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Abstract: Water browning in lakes (progressive increase of the content of chromophoric dissolved
organic matter, CDOM) has the potential to deeply alter the photodegradation kinetics of pollutants
during summer stratification. Browning, which takes place as a consequence of climate change
in several Nordic environments, causes the thermocline to be shallower, because higher CDOM
decreases the penetration of sunlight inside the water column. Using a model approach, it is shown in
this paper that pollutants occurring in the epilimnion would be affected differently depending on their
main photodegradation pathway(s): almost no change for the direct photolysis, slight decrease in the
degradation kinetics by the hydroxyl radicals (•OH, but the resulting degradation would be too slow
for the process to be effective during summer stratification), considerable decrease for the carbonate
radicals (CO3

•−), increase for the excited triplet states of CDOM (3CDOM*) and singlet oxygen (1O2).
Because it is difficult to find compounds that are highly reactive with CO3

•− and poorly reactive
with 3CDOM*, the degradation rate constant of many phenols and anilines would show a minimum
with increasing dissolved organic carbon (DOC), because of the combination of decreasing CO3

•−

and increasing 3CDOM* photodegradation. In contrast, overall photodegradation would always be
inhibited by browning when the whole water column (epilimnion + hypolimnion) is considered,
either because of slower degradation kinetics in the whole water volume, or even at unchanged
overall kinetics, because of unbalanced distribution of photoreactivity within the water column.

Keywords: surface–water photochemistry; environmental modeling; pollutant attenuation;
lake dynamics; emerging pollutants; contaminants of emerging concern; effects of climate change

1. Introduction

The photoinduced transformation processes are important pathways for the attenuation of
biorecalcitrant contaminants that occur in surface waters [1,2]. These processes are usually divided
into direct photolysis, where the pollutant absorbs sunlight and is transformed as a consequence,
and indirect photochemistry [3,4]. In the latter case, sunlight is absorbed by naturally occurring
compounds (photosensitizers) such as the chromophoric dissolved organic matter (CDOM), nitrate,
and nitrite [5]. The absorption of radiation by photosensitizers causes the generation of reactive
transient species such as the hydroxyl radical (•OH), singlet oxygen (1O2), and CDOM triplet states
(3CDOM*) [6,7]. Moreover, the oxidation of inorganic carbon species (HCO3

− by •OH; CO3
2− by

•OH and 3CDOM*) yields the carbonate radical, CO3
•− [8]. All the mentioned transients (•OH, 1O2,

3CDOM*, and CO3
•−) react at a variable extent with pollutants to induce their degradation [5,9].
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Photochemical reactions in surface waters are affected by several environmental factors and
environmental modifications, among which climate change plays a major role [10,11]. Among the
climate-induced changes to water chemistry, variations in the contents of both dissolved organic matter
(DOM) and its chromophoric fraction (CDOM) have the highest potential to affect photoreactions [12,13].
Increasing average precipitation in several regions of the world, or an increased likelihood of extreme
events even at constant average precipitation, is enhancing transport by runoff of organic material from
soil to surface waters [14–17]. The result is an increase in surface-water (C)DOM levels (browning),
which could affect photoreactions by enhancing processes triggered by 3CDOM* and 1O2, over those
induced by •OH, CO3

•− and the direct photolysis [11,13]. The increase of (C)DOM is not a general
occurrence, and in some cases the opposite trend has been reported [18]. However, compared to
browning, the underlying mechanisms of (C)DOM decrease have not yet been clarified.

In addition to water chemistry, (C)DOM variations affect water dynamics in certain circumstances
such as, most notably, summer stratification in lakes [19]. Lakes that are deep enough can become
stratified during summer, because sunlight heats the lake surface and makes the surface water warmer
and less dense. Therefore, a warmer and less dense surface layer (epilimnion) floats over the colder
and denser bottom water (hypolimnion). Mass exchange between the two compartments takes place
only by diffusion, thus epilimnion and hypolimnion evolve separately. Epilimnion and hypolimnion
are separated by the thermocline, which is defined as the (very thin) water layer where the steepest
temperature gradient with depth is observed [20].

CDOM is the key sunlight absorber in lake water below 500 nm, and sunlight penetration in
the water column is higher if the CDOM levels are lower [21]. In the presence of high CDOM,
limited sunlight penetration reduces the portion of the water column that can be heated by sunlight,
and shallower thermocline is produced as a consequence. The depth of the epilimnion coincides with
the depth of the thermocline, thus one expects an inverse relationship between CDOM levels and
epilimnion depths [19].

From the point of view of pollutant photodegradation, increasing CDOM levels are often
detrimental to decontamination, while decreasing depth is favorable [22]. Therefore, the relationship
between CDOM and epilimnion depth (low CDOM ⇔ deep epilimnion; high CDOM ⇔ shallow
epilimnion) may have non-trivial impacts over the ability of epilimnion water to induce photochemical
attenuation of pollutants. In this work, the photodegradation kinetics of two photochemically labile
pharmaceuticals and a more photostable artificial sweetener are modeled under summertime sunlight
conditions, in reasonable epilimnion waters as far as CDOM levels and thermocline depths are concerned.
One of the pollutants undergoes degradation mainly by direct photolysis (diclofenac, DICL) [23], another
mainly by indirect photochemistry (paracetamol, a.k.a. acetaminophen; or N-acetyl-para-aminophenol,
APAP) [24]. The third pollutant (acesulfame k, ACEK) is degraded only by a peculiar indirect
photochemistry pathway (•OH reaction) [25]. Photodegradation in the epilimnion is relevant to the
pollutants that reach the lake surface by, e.g., soil runoff or shallow input streams [26]. Implications are
considered, as well, for the photodegradation of pollutants that are homogeneously distributed within
the whole water column before the onset of stratification.

2. Theoretical Background

The photochemistry modeling software used in this work predicts the pseudo-first order
degradation rate constants of pollutants and the associated half-life times, as a function of sunlight
irradiance, water chemistry and depth, as well as of the pollutant photoreactivity parameters (absorption
spectrum, direct photolysis quantum yield, and second-order reaction rate constants with •OH, CO3

•−,
1O2, and 3CDOM*). The following scheme of photochemical reactions is used in the model, upon
which the software is based [9,27]

NO3
− + hν + H+

→
•NO2 + •OH (1)
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NO2
− + hν + H+

→
•NO + •OH (2)

CDOM + hν→→→ •OH (3)

CDOM + hν ISC
−−−−−→

3CDOM ∗
O2
−−−−→ CDOM + 1O2 (4)

•OH + HCO3
−
→ H2O + CO3

•− (5)

•OH + CO3
2−
→ OH− + CO3

•− (6)

3CDOM* + CO3
2−
→ CDOM•− + CO3

•− (7)

•OH + DOM→ Products (8)

CO3
•− + DOM→ Products (9)

3CDOM* + DOM→ Products (10)

1O2
H2O
−−−−−→ O2 (11)

Note that ISC = inter-system crossing, and that the reaction mechanisms yielding •OH from
irradiated CDOM (Reaction (3)) are not yet completely elucidated [28,29]. Still, it is possible to
reliably quantify •OH photogeneration from CDOM [30]. Reactions (1)–(3) represent formation of
reactive species, while Reactions (8)–(11) describe scavenging/quenching processes. Reaction (4)
depicts 3CDOM* photogeneration and scavenging, as well as 1O2 formation. Reactions (5)–(7) are
scavenging processes for •OH/3CDOM* that lead to CO3

•− generation. All these reactions explain why
the photochemistry of surface waters is affected by water chemistry. Another important parameter is
water depth because, all other things being equal, shallower waters are more thoroughly illuminated
by sunlight [31].

In the case of stratified lakes, it is possible to consider the photochemistry of the epilimnion, by
taking the depth of the thermocline as the water depth required by the photochemical model [11].
Heating by sunlight is essential for the lake water to become stratified during summer, and the
penetration depth of sunlight plays a key role in defining the depth of the thermocline [20]. The ability
of the lake water to absorb sunlight can be determined as the absorbed photon flux, Pa. According to a
Lambert-Beer approach, the Pa of the lake water (units of Einstein L−1 s−1) can be expressed as [32]

Pa =

∫
λ

p◦(λ) [1− 10−100 A1(λ) DOC dth ] dλ (12)

where p◦(λ) (Einstein L−1 s−1 nm−1) is the incident (over-water) spectral photon flux density of
sunlight at the wavelength λ [nm], A1(λ) (L mgC

−1 cm−1) is the specific absorbance of the lake water
(i.e., the absorbance value per unit DOC and 1-cm optical path length), DOC (mgC L−1) is the dissolved
organic carbon, dth (m) is the depth of the thermocline, and 100 is the conversion factor between meters
and centimeters [9].

The DOC includes both sunlight-absorbing and non-absorbing organic compounds, and an
increase in the DOC usually increases the ability of the lake water to absorb sunlight [13,14,30].
Therefore, the higher is the DOC, the lower is expected to be dth (indeed, Equation (12) contains the
product DOC × dth, and Pa does not change if DOC × dth is constant) [19]. Coherently, in a study
that considered a number of lowland lakes, it has been reported that the product DOC × dth ranged
between 30–60 m mgC L−1 during summer stratification [33]. In most surface waters, the value of the
specific absorbance has as an exponentially decaying trend with increasing wavelength [34], and a
suitable approximation for λ = 290–500 nm has been reported as follows: A1(λ) = 0.45 e−0.015 λ [30].
By including the latter relationship in Equation (12), and with the product DOC × dth in the range
of 30–60 m mgC L−1, one finds that the epilimnion lake water would be able to absorb 96–99.9% of
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the incident sunlight photons in the wavelength interval of 290–500 nm. Such an extensive ability to
absorb sunlight looks reasonable for a lake epilimnion.

In this work, three model pollutants (APAP, DICL and ACEK) were chosen because their
photoreactivity parameters are known [23–25]. The direct photolysis quantum yields and the second-order
reaction rate constants with •OH, CO3

•−, 1O2, and 3CDOM* are reported in Table 1. Moreover, Figure 1
compares the relevant absorption spectra with the spectrum of sunlight used in the model.

In previous works, it has been shown that this model approach is able to predict well the
phototransformation kinetics of both APAP and DICL in surface freshwaters [23,24,35,36], as well as
the low photolability of ACEK [25,37,38]. A comparison between model predictions and field data is
provided in Table 2.

To see how the thermocline depths could vary when varying the DOC levels, three different values
of the product DOC × dth were tested (30, 45, and 60 m mgC L−1), which are included in the range
observed in the field [33]. The pseudo-first order degradation rate constants of DICL, APAP, and ACEK,
the corresponding half-life times, and the importance of the different photodegradation pathways
(direct photolysis and reaction with •OH, CO3

•−, 1O2, and 3CDOM*) were studied in the DOC interval
of 2–30 mgC L−1. Other water conditions were kept constant (10−4 mol L−1 NO3

−, 10−6 mol L−1 NO2
−,

10−3 mol L−1 HCO3
−, 10−5 mol L−1 CO3

2−).

Table 1. Photoreactivity parameters of paracetamol (S = APAP), diclofenac (S = DICL), and acesulfame
K (S = ACEK). Note that Φ is the symbol for the direct photolysis quantum yield.

Parameter Paracetamol (APAP) Diclofenac (DICL) Acesulfame K (ACEK)

ΦS, unitless 4.6 × 10−2 9.4 × 10−2 5.5 × 10−3

kS+•OH, L mol−1 s−1 1.9 × 109 9.3 × 109 5.9 × 109

kS+CO•3
− , L mol−1 s−1 3.8 × 108 Negligible Negligible

kS+1O2
, L mol−1 s−1 3.7 × 107 1.3 × 107 2.8 × 104

kS+3CDOM∗, L mol−1 s−1 1.6 × 109 6.4 × 108 Negligible
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Figure 1. Left y-axis: Absorption spectra (molar absorption coefficients) of paracetamol (APAP) and 
diclofenac (DICL) [23,24]. Right y-axis: Spectral photon flux density of sunlight, incident on the water 
surface. In mid-latitude conditions, this value of spectral photon flux density can be observed in July 
in mid-morning or mid-afternoon [27,39]. Note that ACEK does not absorb radiation at λ > 280 nm 
[25], thus it does not undergo direct photolysis under sunlight irradiation. 

Table 2. Comparison between field data and model predictions for the phototransformation kinetics 
of paracetamol (APAP), diclofenac (DICL), and acesulfame K (ACEK). 

Parameter Field lifetime, days Location Modeled lifetime, days 
APAP 1.5–2.5 [36] Tokushima (Japan) 2.5 
DICL 8.3 [35] Greinfensee (Switzerland) 7–8 
ACEK > 1200 [37] Norra Bergundasjön (Sweden) > 700 

Figure 1. Left y-axis: Absorption spectra (molar absorption coefficients) of paracetamol (APAP) and
diclofenac (DICL) [23,24]. Right y-axis: Spectral photon flux density of sunlight, incident on the water
surface. In mid-latitude conditions, this value of spectral photon flux density can be observed in July in
mid-morning or mid-afternoon [27,39]. Note that ACEK does not absorb radiation at λ > 280 nm [25],
thus it does not undergo direct photolysis under sunlight irradiation.
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Table 2. Comparison between field data and model predictions for the phototransformation kinetics of
paracetamol (APAP), diclofenac (DICL), and acesulfame K (ACEK).

Parameter Field Lifetime, Days Location Modeled Lifetime, Days

APAP 1.5–2.5 [36] Tokushima (Japan) 2.5
DICL 8.3 [35] Greinfensee (Switzerland) 7–8
ACEK >1200 [37] Norra Bergundasjön (Sweden) >700

3. Results and Discussion

3.1. Photodegradation in the Epilimnion

The contemporary DOC increase and dth decrease has the potential to deeply alter photochemical
processes. The DOC trends of the epilimnion steady-state concentrations of •OH, CO3

•−, and 3CDOM*
are shown in Figure 2 for DOC × dth = 45 m mgC L−1 (the case of 1O2 is very similar to 3CDOM*).
The low values of the steady-state concentrations are due to fast decay kinetics of these transient
species, which are accounted for in the photochemical model (see Reactions (4)–(10)) [5].

It is shown in Figure 2 that, first of all, one has [•OH] « [CO3
•−], [3CDOM*], which may be offset at

variable extents by the fact that •OH is a much stronger oxidant compared to CO3
•− or 3CDOM* [4–6].

Then, the steady-state [CO3
•−] would strongly decrease with increasing DOC (one often observes

[CO3
•−] ∝ DOC−2 [11]). Actually, the dissolved organic matter (DOM, which increases with increasing

DOC) directly scavenges CO3
•− (Reaction (9)). Moreover, DOM decreases the CO3

•− formation rate by
scavenging •OH and (to a lesser extent) 3CDOM* (Reactions (8) and (10)) [5,40]. The decrease of [•OH]
with DOC is less marked, because •OH is largely scavenged by DOM but is also partially generated by
CDOM irradiation [5]. Finally, the increase of [3CDOM*] with increasing DOC ([3CDOM*] ∝ DOC) is
due to the fact that the CDOM levels increase with increasing DOC, and CDOM irradiation is the only
source of 3CDOM* [5,30].
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Figure 2. Modeled steady-state concentrations of •OH, CO3
•−, and 3CDOM* as a function of the DOC,

for constant values of the product DOC × dth = 45 m mgC L−1. In the main figure panel, the y-axis
has an exponential scale that gives insights into the orders-of-magnitude differences in concentrations.
The same data are plotted with a linear y-axis scale in the two inserts, where one can appreciate the
almost linear trend of [3CDOM*] with the DOC. Note that 1O2 has similar concentration values and
similar trends as 3CDOM* [4]. Other water conditions: 10−4 mol L−1 NO3

−, 10−6 mol L−1 NO2
−,

10−3 mol L−1 HCO3
−, and 10−5 mol L−1 CO3

2−, sunlight irradiance as per Figure 1.
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The results concerning the modeled photodegradation kinetics of the three compounds under
study are reported in Figure 3 (3a: APAP; 3b: DICL, 3c: ACEK), as a function of the DOC and for values
of the DOC × dth product in the range between 30 and 60 m mgc L−1. For all compounds, the predicted
degradation at equal DOC is faster when the product DOC × dth is lower. Indeed, lower DOC × dth

means shallower water for a given DOC value, and shallow waters have more chances than deep
waters to be efficiently illuminated by sunlight [21,31].Molecules 2020, 25, x FOR PEER REVIEW 7 of 15 
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Figure 3. Modeled first-order rate constants and half-life times of (a) APAP, (b) DICL, and (c) ACEK
in lake-water epilimnion, as a function of the DOC. The measure unit of the product DOC × dth is
(m mgC L−1). Other water conditions: 10−4 mol L−1 NO3

−, 10−6 mol L−1 NO2
−, 10−3 mol L−1 HCO3

−,
10−5 mol L−1 CO3

2−. Photodegradation kinetics assumes mid-July irradiation conditions [27].
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In the case of APAP, the first-order rate constants show a minimum as a function of the DOC.
In contrast, the DICL rate constants monotonically increase and the ACEK ones decrease with increasing
DOC. Because APAP, DICL, and ACEK have different reactivity, the explanation of these trends has
implications for the photochemical behavior of a much wider range of pollutants.

The predicted lifetimes of APAP range between 8–40 days, and would result in important APAP
photodegradation in the epilimnion during the summer season. The minimum of the first-order
rate constant (kAPAP vs. DOC) corresponds to conditions where photodegradation would be slower,
which is predicted to take place at DOC ~ 4 mgC L−1. Overall, the most favorable conditions to APAP
photodegradation would be observed at high DOC. In the framework of the browning phenomenon
(long-term, gradual DOC increase [14]), if the starting DOC was <4–5 mgC L−1 it is very likely that APAP
photodegradation kinetics would not change much with increasing DOC. Conversely, if the starting
DOC was >4–5 mgC L−1, browning would considerably enhance photodegradation in the epilimnion.

The reason behind the trend with a minimum of kAPAP vs. DOC is a shift in the prevailing
photochemical degradation pathway of APAP, from CO3

•− at low DOC to 3CDOM* at high DOC
(see Figure 4a). Indeed, the first-order rate constant of APAP photodegradation by CO3

•− is predicted
to decrease with increasing DOC, while the 3CDOM* rate constant would increase with DOC
(see Figure 4b). The combined degradation trends by CO3

•− and 3CDOM* can account well for the
minimum of APAP photodegradation kinetics (compare Figures 3a and 4b).
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photodegradation rate constants of APAP, accounted for by CO3
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In the case of DICL the predicted photodegradation would be fast as well, with half-life times
in the range of 8–30 days. Moreover, the first-order degradation rate constants show a continuous
increase with increasing DOC (Figure 3b): this means that a long-term increase of the DOC due to
browning would slightly enhance photodegradation of DICL in epilimnion water during summertime.
The direct photolysis is predicted to be the main DICL photodegradation pathway (Figure 5a), which is
fully consistent with literature findings [23,35]. However, the relative importance of degradation by
3CDOM*, which is negligible at low DOC, would become competitive at high DOC levels (Figure 5a).Molecules 2020, 25, x FOR PEER REVIEW 9 of 15 

 

 

 
Figure 5. (a) Modeled contributions of •OH, 1O2, 3CDOM* and the direct photolysis (d.p.) to the 
photodegradation of DICL, for different values of the DOC. (b) DOC trends of the first-order 
photodegradation rate constants of DICL, accounted for by direct photolysis (d.p.) and 3CDOM*. In 
both cases, it was DOC × dth = 45 m mgC L−1. 

Interestingly, the photodegradation rate constant of DICL by direct photolysis would practically 
not change with varying DOC (see Figure 5b). Actually, radiation absorption by DICL in lake water 
would be decreased by the fact that other lake-water components absorb sunlight as well, thereby 
inhibiting DICL direct photolysis [23]. However, at constant DOC × dth the photon flux absorbed by 
the water column would not be modified (see Equation (12)). Therefore, the inhibition effect carried 
out by other water components on DICL photolysis is not expected to change much with increasing 
DOC, if DOC × dth is constant. The combination of a practically constant kinetics of direct photolysis 
with an increasing trend of photodegradation by 3CDOM* (Figure 5b) accounts for the observed trend 
of DICL photodegradation as a function of the DOC, reported in Figure 3b. 

In the case of ACEK, the predicted half-life times are considerably longer compared to the other 
compounds (Figure 3c). This result agrees with field data of ACEK persistence in surface waters 
[37,38]. Because lifetimes are so long, ACEK would undergo very limited photodegradation in the 
epilimnion during summer stratification. ACEK is a typical pollutant that is photodegraded by •OH 
only [25], and in fact the DOC trend of ACEK photodegradation (Figure 3c) closely reflects the 
behavior of the steady-state [•OH] (Figure 2). Moreover, because the second-order reaction rate 
constant between ACEK and •OH (

OHACEKk •+
 ∼ 6×109 L mol−1 s−1 [25]) is about one half of the 

diffusion-control limit in aqueous solution [41], a pollutant that only reacts with •OH could show at 
most twice the degradation kinetics of ACEK. Even in this upper-limit case, epilimnion 
photodegradation by •OH during summertime would be very slow, and the relevant DOC trend 
would be scarcely significant. 

Figure 5. (a) Modeled contributions of •OH, 1O2, 3CDOM* and the direct photolysis (d.p.) to
the photodegradation of DICL, for different values of the DOC. (b) DOC trends of the first-order
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In both cases, it was DOC × dth = 45 m mgC L−1.

Interestingly, the photodegradation rate constant of DICL by direct photolysis would practically
not change with varying DOC (see Figure 5b). Actually, radiation absorption by DICL in lake water
would be decreased by the fact that other lake-water components absorb sunlight as well, thereby
inhibiting DICL direct photolysis [23]. However, at constant DOC × dth the photon flux absorbed by
the water column would not be modified (see Equation (12)). Therefore, the inhibition effect carried
out by other water components on DICL photolysis is not expected to change much with increasing
DOC, if DOC × dth is constant. The combination of a practically constant kinetics of direct photolysis
with an increasing trend of photodegradation by 3CDOM* (Figure 5b) accounts for the observed trend
of DICL photodegradation as a function of the DOC, reported in Figure 3b.

In the case of ACEK, the predicted half-life times are considerably longer compared to the other
compounds (Figure 3c). This result agrees with field data of ACEK persistence in surface waters [37,38].
Because lifetimes are so long, ACEK would undergo very limited photodegradation in the epilimnion
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during summer stratification. ACEK is a typical pollutant that is photodegraded by •OH only [25],
and in fact the DOC trend of ACEK photodegradation (Figure 3c) closely reflects the behavior of the
steady-state [•OH] (Figure 2). Moreover, because the second-order reaction rate constant between
ACEK and •OH (kACEK+•OH ~ 6×109 L mol−1 s−1 [25]) is about one half of the diffusion-control
limit in aqueous solution [41], a pollutant that only reacts with •OH could show at most twice the
degradation kinetics of ACEK. Even in this upper-limit case, epilimnion photodegradation by •OH
during summertime would be very slow, and the relevant DOC trend would be scarcely significant.

When considering the possible impact of browning on the photodegradation kinetics of pollutants
in the epilimnion of lakes, the simulation results obtained so far allow for the following general
considerations to be made:

1. Compounds that are mainly degraded by direct photolysis would be poorly affected by browning,
as far as photodegradation in the epilimnion is concerned. Indeed, the DOC increase would be
offset by the dth decrease, and vice versa. Compounds belonging to this class are many UV filters,
some pharmaceuticals, and pesticides [42,43]. It is unfortunately very difficult to carry out a
structure–activity relationship, with which to predict the importance of the direct photolysis from
molecular structure information only, without experimental data [44,45].

2. Compounds that mainly/only react with •OH should show a slight decrease in photodegradation
kinetics because of the browning phenomenon. However, these compounds would be too photostable
to be significantly degraded in the epilimnion during the summer season. More photolabile
compounds, reacting through other pathways in addition to •OH, could be highly affected by the
DOC trend of the additional photoreactions, because [•OH] does not vary much with varying
DOC (see Figure 2).

3. Inhibition of epilimnion photodegradation due to browning is predicted for compounds that
mainly react with CO3

−. However, because the reduction potential of CO3
•− is lower than the

reduction potentials of many 3CDOM* [4], it is very difficult to find compounds that react with
CO3

•− at low DOC and do not react with 3CDOM* (or 1O2) at high DOC. Therefore, most pollutants
that react fast with CO3

•− (e.g., phenols, anilines, sulphur-containing compounds [8,46,47]) are
expected to show a minimum in their epilimnion photodegradation rate constants, in a similar way
as APAP. The position of the minimum would depend on the respective values of the second-order
rate constants kS+CO•−3

and kS+3CDOM∗, and on the irradiance and spectrum of sunlight.

4. Because of the above considerations, in many cases the browning of medium- to high-DOC
waters would accelerate the epilimnion photodegradation kinetics of pollutants, especially when
photodegradation is quite fast. Indeed, despite the fact that browning makes water more colored,
and thus less conducive to sunlight penetration [21], the combination of a shallower thermocline
with the photoreaction pathways occurring at high (C)DOM (3CDOM* and, where applicable,
1O2) would speed-up photodegradation in the epilimnion.

3.2. Whole-Lake Photodegradation (Epilimnion + Hypolimnion)

The above considerations apply to the epilimnion where, at equal DOC × dth, increasing DOC
means shallower dth. Therefore, it is assumed that the epilimnion accounts for an increasingly limited
fraction of the overall lake-water volume if the DOC increases [19]. Although the overall epilimnion
photochemistry may be enhanced, an increasing fraction of the lake would be in the dark (hypolimnion)
as the DOC gets higher. Pollutants occurring only in the hypolimnion (e.g., because they reach the lake
water through groundwater) are largely protected from photodegradation [11], and the scenario is
exacerbated if the hypolimnion accounts for larger fraction of the lake.

If a compound is mostly transformed by direct photolysis and is distributed evenly in the water
column before the onset of stratification, browning is expected to be detrimental to photodegradation
in the whole lake volume. Indeed, the epilimnion photodegradation kinetics would not change with
increasing DOC, but dth would decrease and the hypolimnion would become deeper. According to the
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Lambert–Beer law, the sunlight photon flux incident on the hypolimnion (Phypo
o ) would not change at

constant DOC × dth (Equation (13)) [32]

Phypo
o =

∫
λ

p◦(λ) 10−100A1(λ) DOC dthdλ (13)

However, if dth is shallower and the hypolimnion is deeper, the same incident photon flux Phypo
o is

absorbed in a higher hypolimnion volume, and photodegradation slows down (it is a similar scenario
to that of a deeper lake, receiving the same sunlight irradiance as a shallower lake [27]). Moreover,
the higher hypolimnion volume weights more, when the lake finally undergoes overturn and pollutant
concentration is homogenized again [11,20]. In such a scenario one expects unchanged epilimnion
photochemistry with increasing DOC, slower photodegradation in the hypolimnion, and a higher
fraction of the lake volume accounted for by the hypolimnion. Overall, photodegradation kinetics in
the whole lake volume would get slower as the DOC increases.

A less straightforward scenario would be that of a pollutant, the photodegradation of which
gets faster in the epilimnion as the DOC increases. Among the studied compounds, APAP was that
showing the steepest increase of the photodegradation rate constant in the epilimnion with increasing
DOC, despite the low-DOC minimum (see Figure 3). Basically, the steep increase is due to the fact that
APAP is the studied compound with the highest value of kS+3CDOM∗ (Table 1).

The photodegradation kinetics of APAP in epilimnion, hypolimnion and the whole lake are
reported in Figure 6, as a function of the DOC, for DOC × dth = 45 m mgC L−1, and with do = 40 m
as the average depth of the lake (the average depth of the hypolimnion is thus do–dth). For the
photodegradation rate constants in the epilimnion, see Figure 3a with DOC × dth = 45 m mgC L−1

and the related discussion. Photodegradation in the hypolimnion is very slow, which excludes
effective transformation during stratification. The trend of the hypolimnion rate constant has a shallow
minimum for DOC = 6 mgC L−1, which reflects the contributions of CO3

•− and 3CDOM*. The average
photodegradation rate constant in the whole lake (epilimnion + hypolimnion) was calculated as the
average of epilimnion and hypolimnion rate constants, weighted for the respective volumes [11]

kEpi/hypo =
kEpi VEpi + kHypoVHypo

VEpi + VHypo
=

kEpi dth + kHypo(do − dth)

do
(14)

The value of kEpi/hypo initially decreases with DOC, and then reaches a plateau. The low-DOC
decrease of kEpi/hypo (Figure 6) is due to decreasing kEpi and to increasing volume fraction of the
hypolimnion: indeed, as the DOC gets higher, dth gets shallower, and do–dth increases. In contrast,
increasing kEpi after the minimum is almost completely offset by the increasing volume fraction of
the hypolimnion, and kEpi/hypo reaches a plateau. When kEpi increases with DOC, as for APAP at high
DOC, browning would not modify the average whole-lake photodegradation kinetics by much.

Still, the occurrence of a shallow epilimnion characterized by fast photoreactions plus a large,
poorly reactive hypolimnion is not favorable to photodegradation. The issue is that the pollutant may
be totally degraded in the epilimnion, after which its degradation has to stop for lack of substrate,
even if the reactive transient species responsible for photodegradation are still photogenerated. At the
same time, poor photodegradation takes place in the hypolimnion [11].

To account for this, APAP was assumed to be initially distributed evenly in the water column
(uniform initial concentration, C0). No further immission of APAP in the lake water was assumed to
take place thereafter, so that APAP concentration would only change due to degradation. Stratification
was assumed to last for 90 days, after which complete lake overturn would occur. Before overturn,
independent photodegradation would take place in the epilimnion and hypolimnion, and the time
evolution of the respective concentrations would follow the trends (Ct)Epi = C0 exp(−kEpi × t),
and (Ct)Hypo = C0 exp(−kHypo × t). The concentration values C90 for t = 90 days are reported in the
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insert of Figure 6, as C90/C0 as a function of the DOC, with DOC × dth = 45 m mgC L−1 and do = 40 m.
The average value of C90 in the whole lake was calculated as the weighted average of the epilimnion
and hypolimnion concentrations, as [11]

(C90)Epi/hypo =
(C90)Epi VEpi + (C90)HypoVHypo

VEpi + VHypo
=

(C90)Epi dth + (C90)Hypo(do − dth)

do
(15)

The results (Figure 6, insert) show extensive APAP photodegradation in 90 days in the lake
epilimnion, with (C90)Epi ~ 0 for DOC > 15–20 mgC L−1. In contrast, limited degradation (~20%)
would occur in the hypolimnion, and the resulting whole-lake concentration ((C90)Epi/hypo) would
increase with increasing DOC. Therefore, the occurrence of a shallow epilimnion at high DOC would
be detrimental to APAP photodegradation, despite elevated epilimnion reactivity.
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Figure 6. Trends of the photodegradation rate constants of APAP in the lake epilimnion (kEpi),
hypolimnion (kHypo), and whole water column (kEpi/hypo, average depth do = 40 m). The Epi/hypo
kinetics was averaged as per Equation (14). In the photochemical model, to account for the sunlight
intensity incident over the hypolimnion, the value of p◦(λ) (spectral photon flux density at the water
surface) was replaced by p◦(λ) 10−100A1(λ) DOC dth that accounts for sunlight absorption in the overlying
epilimnion, with DOC × dth = 45 m mgC L−1 and A1(λ) = 0.45 e−0.015 λ. Figure insert: Concentration
values of APAP after photodegradation for 90 days (C90), with respect to the initial APAP concentration
(C0), in the epilimnion (Epi), hypolimnion (Hypo), and the whole water column (Epi/hypo). The latter
was averaged as per Equation (15), by assuming complete lake overturn at day 90. The ratio C90/C0 is
plotted as a function of the DOC, assuming DOC × dth = 45 m mgC L−1, and do = 40 m as the average
depth of the lake. Other water conditions for all simulations: 10−4 mol L−1 NO3

−, 10−6 mol L−1 NO2
−,

10−3 mol L−1 HCO3
−, 10−5 mol L−1 CO3

2−. Photodegradation kinetics assumed mid-July irradiation
conditions [27].

4. Conclusions

Lake-water browning, for which climate change is an important driver, is expected to affect the
summer stratification of lakes by decreasing the depth of the thermocline. The opposite phenomenon
would take place in some environments, where the effects of climate change would run in the contrary
direction. In the case of browning, the occurrence of a shallower and CDOM-richer epiliminon has
the potential to alter the photodegradation kinetics of pollutants. The effect may be null, positive,
or negative, depending on the distribution of the pollutant within the water column and on its
photodegradation pathway(s).

If a pollutant is confined into the lake epilimnion during summer stratification, e.g., because it
reaches the lake surface by runoff, the effect of browning depends on the main photodegradation
pathway(s). Compounds that are mainly degraded by direct photolysis would be hardly affected by
browning, because the decreasing depth of the thermocline offsets the CDOM increase. Browning would
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slightly slow down photodegradation of compounds that react predominantly or exclusively with
•OH. However, their photodegradation would be too slow to be really significant during summer
stratification. Increasing (C)DOM would be highly detrimental to CO3

•− photodegradation, but would
favor the processes triggered by 3CDOM* and 1O2. Because it is hard to find a compound that reacts
fast with CO3

•− (typical examples are phenols and anilines) and is poorly reactive with 3CDOM*,
in these cases one expects a minimum in the photodegradation rate constant as a function of the
DOC. The minimum would be due to the combination of decreasing degradation by CO3

•− and
increasing degradation by 3CDOM* (and possibly 1O2). If the initial DOC is high enough, browning
can considerably enhance photodegradation kinetics by 3CDOM* in the epilimnion water.

If the whole water column (epilimnion + hypolimnion) is considered, in which a pollutant is initially
evenly distributed, the occurrence of a shallow epilimnion is always detrimental to photodegradation.
It affects either the kinetics of photoreactions or, even at unchanged kinetics, the way the pollutant is
photodegraded, making degradation less effective. In this case, if a pollutant is initially distributed
within the whole lake volume, browning will always inhibit photodegradation during the summer
stratification period.
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