PwP [130]. While participants in this study demonstrated
improvements in mental imagery ability as well as motor and cognitive functions, pain, as
measured by the Brief Pain Inventory, was unchanged [130]. However, the DNI intervention
did not specifically address pain or pain-related aspects. There is also a case report in which
a participant with PD completed 20 sessions of neurocognitive rehabilitation with motor
imagery [164]. In this intervention, the participant performed motor imagery of functional
movements (e.g., sit to stand, walking) prior to physical performance of these tasks. There is
no specific mention of mental imagery components to target pain. The participant reported,
via the Visual Analog Scale, a 5.3-point reduction in pain following the intervention. Pain
was further reduced at the 3-month follow-up visit. It is important to note that the authors
state the lower limb pain in the participant with PD was a freezing prodrome, which may
not be representative of the musculoskeletal pain experienced in PwP.

In PwP with chronic pain, the description of their pain experience may generate
mental images. Specifically, PwP may report a distorted body schema [89]. This may
extend to PwP who have LBP. Abraham and colleagues used self-drawn pelvic drawings
to demonstrate that people with PD have the ability to change their misperceived body
schema following an intensive 2-week DNI training [107]. However, whether there is
a relationship between distorted body schema and pain and whether pain changes in
response to a change in perceived body schema is unclear in PwP. Further, PwP with LBP
report that LBP impacts their ability to perform activities like standing, lifting, walking,
and sleeping [63]. It is unclear whether pain during these activities causes PwP with LBP
to generate mental images associated with that pain. Better understanding of physical,
sensory, and emotional aspects of the PwP in pain could aid the development of customized
mental imagery programs targeted at reducing pain. Much work remains to be done to
determine the type and content of mental imagery that is most effective for pain reduction
in PwP. Given that there are multiple types of pain in PwP, future work should determine
which forms of mental imagery are most effective for different pain syndromes in PwP.
Further, investigators should seek to understand how mental imagery influences the known
neurophysiologic mechanisms of pain in PwP. Despite the lack of evidence supporting the
efficacy of mental imagery to reduce pain in PD, further investigation is warranted because
it appears to be safe, low risk, and highly accessible for both PwP and therapists.
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11. Summary

Mental imagery’s mechanisms of effect involve multisensory processing and so-
matosensory integration [17,76,167,168]. As such, mental imagery may be an appropriate
therapeutic approach capable of addressing the wide array of PD-related motor and non-
motor symptoms via numerous cognitive channels, such as attentional focus and body
schema. This is especially relevant given that mental imagery ability is well-preserved
in PwP compared to older adults [90,169], although it exhibits somewhat different char-
acteristics [90,151]. Mental imagery has been attracting increasing scientific and clinical
investigation in recent years. Yet, major gaps in knowledge exist thus limiting its substan-
tial integration within PD rehabilitation. Given the limited literature, best mental imagery
practices in PD rehabilitation, including elements such as specific contents, dosage, and
mode of delivery (e.g., individual versus group sessions and face-to-face versus remote
training) are yet to be revealed. Further, tailoring mental imagery protocols to PD sub-
types (e.g., with or without FOG, with and without cognitive impairment) has yet to be
explored. Testing the suitability and short- and long-term effectiveness of different mental
imagery approaches (e.g., MIP, DNI) and characteristics (e.g., modality, perspective) in
subgroups of PwP, and to address specific motor, sensorimotor, and sensory concerns, are
important steps on the path forward if we are to utilize mental imagery to the greatest
possible advantage.
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