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Abstract: Slip-induced falls are among the most common causes of major occupational injuries and
economic loss in Canada. Identifying the risk factors associated with slip events is key to developing
preventive solutions to reduce falls. One factor is the slip-resistance quality of footwear, which is
fundamental to reducing the number of falls. Measuring footwear slip resistance with the recently
developed Maximum Achievable Angle (MAA) test requires a trained researcher to identify slip
events in a simulated winter environment. The human capacity for information processing is limited
and human error is natural, especially in a cold environment. Therefore, to remove conflicts associated
with human errors, in this paper a deep three-dimensional convolutional neural network is proposed
to detect the slips in real-time. The model has been trained by a new dataset that includes data
from 18 different participants with various clothing, footwear, walking directions, inclined angles,
and surface types. The model was evaluated on three types of slips: Maxi-slip, midi-slip, and mini-slip.
This classification is based on the slip perception and recovery of the participants. The model was
evaluated based on both 5-fold and Leave-One-Subject-Out (LOSO) cross validation. The best accuracy
of 97% was achieved when identifying the maxi-slips. The minimum accuracy of 77% was achieved
when classifying the no-slip and mini-slip trials. The overall slip detection accuracy was 86% with
sensitivity and specificity of 81% and 91%, respectively. The overall accuracy dropped by about
2% in LOSO cross validation. The proposed slip detection algorithm is not only beneficial for
footwear manufactures to improve their footwear slip resistance quality, but it also has other potential
applications, such as improving the slip resistance properties of flooring in healthcare facilities,
commercial kitchens, and oil drilling platforms.

Keywords: slip detection; injury prevention; deep neural network; convolution; spatiotemporal
feature extraction

1. Introduction

Falls are among the leading causes of injuries, especially in the older adult population. Falls result
in 646,000 deaths per year globally and pose significant financial burdens on healthcare systems [1–4].
Falls are induced by loss of balance that is often generated by external perturbations [5]. One of the
most prevalent perturbations is slipping, which occurs at the shoe and floor interface when the required
walking friction exceeds the existing friction provided by the interface [6–8]. Slip-related falls can lead
to serious medical complications such as hip fractures and traumatic brain injuries, which contribute
to limitations in independent living and lower quality of life [2,9,10]. Slip-resistant footwear can play
an important role in preventing slip-induced falls [5–8]. However, the current standards for measuring
the slip resistance of winter footwear are inadequate and have poor biofidelity [2,9,10]. This makes it
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difficult for footwear manufacturers to optimize their outsole designs and materials properly and to
inform clients of footwear performance. Our lab at the KITE Research Institute (Toronto Rehabilitation
Institute, University Health Network) introduced a novel human-centered approach called Maximum
Achievable Angle (MAA) for testing winter footwear. This test is based on the maximum slope angle
that the participant can walk on without slipping [2]. Currently, a trained human observer identifies
when slips occur during the test. Although the MAA test shows promising results [11], it is critical to
replace human observers with a more reliable and higher-resolution system to assess slips automatically
in real time. Based on our current testing experiment, testing five pairs of boots will take about an hour
in WinterLab and the observer needs to stay in the cold environment, continuously. Therefore, the rate
of errors likely increases over time. In addition, different observers have different learning curves
that affect testing results. Using an automated detection system will remove conflicts associated with
human errors for slip detection and all footwear will be evaluated with a single consistent algorithm.
Since cameras are already in use in the current MAA protocol, it is convenient to use the video data and
develop a vision-based solution for this problem. Therefore, the main goal of this paper is to propose
a novel deep learning approach to detect slips in real time. Although this new technique can be used
in different contexts e.g., monitoring slip accidents in healthcare centers, homes, commercial kitchens,
etc., our specific research problem in this paper is to improve the current footwear testing protocol
where the detection of slips is an integral part of the algorithm.

2. Literature Review

Very few studies were found on slip detection methods, especially on icy surfaces. One reason
might be the scarcity of reliable datasets, which is a main obstacle for the development of machine
learning models. Okita developed an algorithm for slip detection in robots using Inertial Measurement
Units (IMUs). The algorithm was tested on dry and contaminated surfaces [12]. A false negative rate
of 20% to 40% and a false detection rate of 5% to 15% were reported in a level walking experiment.
Lim et al. presented a slip and trip detection method using a smart phone in the participant’s pocket
with data collected in a simulated construction jobsite [13]. Although the device showed 88% accuracy
for slip detection, their data were limited to only three workers and 49 simulated slips on a contaminated
surface. Trkov et al. [14] proposed an algorithm using five IMUs attached to the lower limb of a single
subject. They used a dynamic model for detecting slips in human walking. No numerical accuracy
was reported in this paper. Trkov et al. [15] also recently proposed another threshold-based method for
slip detection and slipping distance estimation using force sensors and five IMUs. Eight participants
were recruited to walk on a wooden platform covered by a soap film to generate slippery conditions.
They compared the signals from IMUs with motion capture; however, no detection rate was reported
in this paper. Hirvonen et al. [16] proposed a technique to detect sudden movements caused by
slips and trips. This method was based on measurements of horizontal acceleration of the trunk.
Twenty participants were recruited to walk on an 8 m long contaminated platform to generate 38 slips.
They detected 22 out of 38 slips without reporting the false alarm rate. The limitation of this study is
that they only detected the slips with a slip distance greater than 5 cm. An insole sensor system was
presented by Lincoln et al. [17] to detect the slips using a threshold-based algorithm. For a specific user,
the proposed system should be iteratively calibrated to provide a greater than 90% slip detection rate.
Recently, Cen [18] proposed a slip detection algorithm with 91% accuracy using nine motion capture
reflective markers. Nine healthy adults walked on different slope angles on icy surfaces. Albeit useful,
this method can only be used in a lab environment equipped with a 14-camera passive motion tracking
system. In addition, the motion capture data are often noisy and incomplete because of calibration
error, poor sensor resolution, incorrectly affixed markers, or occlusion due to body parts or clothing.
Therefore, much time and effort are required to clean the motion data prior to use.

All these previous studies have some limitations such as the low number of participants,
the small size of the dataset and a large number of sensors (e.g., five IMUs), which affect the usability,
cost of the system, and possibly high false alarm rates. Most of the studies are based on wearable
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technology [19–21], which might affect the normal gait pattern of the participants in our application.
Although there exists no previous vision-based approach to detect slip events, vision-based approaches
have been used in human action recognition. For example, Liu et al. [22] proposed a Hierarchical
Clustering Multi-Task Learning (HC-MTL) method that alternates between learning and relatedness
discovery, iteratively. Their proposed method realized joint action recognition and task grouping.
They evaluated their model using realistic datasets such as HMDB51 [23] and UCF101 and showed that
the HC-MTL method outperformed other methods for both action grouping and recognition. In addition,
Min et al. [24] proposed a Multi-Objective Matrix Normalization (MOMN) method for fine-grained
visual recognition. Their proposed system can simultaneously normalize a bilinear representation
in square-root, low-rank, and sparsity. They evaluated the system using five benchmark datasets,
including the MPII human pose dataset [25], for which the system achieved a Mean Average Precision
(mAP) of 34.3%. These studies are just a few examples in human action recognition. However, to date,
there exist no vision-based methods for slip detection, specifically. Therefore, in this paper, for the first
time, a novel vision-based deep learning method is proposed to detect the slips in real time. The system
was trained by data from 18 participants walking uphill and downhill on two types of ice surfaces
(dry and wet) with different slope angles. Although the model was mainly developed to improve the
MAA method in ranking the winter footwear, it could also be readily applied in other areas where slip
incidence is important, such as hospitals, commercial kitchens, and oil drilling platforms.

To summarize, the novelty of this paper is to first provide a new dataset of slip and no-slip events
considering different types of footwear, walking directions, slope angles, and different types of ice with
real, human participants. In our dataset, the participants were asked to walk normally without any
interference on their normal walking pattern. The second contribution is the proposed deep learning
model, which to our knowledge has never been used for this specific application.

3. Materials and Methods

3.1. Testing Methodology

In 2015, researchers at KITE Research Institute, Toronto Rehabilitation Institute (TRI) established
a new testing method that measures the maximum achievable incline during walking on icy surfaces.
This angle was used to measure the Coefficient of Friction (COF) values for each footwear [2,9].
This human-oriented protocol is run in WinterLab, which has an ice floor, a snow maker, and air and
ground temperature controllers. This self-contained winter environment can be tilted to progressively
greater inclines from 0◦ to 15◦ as participants walk up and down slopes to test footwear. In WinterLab,
we can simulate two types of ice surfaces: Wet/melting ice and dry/bare ice. In the wet ice condition,
the air temperature is held to between 7 ◦C and 10 ◦C while the ice surface temperature is held between
−0.1 ◦C and 0.8 ◦C. This condition simulates the situation where there is a very thin layer of water on
the ice. For the dry ice condition, the air temperature is between 2.5 ◦C and 3.5 ◦C with the surface
temperature between −4 ◦C and −3.5 ◦C, which simulates a colder winter day. The temperature of
the ice is controlled using glycol pumped through tubes below the ice surface. Figure 1a,b shows the
outside and inside the WinterLab, respectively. Participants are secured with a harness attached to
a fall-arrest system connected to a robotic overhead gantry that follows the position of the subjects to
maintain itself directly above them. This system minimizes the risk of injury from falling in the event
of a slip-and-fall incident. In the current footwear testing protocol, the slope angle of the walkway
is progressively increased by 2◦ until the first failure. An angle is considered as the fail angle if
the participant could not initiate gait or if both feet slipp simultaneously while traversing the slope.
Thus, an angle is considered as the MAA if the participant can walk successfully on two out of three
trials at this angle, and the participant fails on two out of three trials at the (angle + 1)◦ [26]. In this
protocol, a trial is defined as a single walk up or down in WinterLab. Separate outcomes are recorded
for the uphill, downhill, dry, and wet ice conditions. The slips are detected by a trained human observer
who sits inside the lab.
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Figure 1. WinterLab at the KITE Research Institute (a) outside view and (b) inside view (glycol pumped
through tubes below the ice surface).

3.2. Data Collection

A GoPro Hero 3 camera with 30 fps was used to record a sample of 360 trials with a balanced
distribution of the two classes (pass/fail). The data were collected from 18 participants (10 Males and
8 Females) wearing 20 different styles of winter footwear shown in Figure 2. The demographic
information of the participants is listed in Table 1. Exclusion criteria included people with
musculoskeletal and cardiopulmonary disorders, orthopedic disease, and any other condition that
would affect mobility.Sensors 2020, 20, x FOR PEER REVIEW 5 of 16 
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Table 1. Participants’ demographic information.

Subjects ID Gender Age Height (cm) Weight (kg)

sub1 M 35 175 75
sub2 M 21 165 54
sub3 M 20 183 75
sub4 M 21 172 70
sub5 M 35 175 75
sub6 M 20 188 82
sub7 M 25 188 93
sub8 M 21 177 71
sub9 M 23 188 106

sub10 F 22 162 54
sub11 F 21 167 55
sub12 F 21 165 54
sub13 F 22 162 54
sub14 F 21 155 62
sub15 M 30 192 56
sub16 F 23 179 84
sub17 F 26 170 62
sub18 F 32 167 66

Ethics approval for the study was obtained from the KITE-TRI-UHN Research Ethics Board,
and participants gave written informed consent prior to study participation. Most of the recorded videos
lasted from 100 (~3 s) to 300 (10 s) frames in total. Despite inevitable fish-eye effects by GoPro cameras,
a relatively narrow Point of View (POV) had been applied to the camera to offset such perspective
distortion. In this paper, our model will classify the types of slip into: Maxi-slips (hazardous), midi-slips,
and mini-slips while the other class represents normal walking. This classification is based on the slip
perception and recovery of the participants. During mini-slips, the participants did not feel the slip
events but the trained human observer could recognize them after checking the videos frame by frame.
During midi-slips, the slips events were recovered without major gait disturbances and in maxi-slip events,
the slip recovery involved large corrective responses and the participants were close to a fall [27,28].

3.3. Neural Network Architecture

For our video binary classification problem, we have used a pre-trained model proposed by
Carreira et al. in [29]. This model, called “Inflated 3D ConvNets” (I3D), has been used in the action
recognition dataset, with 71.1% accuracy in classifying 400 types of human actions with RGB data only
(RGB-I3D) [30]. After pre-training on ImageNet and Kinetics, RGB-I3D models provided accuracy of
95.6% and 74.8% on UCF-101 [30] and HMDB-51 [23] datasets, correspondingly. The applied I3D model
was based on the Inception-v1 with batch normalization [31] with inflating filters, and pooling kernels
into 3D (see Figure 3). The final model consists of a very deep, naturally spatiotemporal classifier [29].
Particularly in Figure 3, features are extracted from video inputs with max pooling operations and
convolutional kernels with different sizes, resulting in a simple yet effective parameter selection.

Since this model showed promising results in classifying different types of human actions using
video files, in this paper, we have used the RGB-I3D network, which takes advantage of pre-training
on both ImageNet and Kinetics. The performance of the pre-trained models by Kinetics was higher
than previous 3D ConvNets (C3D), although C3D was trained on a larger number of video files [29],
and even when combined with Improved Dense Trajectory (IDT) [29]. This may be due to a better
quality of Kinetics and the I3D architecture.

With OpenCV, we uniformly extracted 64 frames out of each sample with 224 × 224 resolution.
The preprocessed data were then used to retrain the I3D Neural Network based on the pre-trained
weights from ImageNet and Kinetics. In particular, low-level motions at human posture in our dataset
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are the key characterization of the slip events. This property should be taken into account for feature
learning and inference throughout the deep convolutional architecture of I3D.
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3.4. Experiment Setting and Model Configuration

The performance of the proposed model is evaluated based on five different experiments as follows:

1. 60 trials of maxi-slips and 60 no-slip trials,
2. 60 trials of midi-slips and 60 no-slip trials,
3. 60 maxi-slips, 60 midi-slips and 120 no-slip trials,
4. 60 mini-slips and 60 no-slip trials,
5. 180 slips of all three types and 180 no-slip trials.

A sample of mini-slip is presented in Figure 4. The slip starts from the 2nd frame on the right
foot and lasts for five frames on the dry ice surface. This example is from sub2′s trial when wearing
F8. Note that the no-slip trials are the same for scenarios 1, 2, and 4. To summarize, we arranged
scenarios with individual subsets of slip data, a scenario with full data, and one with fair detection,
in experiment 3. We ran the RGB-I3D pre-trained model for binary classification for each scenario.
Considering the small-scale training data, we used 5-fold cross validation to evaluate the performance
of each model for all scenarios. As our goal is essentially to classify slip and no-slip activities, a binary
cross entropy is introduced as the loss function as follows:

f (x) = −
1
N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (1)

where N is the training sample size, yi is the ground truth label for the class slip and no-slip, as 0 and 1,
respectively, and ŷi denotes the corresponding predicted value. We seek to minimize this loss function
during the training regime. The smaller the difference between the true label and the probability,
the lower the loss function is. In this paper, Adaptive Moment Estimation (Adam) [32] was used as the
optimizer, which uses estimations of the first and second moments of gradient to adapt the learning
rate for each weight of the neural network. Different publications [33,34] showed the feasibility of
Adam to tackle problems on transfer learning. However, in experiment 4, the standard Stochastic
Gradient Decent (SGD) [35] yielded a better and more consistent result than Adam.

In experiment 4, we aim to detect the mini-slips that are very close to no-slip trials. When confronted
with this challenge, the infrequent large gradients that induce a large update to the weights will
be phased out quickly with the exponential moving average algorithm in Adam, leading to poor
convergence [36,37]. The learning rate has been set to 0.001 for all experiments.

To prevent overfitting, we used a dropout layer and an early stopping mechanism, which terminates
the training process automatically once the loss function stops improving after a pre-determined
number of epochs (patience). We empirically set the patience value to be 5 epochs in experiments 1–3.
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Due to the significant resemblance for the two classes in experiment 4, the patience value was set to 10
in this scenario, and accordingly set to 8 in experiment 5, which comprises the entire dataset.
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frame and lasts for five frames on the right foot.

4. Results

4.1. Data Analysis

We developed a very first slip detection dataset of 360 video clips with a balanced distribution
of slips (180 trials) and no-slips (180 passed trials). In our testing procedure, 18 participants wore
20 different footwear between sessions. Footwear anti-slip characteristics (Coefficient of Friction
(COF)) are mainly ascribed to the outsole technology, design, and material. Figure 5 illustrates the
total number of mini, midi, and maxi slips considering different ice conditions, angles, and walking
direction. All slips occurred at angles greater than 5◦ and the maxi-slips started from slope angle 8◦.
The maxi-slips mostly occurred in walking downhill (Figure 5e). Regardless of walking direction,
mini-slips and midi-slips are more frequent on dry ice, whereas the frequency of maxi-slips does not
differ significantly between wet and dry ice. Figure 6a,b shows the “No-slip Trials” distribution over
different angles for walking downhill and uphill, respectively.

We had an almost equal number of passes for dry and wet ice conditions with 86 and 94 trials,
respectively. Figure 6c also shows that in our dataset, the slip events occurred more on dry ice (112 out
of 180 slips) than on wet ice (68 slips out of 180). All footwear and participant contributions to our
dataset are shown in Figure 7a,b, correspondingly. The grey shaded regions in these figures indicate the
total number of trials for each footwear and participant. For example, F1 had the most contributions to
the dataset with 46 trials (21 slips and 25 passes) while F20 and F19 had the least contributions in our
dataset with only one no-slip trial.
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4.2. Model Evaluation

We evaluate the architecture’s performance in the five concise experiments defined in Section 3.4.
The classification metrics such as accuracy, recall, specificity, and F1 score are obtained as follows:

Recall/Sensitivity =
Tp

Tp + Fn
Speci f icity =

Tn

Tn + Fp
(2)

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
F1 Score =

2Tp

2Tp + Fp + Fn
(3)

where Tp, Tn, Fp, and Fn denote true positives, true negatives, false positives, and false negatives
respectively. We have also computed the AUC with the trapezoidal rule as follows [38]:

AUC =
∑

i

1
2
(TPRi + TPRi−1)(FPRi − FPRi−1) (4)

where TPR refers to the true positive rates, and FPR refers to the false positive rates.

4.2.1. Record-Wise Cross Validation Analysis (5-Fold)

Table 2 summarizes the results for all experiments where most reach over 86% accuracy rates.
However, a lower accuracy rate of 77% for experiment 4 was obtained, given the difficulty of detecting
mini-slips—the trained human observer could sometimes find them uncertain to identify as well.
Notably, our model could detect the maxi-slips with high accuracy of 97%. Overall, the model
discrimination ability is clearly associated with slip severity as expected. It is worth noting that the
specificity rates suppress the recall rates in all experiments, implying the learning of the passed (no-slip)
class is slightly better than the slip class. This could be intuitively explained by the monotonic and
distinguishable pattern of human walking, in contrast with complicated postures during slip events.
Figure 8 shows the Receiver Operating Characteristic (ROC) curves for all experiments. This figure and
Table 2 demonstrate very high areas under curve (AUC) values for all experiments. The average true
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positive (Tp), true negative (Tn), false positive (Fp), and false negative (Fn) from 5-fold cross-validation
are brought in confusion matrices in Figure 9. The False Negative Rates (FNRs), which are critical in
our application, are 5%, 20%, 12.5%, 26.7%, and 19.4% for experiments 1 to 5, respectively. Experiment
4 had the highest FNR, where the model distinguishes between mini-slips and no-slips; this result is
consistent with our prior hypothesis that it may be challenging to accurately identify mini-slips even
using human observation.

Table 2. Five-fold cross validation results for all five experiments.

Experiments Accuracy Sensitivity Specificity F1 Score AUC

Experiment 1 0.97 ± 0.03 0.95 ± 0.07 1.00 ± 0.00 0.97 ± 0.04 0.99 ± 0.00
Experiment 2 0.88 ± 0.05 0.80 ± 0.11 0.95 ± 0.04 0.86 ± 0.06 0.93 ± 0.02
Experiment 3 0.93 ± 0.03 0.88 ± 0.05 0.98 ± 0.02 0.92 ± 0.03 0.95 ± 0.03
Experiment 4 0.77 ± 0.04 0.73 ± 0.10 0.80 ± 0.11 0.76 ± 0.05 0.85 ± 0.04
Experiment 5 0.86 ± 0.04 0.81 ± 0.08 0.91 ± 0.03 0.85 ± 0.04 0.90 ± 0.03Sensors 2020, 20, x FOR PEER REVIEW 10 of 16 
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4.2.2. Subject-Wise Cross Validation Analysis (Leave One Subject Out)

In our human-centered footwear testing protocol, each footwear is tested by different human
participants. Therefore, it is important to evaluate the models using a subject-independent cross
validation technique, i.e., Leave-One-Subject-Out (LOSO). In this method, the data of one subject
is selected for testing purposes while the other subjects’ data are used for training the model.
This procedure is repeated until all the subjects have been used as the test dataset. We want to
simulate a scenario when new subjects join our footwear testing program, and to determine if the
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model is capable of differentiating slip/no-slips from different gait patterns. In our dataset, we had
18 participants, therefore the LOSO validation provides us with 18 different classification parameters.
We have used LOSO for experiment 5 and the results are shown in Figure 10 and Table 3. The average
accuracy was 84% ± 13% which is 2.3% lower than 5-fold cross validation. This drop in the performance
might be due to the fact that in 5-fold cross validation, records from the same subject are present in
both training and test folds. In addition, the unbalanced data from our 18 subjects, shown in Figure 7b,
may lead to overestimation in 5-fold cross validation.Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 
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Table 3. LOSO results on experiment 5.

Experiments Accuracy Recall Specificity F1 Score

Sub1 0.88 0.81 0.92 0.84
Sub2 0.73 0.60 1.00 0.75
Sub3 0.88 0.80 1.00 0.89
Sub4 0.81 0.76 0.91 0.84
Sub5 0.81 0.83 0.78 0.86
Sub6 0.78 0.50 0.94 0.63
Sub7 0.89 1.00 0.83 0.86
Sub8 0.75 0.54 1.00 0.70
Sub9 1.00 NA 1.00 NA

Sub10 0.47 0.11 1.00 0.20
Sub11 0.64 0.38 1.00 0.55
Sub12 0.86 0.80 1.00 0.89
Sub13 0.90 0.80 1.00 0.89
Sub14 0.89 0.86 1.00 0.92
Sub15 1.00 1.00 1.00 1.00
Sub16 1.00 1.00 1.00 1.00
Sub17 0.88 0.67 1.00 0.80
Sub18 0.86 NA 0.86 NA

Average 0.84 ± 0.13 0.72 ± 0.23 0.96 ± 0.07 0.79 ± 0.19

Since, in LOSO cross validation, the test data in each iteration may be unbalanced with class labels,
it is necessary to evaluate the specificity, sensitivity, and F1 score in this type of validation. As depicted
in Figure 11, every subject used different numbers of footwear to produce slips and no-slips data.
For example, sub1 used 6 pairs of boots (F2, F4, F5, F6, F17, and F18) to provide 25 and 16 trials with
and without slips, respectively (see Figure 7b). It is worth noting that sub9 and sub18 only contributed
to the “no-slip” class, thus Tp = Fn = 0 for these two participants (Figure 10). For sub9, the model that
was trained by the other 17 subjects could successfully distinguish all no-slip data without any false
positives (specificity 100%). However, for sub18, one of the no-slip trials is misclassified as “slip”,
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resulting in specificity of 85% shown in Figure 10r. The misclassification shows the false negative
and false positive cost of the proposed model. The high specificity for both subjects indicates a rare
occurrence of false positives and successful classification for no-slip trials. The worst-case accuracy,
which seems to be an outlier in our data, was achieved for sub10. All “no-slip” trials for this subject
are detected correctly (specificity 100%); however, eight out of nine slips are misclassified, which leads
to an F1 score of 20%.
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Some feature maps obtained from certain layers of our trained RGB-I3D model are shown in
Figure 12. Even though the data still outline the slip activity in the bottom layer of the model, it becomes
completely unrecognizable by a human once it gets deeper. The “blurry” features may still provide
a useful feedback for the model to make its prediction. For simplicity, in Figure 13 we portrayed a Class
Activation Map (CAM) before the final SoftMax layer to visualize the attention of our neural network.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

The worst-case accuracy, which seems to be an outlier in our data, was achieved for sub10. All “no-
slip” trials for this subject are detected correctly (specificity 100%); however, eight out of nine slips 
are misclassified, which leads to an F1 score of 20%. 

 
Figure 11. The total number of trials performed by each subject with all 20 boots. 

Some feature maps obtained from certain layers of our trained RGB-I3D model are shown in 
Figure 12. Even though the data still outline the slip activity in the bottom layer of the model, it 
becomes completely unrecognizable by a human once it gets deeper. The “blurry” features may still 
provide a useful feedback for the model to make its prediction. For simplicity, in Figure 13 we 
portrayed a Class Activation Map (CAM) before the final SoftMax layer to visualize the attention of 
our neural network. 

 
Figure 12. Features maps when feeding a sample video of maxi-slip to the retrained I3D model. The 
top row shows some features extracted in layer 32, and the bottom row is some features from layer 
123. 

 
Figure 13. Class Activation Map (CAM) on a sample video of maxi-slip. 

One concern is that the model might focus on the feature when participants recover from the maxi-
slips by using a rope. However, such rope grabbing action can also happen at the end of no-slip trials 
where the participants grabs the rope after the last step at the end of the walkway. It was observed that 
the model can properly localize the event and region of interest both spatially and temporally. 
  

Figure 12. Features maps when feeding a sample video of maxi-slip to the retrained I3D model. The top
row shows some features extracted in layer 32, and the bottom row is some features from layer 123.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

The worst-case accuracy, which seems to be an outlier in our data, was achieved for sub10. All “no-
slip” trials for this subject are detected correctly (specificity 100%); however, eight out of nine slips 
are misclassified, which leads to an F1 score of 20%. 

 
Figure 11. The total number of trials performed by each subject with all 20 boots. 

Some feature maps obtained from certain layers of our trained RGB-I3D model are shown in 
Figure 12. Even though the data still outline the slip activity in the bottom layer of the model, it 
becomes completely unrecognizable by a human once it gets deeper. The “blurry” features may still 
provide a useful feedback for the model to make its prediction. For simplicity, in Figure 13 we 
portrayed a Class Activation Map (CAM) before the final SoftMax layer to visualize the attention of 
our neural network. 

 
Figure 12. Features maps when feeding a sample video of maxi-slip to the retrained I3D model. The 
top row shows some features extracted in layer 32, and the bottom row is some features from layer 
123. 

 
Figure 13. Class Activation Map (CAM) on a sample video of maxi-slip. 

One concern is that the model might focus on the feature when participants recover from the maxi-
slips by using a rope. However, such rope grabbing action can also happen at the end of no-slip trials 
where the participants grabs the rope after the last step at the end of the walkway. It was observed that 
the model can properly localize the event and region of interest both spatially and temporally. 
  

Figure 13. Class Activation Map (CAM) on a sample video of maxi-slip.

One concern is that the model might focus on the feature when participants recover from the
maxi-slips by using a rope. However, such rope grabbing action can also happen at the end of no-slip
trials where the participants grabs the rope after the last step at the end of the walkway. It was observed
that the model can properly localize the event and region of interest both spatially and temporally.

5. Future Work

5.1. Coverage Limitation

Vision-based detection is often limited by the coverage of the cameras. Although a single static
GoPro camera was used in our current dataset, to improve the model we can install cameras at other
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positions with different frame rates, POV, video resolutions, and even lights. Experiments with fusion
of these variables should lead to a robust model that sends warnings in time from different placements
and conditions in a room.

5.2. Data Processing and Population

Given the small sample size used, data augmentation [39] is also a technique to potentially
enhance model generalizability. By imposing additional transformations onto original data, such as
cropping, flipping, rotation, etc., more data can be generated to effectively reduce possible overfitting.
However, it requires meticulous processing for our dataset, as slip characteristics are informative for
learning and we do not want to lose such information. For example, the short contact with the ground
surface in mini-slips seems to be the only criterion from a human observer’s standpoint. In addition,
since the current participants of this study are young healthy adults, more data will be collected from
people with wide range of age to evaluate the model. The current footwear testing is a longitudinal
program at KITE Research Institute and this model will be improved over time with data from a larger
population and different footwear.

5.3. Real Time Detection

Real time slip detection would be very helpful for the efficient operation of WinterLab. Although the
current algorithm can only detect the slips in every 64 frames, it is possible to store a cache of previous
features and make the classification decision [40] even faster. In the future, we will implement our
model in AWS DeepLens, the world’s first deep learning enabled video camera [41] to detect the slips
in real time.

6. Conclusions

In this paper, we present a deep three-dimensional convolutional neural network architecture
capable of detecting slips during human walking in winter conditions using a vision-based approach.
We formed an original dataset, consisting of 360 video clips of 18 participants wearing 20 styles of
footwear. Retrained by this dataset, our system demonstrated an overall slip classification accuracy
of 86%, sensitivity of 81%, and specificity of 91% when using 5-fold cross-validation. In addition,
the system demonstrated that the detection accuracy is correlated with the slip severity. The maxi-slips
were detected with the highest accuracy of 97%, whereas the mini-slips were detected with the lowest
accuracy of 77% among all cases. The average accuracy achieved for LOSO validation was 84%.
These results demonstrated the system’s capacity to detect slips of various sizes in realistic and varying
environmental conditions. The proposed system can be readily applied to detect slips in real-world
winter conditions and other slip-prone scenarios. For example, the system can be implemented in
healthcare environments to detect the slips of patients and staff. The prompt and automatic detection
provided by the system will allow fast interventions which could reduce the injury rates. The system’s
ability to maintain high performance with various footwear styles and flooring conditions contributes
to the practicality of its application in preventing injuries, especially for elderly.
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