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Abstract

Background: Endothelial cell (EC) released microvesicles (EMVs) can affect various target cells by transferring carried
genetic information. Astrocytes are the main components of the blood brain barrier (BBB) structure in the brain and
participate in regulating BBB integrity and blood flow. The interactions between ECs and astrocytes are essential for
BBB integrity in homeostasis and pathological conditions. Here, we studied the effects of human brain microvascular
ECs released EMVs on astrocyte functions. Additionally, we investigated the effects of EMVs treated astrocytes on
regulating BBB function and cerebral ischemic damage.

Results: EMVs prepared from ECs cultured in normal condition (n-EMVs) or oxygen and glucose deprivation
(OGD-EMVs) condition had diverse effects on astrocytes. The n-EMVs promoted, while the OGD-EMVs inhibited the
proliferation of astrocytes via regulating PI3K/Akt pathway. Glial fibrillary acidic protein (GFAP) expression (marker of
astrocyte activation) was up-regulated by n-EMVs, while down-regulated by OGD-EMVs. Meanwhile, n-EMVs inhibited
but OGD-EMVs promoted the apoptosis of astrocytes accompanied by up/down-regulating the expression of
Caspase-9 and Bcl-2. In the BBB model of ECs-astrocytes co-culture, the n-EMVs, conversely to OGD-EMVs, decreased
the permeability of BBB accompanied with up-regulation of zonula occudens-1(ZO-1) and Claudin-5. In a transient
cerebral ischemia mouse model, n-EMVs ameliorated, while OGD-EMVs aggravated, BBB disruption, local cerebral
blood flow (CBF) reduction, infarct volume and neurological deficit score.

Conclusions: Our data suggest that EMVs diversely modulate astrocyte functions, BBB integrity and CBF, and could
serve as a novel therapeutic target for ischemic stroke.

Keywords: Endothelial cells, Microvesicles, Astrocytes, Blood brain barrier, Cerebral blood flow, Gene expression,
Cerebral ischemia

Background
Ischemic stroke (IS) is a main subtype of stroke causing
severe long-term disability or death. Previous studies
have suggested that blood brain barrier (BBB) disruption
is implicated in the onset and progression of IS [1, 2].
Thus, protection and maintaining BBB functions and its

integrity should be important in alleviating brain damage
after IS. However, the mechanisms regulating BBB func-
tions are not fully understood and so far, no effective
strategy is available for the management of IS induced
BBB disruption [3, 4].
Endothelial cells (ECs) and astrocytes are the main

components of BBB. Endothelial cells play an important
role in BBB function by developing a highly selective
barrier. The tight junction proteins such as claudin-5,
occludin, and zonula occludens-1 (ZO-1) existing in
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endothelial cells are the most important proteins
modulating the integrity of BBB [5, 6]. Astrocytes also
play a pivotal role in maintaining the integrity of BBB
via end-feet mediated contact-dependent mechanisms,
releasing of trophic factors and promotion of tight
junction formation [7–9]. Endothelial-astrocyte interac-
tions and signaling could be essential for BBB integrity
and homeostasis in both physiological and pathological
conditions [10]. Soluble factors such as TGFβ, GDNF,
bFGF, IL-6 and steroids secreted by astrocytes can
affect EC permeability [11]. ECs have a reciprocal in-
ductive influence on astrocytes. Brain ECs have been
showed to have a trophic influence on astrocytes by
secreting PDGF, CNTF, IGF-1 and FGF [12]. Addition-
ally, a leukaemia inhibitory factor released by ECs of the
optic nerve has been shown to induce astrocytic
differentiation [13]. However, the underlying mecha-
nisms of endothelial-astrocyte interactions are not fully
understood.
Microvesicles(MVs) are submicron membrane vesi-

cles released by various cell types in response to differ-
ent stimuli and deliver proteins and gene messages
such as mRNA and microRNA (miRNA) to the recipi-
ent cells, representing a novel way of cell-to-cell
communication [14, 15]. Our previous study has dem-
onstrated that MVs released from EPCs under stress
and apoptotic status have distinguished functions [16].
Specifically, EPCs cultured in serum deprivation (SD)
medium decreased ROS production and apoptosis and
increased eNOS and NO production of injured ECs.
While MVs released from EPCs cultured in SD medium
containing tumor necrosis factor-a (TNF-a) are func-
tionally converse on EC apoptosis and dysfunction.
MVs secreted from ECs (EMVs) have been suggested to
affect the functions of various cells, such as T cells,
endothelial cells, leukocytes and smooth muscle cells
[17–20]. However, the effects of EMVs on astrocyte and
BBB functions, and cerebral ischemic injury have not
been determined.
In this study, we investigated the effects of EMVs ob-

tained under normal and oxygen and glucose deprivation
condition on astrocytes activities including cell prolifera-
tion, apoptosis and GFAP expression, and the underlying
mechanisms were also detected. The roles of EMVs on
BBB disruption in vitro and in vivo as well as on brain
ischemic injury were further studied.

Results
The characters of EMVs
Flow cytometric analysis indicated that EMVs positively
expressed Annexin V (97 ± 1.5 %), a common marker for
MVs detection. In addition, we also found ECs specific
marker CD31 (91 ± 1.3 %) and CD144 (92 ± 1.1 %) are
highly expressed in EMVs (Fig. 1a). NTA analysis

showed that EMVs were in size of 100 nm to 400 nm,
and the concentration of EMVs were about 2.5 × 1010/
30 mL cell culture medium (Fig. 1b).

EMVs merged with astrocytes after in vitro co-incubation
After co-incubation of PKH26 labeled EMVs with astro-
cytes for 24 h, the PKH26 fluorescent was able to be
detected in the cytoplasm of astrocytes as revealed by
immunofuoresence analysis, suggesting that EMVs
merged with astrocytes (Fig. 2).

The proliferation of astrocytes was differently modulated
by n-EMVs and OGD-EMVs via the PI3K pathway
As shown in Fig. 3a–c, n-EMVs markedly increased the
proliferation (1.06 ± 0.17 of n-EMVs group vs. 0.75 ± 0.07
of vehicle; p <0.01; Fig. 3a) and GFAP expression (0.54 ±
0.03 of n-EMVs group vs. 0.39 ± 0.04 of vehicle; p <0.01;
Fig. 3b) of astrocytes, paralleled with up-regulation of
PI3K and p-Akt/Akt level (vs.vehicle; p <0.01; Fig. 3c).
However, OGD-EMVs decreased proliferation (0.49 ± 0.05
of OGD-EMVs group vs. 0.75 ± 0.07 of vehicle; p <0.01;
Fig. 3a) and GFAP expression (0.22 ± 0.026 of n-EMVs
group vs. 0.39 ± 0.04 of vehicle; p <0.01; Fig. 3b) of astro-
cytes, when companied with down-regulation of PI3K
expression, p-Akt/Akt level (vs.vehicle; p <0.05; Fig. 3c)
after 3 days incubation.
In addition, preincuabation of astrocytes with PI3K in-

hibitor (LY294002) abolished the aforementioned effects
of n-EMVs (vs n-EMVs; p <0.05; Fig. 3c), suggesting that
the beneficial effects of n-EMVs are mediated by the
PI3K pathway.

N-EMVs decreased whereas OGD-EMVs increased the
apoptosis of astrocytes via modulating the expression of
cleaved Caspase-9 and Bcl-2
Annexin V-APC/7-AAD analysis revealed that n-EMVs
decreased while OGD-EMVs increased apoptotic rate of
astrocytes (vs. vehicle; p <0.05 or 0.01; Fig. 4a, b). The
efficency of n-EMVs on decreasing astrocytes apoptosis
was about 12 %. Whereas, the apoptosis rate of astro-
cytes was increased by approximately 5 % after co-
cultured with OGD-EMVs.
In addition, we monitored the cleaved Caspase-9 and

Bcl-2 levels, which are associated with induction of
apoptosis, by western blot. Results (Fig. 4c) showed
that cleaved Caspase-9 protein expression was signifi-
cantly increased (vs. vehicle; p <0.01) but Bcl-2 protein
expression obviously decreased (vs. vehicle; p <0.01;
Fig. 4c) by OGD-EMVs treatment; whereas, n-EMVs
had opposite effects on the expressions of cleaved
Caspase-9 and Bcl-2 (vs. vehicle; p <0.05 or p <0.01;
Fig. 4c).
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EMVs pretreatment of astrocytes modulated the
permeability of in vitro BBB model and the expression of
ZO-1 and claudin-5 in ECs
As shown in Fig. 5, n-EMVs incubated astrocytes
decreased the paracelluar permeability of HBMECs exam-
ined by FITC-Dextran Flux (1.3 ± 0.14 × 10−6 cm/s of n-

EMVs group vs. 1.5 ± 0.14 × 10−6 cm/s of vehicle; p <0.05;
Fig. 5a), accompanied with the up-regulation of zonula
occudens-1(ZO-1) (vs. vehicle; p <0.01; Fig. 5b, d) and
Claudin-5 expression at protein levels (vs. vehicle; p <0.01;
Fig. 5c, d). While OGD-EMVs incubated astrocytes in-
creased the paracelluar permeability of HBMECs (1.9 ±

Fig. 2 The incorporation of EMVs with astrocytes after coculture (A) Representative images showing that EMVs merged with astrocytes. EMVs
were labeled with PKH26 (red). Nucleuses were labeled with DAPI (blue). Scale bar, 50 μm

Fig. 1 Characterization of EMVs by flow cytometric analysis and NTA. a Flow cytometric analysis showing the expression of MV specific marker
(Annexin V) and endothelial cell specific markers (CD31 and CD144) in EMVs. b NTA analysis confirmed the size distribution of EMVs
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0.17 × 10−6 cm/s of OGD-EMVs group vs. 1.5 ± 0.14 × 10
−6 cm/s of vehicle; p <0.01; Fig. 5a) accompanied with the
decrease in expression of ZO-1 (vs. vehicle; p <0.01;
Fig. 5b, d) and Claudin-5(vs. vehicle; p <0.01; Fig. 5c, d),
resulting in a discontinuous distribution of ZO-1 (b) and
Claudin-5 (c) on the membrane of HBMECs.

EMVs merged with astrocytes in brain tissue
The PKH26 labeled EMVs were injected into mice for
24 h. Astrocytes in brain tissue samples were shown by
GFAP staining. The PKH26 fluorescent was able to be
detected in the cytoplasm of the astrocytes in mouse
brains, demonstrating that EMVs could merge with
astrocytes in brain tissue (Fig. 6).

N-EMVs reduced while OGD-EMVs increased Evans blue
extravasation of BBB in tMCAO mice
BBB permeability was tested by Evans blue dye extrava-
sation at the whole brain of mice in various groups. As
shown in Fig. 7a–b, Evans blue dye extravasation in
ischemia/reperfusion (model) group was markedly
increased after 48 h reperfusion (8.4 ± 0.51 μg/g
mouse brain) compared with the sham group (vs.
sham; p <0.01; Fig. 7b), which was attenuated signifi-
cantly by n-EMVs treatment (4.8 ± 0.31 μg/g mouse
brain) (vs. model; p <0.05; Fig. 7b). However, the

extravasated evans blue in brain were significantly in-
creased in OGD-EMVs transfusion group (14.7 ± 0.81 μg/
g mouse brain) compared to the model group (vs. model;
p <0.01; Fig. 7b).

Infusion of n-EMVs decreased while OGD-EMVs aggravated
CBF reduction, cerebral injury and neurological deficits of
tMCAO mice
As shown in Fig. 8a–e, n-EMVs significantly improved
CBF (p <0.05; Fig. 8c–d), and reduced infarct volume
compared to model group (vs. model; p <0.01; Fig. 8a–b)
48 h after tMCAO following EMVs transfusion. Mean-
while, n-EMVs also reduced the neurological deficit
score (vs. model; p <0.01; Fig. 8e) at 48 h after tMCAO.
On the contrary, OGD-EMVs aggravated the cerebral in-
jury by decreasing CBF (vs. model; p <0.01; Fig. 8c–d)
and increasing infarct volume (vs. model; p <0.01;
Fig. 8a–b) 48 h after tMCAO. In addition, OGD-EMVs
also promoted neurologic deficit at 48 h after MCAO
following EMVs transfusion (vs. model; p <0.01; Fig. 8e).

Discussion
There are three major findings in this study. Firstly, we
demonstrated that n-EMVs released from normal condi-
tions increased cell proliferation, GFAP expression and
decreased cell apoptosis, while OGD-EMVs obtained

Fig. 3 The effects of n-EMVs and OGD-EMVs on astrocyte proliferation and expression of GFAP and PI3K/Akt were opposite. a MTT assay of astrocyte
proliferation. b Representative images and quantitative analysis of GFAP in each group. Scale bar, 50 μm. c Expression of PI3K and p-Akt/Akt. (**p <0.01,vs.
vehicle; +p <0.05,vs. n-EMVs, n= 5)
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from oxygen and glucose deprivation condition had
opposite effects. Moreover, we revealed that the effects
of EMVs were linked with PI3K/Akt and Bcl-2 and
Caspase-9 signaling pathways. Secondly, n-EMVs and
OGD-EMVs played different roles in regulating BBB
function via modulating the expression of Claudin-5 and
ZO-1 in ECs. Finally, in the mouse tMACO model, we
demonstrated that n-EMVs preserved BBB function and
CBF, decreased the infarct volume and neurological
deficits, whereas OGD-EMVs had opposite effects.
It’s well known that astrocytes perform a very import-

ant role in the physiology and pathology of the brain,
such as neuronal survival and cerebral repair [21, 22]. In
response to ischemic brain damage, astrocytes are acti-
vated and form a glial scar, which protects the healthy
tissue from cascading uncontrolled tissue damage.
Meanwhile, activated astrocytes produce neurotrophic
factors and take up excessive glutamine, which help to
protect neurons and reduce neuronal injury [23, 24].
Thus, it is important to identify the relevant glial mecha-
nisms in ischemic stroke.
MVs are submicron membrane fragments released from

virtually all cell types upon activation, apoptosis and stress,
which have been documented as potential biomarkers and
indicators for diseases [25, 26]. Of note, several studies

have demonstrated that MVs released from different
stimuli exert different functions to recipient cells [27, 28].
Herein, we verified that EMVs fused with astrocytes and
regulated the proliferation, apoptosis and GFAP expression
of astrocytes. Moreover, we found that the n- EMVs pro-
moted while OGD- EMVs inhibited the proliferation and
the GFAP expression of astrocytes. GFAP has been consid-
ered as a specific marker of astrocyte activation [29, 30].
These indicated that n-EMVs may help maintaining astro-
cyte function and internal environment homeostasis of the
brain, while OGD-EMVs showed opposite effects on astro-
ctyes, which may participate in the pathological processes
of ischemic damage. In fact, activation of astrocytes may
play controversial function roles in cerebral damage. For
example, astrocyte over-activation might inhibit axonal
regeneration by elevating various inhibitory molecules,
such as chondroitin sulface proteoglycans [31].
PI3K/Akt pathway participates in regulating a wide

range of cellular processes including proliferation, differ-
entiation, angiogenesis and survival [30, 32]. There is evi-
dence showing that the PI3K/Akt pathway regulates the
proliferation of astrocytes [31, 33]. Caspase-9 participates
in the initiation and execution of cell apoptosis [34]. Bcl-2,
a nuclear factor-kβ, possesses anti-apoptotic effects by
maintaining mitochondrial homeostasis [35]. In coculture

Fig. 4 The effects of n-EMVs and OGD-EMVs on astrocyte apoptosis and expression of cleaved Caspase-9 and Bcl-2. a Representative flow cytometric
analysis of astrocytes apoptosis. b Summarized data on the percentage of apoptotic astrocytes in each group. c Cleaved Caspase-9 and Bcl-2 expression
in astrocytes. (*p <0.05,**p <0.01,vs. vehicle, n= 5)
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Fig. 6 Representative images showing that injected EMVs merged with astrocytes in the peri-infarct area. EMVs labeled with PKH26 (red), and astrocytes
labeled with GFAP (green). Nucleuses stained with DAPI (blue). Magnification, 400×

Fig. 5 Treatment with n-EMVs and OGD-EMVs reversely influenced the permeability of BBB and ZO-1/Claudin-5 expression. a n-EMVs reduced
while OGD-EMVs increased the permeability of BBB. b, c Representative images of ZO-1 (b) and Claudin-5 (c) staining on HBMECs. Scale bar,
50 μm. d Western blot analyses of ZO-1 and Claudin-5. (*p <0.05, **p <0.01, vs. vehicle, n = 5)
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experiments, we found that n-EMVs promoted astrocyte
proliferation while OGD-EMVs produced opposite effects
on astrocytes, which were abrogated by PI3K inhibitor
LY294002. In addition, our results demonstrated that
n-EMVs reduced astrocyte apoptosis paralleled with

decreased protein expression of cleaved Caspase-9 and in-
creased Bcl-2 expression, while OGD-EMVs promoted
astrocyte apoptosis accompanied with up-regulation of
cleaved Caspase-9 and down-regulation of Bcl-2.
These data suggested that regulation of the PI3K/Akt

Fig. 8 Effects of EMVs on infract area, neurological deficits score and CBF. a–b Representative brain TTC staining and quantitative analysis of
infarct size in different groups. c–d The representative images and analysis of CBF in different groups. Blue to red represent low to high perfusion.
e Neurological deficits score in different groups. (*P <0.05, **p <0.01 vs. model group, n = 5)

Fig. 7 N-EMVs reduced while OGD-EMVs promoted evans blue extravasation in tMCAO mice. a The representative pictures of Evans blue extravasation
in ischemic right brains of various groups. b The quantitative analysis of Evans blue leakage. (*p <0.05, **p <0.01,vs. model group, n = 5)
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pathway and Caspase-9/Bcl-2 pathways could be the
underlying mechanisms of EMVs in control of astro-
cyte proliferation and apoptosis. Of note, our data re-
vealed the counteractive functions of n-EMVs and
OGD-EMVs. Similar situations have been previously
reported by others [36] and us [16]. It could be re-
lated to their differences in their carried messages as
suggested by these reports [16, 36]. Nevertheless, the
differences of the cargo contents existed between n-
EMVs and OGD-EMVs need further exploration.
Astrocytes are the main cell components of BBB struc-

ture and participate in maintaining BBB integrity and pro-
tecting the brain from various damage attacks [37, 38]. In
order to confirm the role of n-EMVs and OGD-EMVs in
BBB function, we constructed transwell-based BBB in
vitro model. In the in vitro BBB model, we found that n-
EMV treatment improved the BBB function by increasing
tight junction proteins Claudin-5 and ZO-1 expression in
HBMECs, which are the most important components for
endothelial cell barrier integrity [39, 40]. However, OGD-
EMV treatment increased the permeability of BBB and
reduced the tight junction proteins Claudin-5 and ZO-1
expression in ECs.
We advanced our in vitro studies on EMVs to in

vivo study in the mouse tMCAO model. BBB disrup-
tion is involved in various brain injuries, such as
intracranial hemorrhage, ischemic stroke and cerebral
trauma [41–43]. Moreover, BBB disruption increases
cerebrovascular permeability, allowing the entrance of
inflammatory factors and leukocytes into the brain
parenchyma which in turn contributed to secondary
brain injury [44, 45]. In this study, we generated BBB
in vivo disruption from focal transient ischemic
stroke, and the degree of BBB disruption is assessed
by evens blue extravasation. Our results showed that
n-EMVs decreased while OGD-EMVs increased the
evens blue exravasation after the focal transient ische-
mic stroke induced BBB disruption, which consistent
with the effects of EMVs on in vitro BBB model.
These results suggested that EMVs could regulate as-
trocytes activities and consequently modulate BBB
functions. And EMVs released under different condi-
tions may exert opposite roles.
Ischemic brain damage is an extremely complex multi-

factors pathological process accompanied with structural
and functional changes of BBB [46]. Many factors, such
as plasmin, gelatinases, free radicals, inflammatory fac-
tor, vasoactive substances, neuroglia and so on, are in-
volved in the control of BBB permeability, implying in
ischemic cerebral injury [47, 48]. In this study, we fur-
ther determined the effects of EMVs on ischemic injury
by intravenous infusion of n-EMVs or OGD- EMVs into
C57 mice after tMCAO surgery. We found that n-EMVs
improved CBF and protected brain from ischemic injury.

On the contrary, OGD-EMVs showed deleterious effects
(increasing the infarct volume and neurological deficit
score, decreasing CBF). CBF is essential for brain oxygen
supply, and brain ischemic injury is closely related to
reductions in CBF [49]. Decreased CBF is the most
important indicator of ischemic stroke [50]. Astrocytes
have been shown to be involved in the regulation of CBF
by mediating vasodilation [51]. Thus, the beneficial ef-
fects of n-EMVs on astrocyte function may contribute to
the CBF preservation and subsequently ameliorated
ischemic injury. While the deleterious effects of OGD-
EMVs on astrocytes may compromising the CBF. Col-
lectively with our in vitro findings, we suppose that BBB
integrity and function and CBF regulation might be one of
the mechanisms underlying the effects of n-EMVs and
OGD-EMVs on cerebral ischemic injury [52]. Neverthe-
less, more studies on the dosage and timing of their
administration, and detailed mechanisms are needed.

Conclusion
In conclusion, the present study demonstrates that n-
EMVs and OGD-EMVs have opposite effects on regulat-
ing astrocyte activities and BBB integrity via regulating
the PI3K/AKT and Caspase-9/Bcl-2 signal pathways and
that n-EMVs and OGD-EMVs have differently impacts
CBF and cerebral ischemic damage, which could offer
novel therapeutic strategies for ischemic stroke and BBB
disruption related diseases.

Methods
Animals
Adult male C57BL6/J mice (6–8 weeks, 20–24 g) were
used for the study. The animal protocol was approved
by the Ethics Committee of the First Affiliated Hospital
of Guangdong Medical College in accordance with the
guidelines of the National Institutes of Health (NIH) on
the care and use of animals.

Cell culture
Human brain microvescular ECs were obtained from
Shanghai Bioleaf Biotech Co. Ltd, and human astrocytes
were purchased from Guangzhou Jennio Biotech Co.,
Ltd. The cells were cultured on 100-mm cell culture
dishes in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10 % fetal bovine serum (FBS,
GiBCO) containing 100 U/ml of penicillin G and
100 mg/ml of streptomycin, in a 37 °C incubator with
humidified atmosphere of 5 % CO2/95 % air.

Preparation and characterization of EMVs
EMVs were generated from human brain microvescular
ECs under normal condition culture medium (n-EMVs)
or oxygen and glucose deprivation culture medium
(OGD-EMVs). In brief, ECs were cultured in 100-mm
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cell culture dishes. When cells grow to 80 % confluence,
cells were washed with PBS and cultured in fresh growth
culture medium or glucose deprivation medium under
oxygen deprivation condition (1 % O2) for 24 h. Then
the cell medium was collected and centrifuged at 300 g
for 15 min, and followed by 2000 g × 30 min to remove
cells and cell debris. The cell-free culture medium was
centrifuged at 20,000 g for 2 h to pellet EMVs [53, 54].
The protein concentration of EMVs was quantified by
the bradford method (beyotime, china). A concentration
of 50 μg/mL EMVs was used for coculture experiments.
The size distribution of the EMVs was confirmed by
Nanoparticle Tracking Analysis (NTA). EMVs were also
analyzed by flow cytometry as previously reported [55].
In brief, EMVs were resuspended and respectively incu-
bated with Alexa-488-labeled Annexin V, PE-conjuated
CD144 and CD31 for 15 mins at 4 °C in the dark. Non-
specific isotype antibodies served as negative controls.
All antibodies were purchased from eBioscience (San
Diego, CA).

Coculture assay of EMVs with astrocytes
EMVs were labeled with PKH26 (261026 M; Sigma-
Aldrich, St. Louis, MO) according to the manufacturer’s
protocol with some modifications [56]. In brief, EMVs
were labeled with 2 μM PKH26 (261026 M; Sigma-
Aldrich, St. Louis, MO) at room temperature (RT) for
5 min [57]. An equal volume of 1 % bovine serum albu-
min (BSA) was added to stop staining. EMVs were then
ultracentrifuged and resuspended with culture medium.
The PKH26 labeled EMVs were added to astrocytes
seeded in glass bottom plate for 24 h incubation (37 °C,
5 % CO2). Cell nuclei were then stained with DPAI (1 μg/
ml; Wako Pure Chemical Industries Ltd). The interaction
between EMVs and astrocytes was examined under fluor-
escence microscope (Laica, TCS SP5II, Germany).

Cell proliferation assay
Proliferative capability of astrocytes was tested by MTT 3-
[4,5-dimethylthiazyol-2yl]-2,5-diphenyltetrazolium brom-
ide) (Sigma, 5 mg/ml) assay [58]. Astrocytes were seeded
at 1.5 × 103/96-well plate and cultured in 100 μL DMEM
(supplemented with 10 % FBS) with n-EMVs, OGD-EMVs
or vehicle (PBS). MTT solution (20 μL) was added and in-
cubated with cells for 4 h at 37 °C, then 150 μL DMSO
was added to each wells and incubated with the cells for
20 min at 37 °C. The optical density (OD) value of cells
was read at 490 nm in a microplate reader (BioTek, USA).
Measurement was carried out on day 3 after the incuba-
tion. The experiment was repeated three times. Results
were calculated from the values gained in three independ-
ent experiments. For pathway blocking experiments, cells
were pre-incubated with LY294002 (20 μM) for 2 h.

Annexin V-APC/7-AAD staining analysis of cell apoptosis
Cell apoptosis was analyzed by annexin V-APC/7-AAD
staining as previously described [58]. In brief, the serum
deprivation medium was used for inducing apoptosis
[59]. Cells of each group seeded on sterile cover glasses
were placed in 6-well plates for culture in DMEM
medium supplemented with vehicle (PBS), n-EMVs or
OGD-EMVs for 24 h. The apoptosis assay of atrocytes
was conducted with using an Annexin V-APC/7-AAD
apoptosis detection kit (BD Biosciences). Briefly, cells
were washed with PBS, resuspended with 100 μL 1 ×
annexin-binding buffer, incubated with 5 μL APC-
conjugated Annexin V and 5 μL 7-Amino-actinomycin
(7-AAD) for 15 min in the dark, then analyzed by flow
cytometry. Cells stained with both Annexin V-APC and
7-AAD were considered to be late apoptotic astrocytes,
and the cells stained only with Annexin V-APC were
considered to be early apoptotic astrocytes. The experi-
ment was repeated three times, and three plates per
experiment were analyzed in each group.

Paracellular permeability assay of in vitro BBB model
Paracellular permeability assay of BBB was conducted
as previously described [60]. Briefly, astrocytes were
seeded at a density of 5 × 104 cells/well in 1 mL
medium under the bottom chamber of 24-well plate.
After cells grown to 80 % confluence, PBS, n-EMVs
or OGD-EMVs were added to the bottom chamber
and co-cultured with astrocytes. After 24 h co-
culture, the culture medium will be replaced with
fresh medium. Before astrocytes seeded, ECs were
seeded at a density of 2 × 104 cells/well in 300 μL
medium onto polycarbonate 24-well transwell cham-
bers with a 0.4 mm mean pore size and a 0.3 cm2

surface area (Millicell Hanging Cell Culture Inserts,
USA) to form EC barrier. Continuous permeability of
ECs was detected for 7 days to determine the timing
of EC barrier formation. On day 3 (the day before the
barrier formation), the transwell chambers were trans-
fered to EMVs treated astrocytes to compose in vitro
BBB model. After 24 h ECs-Astrocytes co-culture,
flux of FITC-conjugated dextran (FITC-dextran,
10 kDa, Sigma) across HBMEC monolayer was used
to measure the paracellular permeability. HBMECs
were incubated with FITC-dextran (1 mg/mL) in
HBSS buffer for 90 min. Thereafter, relative fluores-
cence passed through the chamber (in the lower
chambers) was determined by using EnSpire Manager
(PerkinElmer Company, USA) multimode plate reader
at an excitation wavelength of 485 nm and an emis-
sion wavelength of 535 nm. Restriction of paracellular
transport was determined by analyzing the apparent
permeability coefficient (Papp) for FITC-dextran
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across the cells. Papp was calculated by the following
equation

Papp ¼ dQ
dt

⋅
1

A⋅C0⋅60
cm=sð Þ

where dQ/dt is the amount of FITC transported per
minute (ng/min), A is the surface area of the filter (cm2),
C0 is the initial concentration of FITC(ng/ml) and 60 is
the conversion from minutes to seconds [61, 62].

Immunofluorescence assay for tight junction proteins
Astrocytes were seeded at a density of 2 × 105 cells/well
onto a 6-well plate. Then the confluent astrocytes were
cultured with PBS, n-EMVs and OGD-EMVs. After 24 h
co-culture, culture medium will be replaced with fresh
medium and cells will be cultured for another 24 h.
Then, the culture medium was harvested and used to
culture HBMECs seeded at the bottom of wave plates.
Immunofluorescence assay for tight junction proteins of
HBMECs was performed as previously described [63].
HBMECs were incubated with fluorescein isothiocyanate
(FITC)-conjugated primary antibodies(Claudin-5, 1:50;
ZO-1, 1:50) over night at 4 °C Then, cells were washed
triple using wash buffer and incubated with dye for F-
actin (Rhodamine Phalloidin, 1:1000) for 1 h at room
temperature. DAPI (1:1000) was used for staining cellu-
lar nuclear. The cells were washed for three times and
observed under a fluorescence microscope (Laica, TCS
SP5II, Germany).

Western blot analysis
Astroctyes were harvested after co-cultured with PBS, n-
EMVs or OGD-EMVs, HBMECs were harvested for tight
junction protein expression detection. Cells were lysed
in ice-cold RIPA (Applygen Technologies Company,
Beijing) containing protease for western blot analysis,
total cell proteins (40 μg) extracted from each group
were separated by 12 % SDS-PAGE on tris-glycine gels
(Invitrogen) and transferred to polyvinylidene difluoride
membranes (Millipore Corp, Bedford, MA). After block-
ing at room temperature (RT) in TBS (50 mM Tris,
150 mM NaCl, pH 7.6, 5 % fat-free dry milk) for 1 h, the
membranes were washed in TBST (0.5 % Tween 20 in
TBS) at RT. Primary antibody was added over night at
4 °C. Following extensive washing, membranes were in-
cubated with secondary antibody (1:50,000, EarthOx,
San Francisco, CA, USA) for 1 h at RT. After washing 3
times for 30 min with TBST, the immunoreactivity was
visualized by ECL solution (Amersham, Sweden). Beta
actin (1:1000, EarthOx, San Francisco, CA, USA) was
used to normalize protein loading. The following pri-
mary antibodies were used: GFAP (1:500, Santa, USA),
Caspase-9 and Bcl-2(1:1000, CST, USA), PI3 kinase

p110a (1:1000, CST, USA), Akt (1:1000, CST, USA), p-
Akt (1:1000, CST, USA), Claudin-5(1:1000, Invitrogen,
USA), ZO-1(1:1000, Invitrogen, USA).

Transient middle cerebral artery occlusion model in mice
Transient ischemia induced by middle cerebral artery
occlusion (tMCAO) surgery was performed as previously
described [64, 65]. Briefly, mice were anesthetized with
2.5 % isoflurane inhalation, and body temperature was
maintained at 37 ± 0.5 °C through a thermostat-controlled
heating pad. The left common carotid artery, external ca-
rotid arteries (ECA) and internal carotid artery (ICA) were
isolated and ligated. A 2.0 cm length of monofilament
nylon suture (size, 7–0), with its tip coated with silicon
resin, was inserted from the right ECA into the lumen of
ICA, then advanced until resistance was felt (0.8–1.0 cm
from the bifurcation). Reperfusion was initiated by with-
drawal of the monofilament after 90 min occlusion. Sur-
geries were finished and animals were placed back into
their cages. Pain and discomfort were minimized by an
initial injection of buprenorphine (0.1 mg/kg, sc) and
Carperofen (5 mg/kg, sc) followed with another Carpero-
fen injection every 24 h.

Animal experimental design
Mice were included and randomly divided into Sham
group, model group, n-EMVs group and OGD- EMVs
group. In model group, mice were operated with
tMCAO surgery. The sham-operated mice underwent
the same procedure, except that the monofilament was
inserted. The n-EMVs group or OGD- EMVs group were
respectively treated with 50 μg n-EMVs or OGD- EMVs
in 100 μL PBS via tail intravenous injection after 30 min
of tMCAO surgery. The various groups of mice were
subjected to the subsequent measurements of evans blue
extravasation, cerebral blood flow, infarct volume and
neurological deficits. All experiments were approved by
the Laboratory Animal Care and Use Committees at
Guangdong Medical University in accordance to the
Guide for the Care and Use of Laboratory Animals
issued by the National Institutes of Health.

Evans blue extravasation
BBB injury of mice (n = 32) in each group was evaluated
48 h after tMCAO by Evans blue dye [66]. In brief, 4 %
of evans blue dye (Sigma-Aldrich, StLouis, MO, USA) in
0.9 % saline (2 mL/kg) was injected into the tail vein.
Three hours later, mice were sacrificed. For observation
of evans blue extravation, the mouse brains were re-
moved quikly and sliced into five 2 mm-thick coronal
section. Injured brain tissue was dyed blue. For measuring
the amount of extravasated evans blue, the mouse brains
were homogenized in 1 mL of 50 % trichloroacetic acid
and centrifuged. And then the supernatant was diluted
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four-fold with ethanol. A fluorescent plate reader (620 nm
excitation and 680 nm emission) was used to determine
dye concentrations. The amount of extravasated Evans
blue was expressed as nanograms per brain.

Immunofluorescence microscopy analysis of EMVs-
astrocytes fusion on brain slices of tMCAO mice
The PKH26 labeled n-EMVs (50 μg in 100 μl PBS) were
injected into mice for 24 h. After that, brains were dis-
sected from mice and frozen in liquid nitrogen. Frozen
brains were cut into 20-μm-thick sections using a cryo-
stat. The sections were mounted on coverslips, air dried,
treated with 0.2 % Triton-100 for 15 min at room
temperature, and then fixed in stationary liquid at 4 °C for
30 min. After washing with scrub solution, and incubated
with primary antibodies (GFAP 1:5000, abcan, USA) at 4 °C
for the night, sections were incubated with secondary
antibodies for 30 min. After rinsing with scrub solution,
the sections were embedded on the microscope stage.
Images were obtained using immunofluorescence micro-
scope equipped with a UPlanApo × 40 objective lens.

Measurement of cerebral blood flow
Forty-eight hours after tMCAO following EMVs or PBS
transfusion, the CBF of mice (n = 32) from various
groups was determined by the PeriCam PSI System
(perimed, Sweden) as previously described [67–69].
Briefly, mouse was anesthetized with 2.5 % isoflurane
and placed on a stereotaxic apparatus. A crossing skin
incision was made on the head to expose the whole
skull. PeriCam PSI System scanning (2.0 × 1.4 cm) was
performed on the intact skull for approximately 1 min.
The mean blood perfusion of the ischemic hemisphere
was analyzed with the soft ware (Pimsoft).

Measurements of infarct volume and neurological deficits
Cerebral damage was measured using 2 % 2,3,5-triphenyl-
tetrazolium chloride (TTC) staining as described previ-
ously [70]. Briefly, the brains of mice (n = 32) from each
group were quickly removed and sliced into five coronal
sections (2 mm thick). Then the slices were stained with
2 % TTC for 15 min at 37 °C. The infarct area and total
area were measured by Image J (Bethesda, MD, USA) soft-
ware and the percentage of infarct area was calculated.
The 5-point scale method was used to evaluate the

neurological deficit scores as we previously described
[71]. The neurological deficit scores were determined by
five points scale: 0, normal motor function; 1, flexion of
contralateral torso and forelimb upon lifting the whole
animal by the tail; 2, circling to the contralateral side but
normal posture at rest; 3, leaning to the contralateral
side at rest; 4, no spontaneous motor activity. The
neurologic behavior of mice was scored by an investiga-
tor who was unaware of animal grouping.

Statistical analysis
Data were expressed as mean ± SEM. Comparisons for
two groups were performed by using Student’s t-test
(GraphPad Prism 5 software). Multiple comparisons
were performed by one-way ANOVA. p-values <0.05
were considered to be significant.
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Additional file 3: Availability of data for apoptotic rate, cleaved caspase-9
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