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The use of diameter stenosis (DS), as revealed by coronary angiography, for predicting

fractional flow reserve (FFR) usually results in a high error rate of detection. In this study,

we investigated a method for predicting FFR in patients with coronary stenosis based

on multiple independent risk factors. The aim of the study was to improve the accuracy

of detection. First, we searched the existing literature to identify multiple independent

risk factors and then calculated the corresponding odds ratios. The improved analytic

hierarchy process (IAHP) was then used to determine the weighted value of each

independent risk factor, based on the corresponding odds ratio. Next, we developed

a novel method, based on the top seven independent risk factors with the highest

weighted values, to predict FFR. This model was then used to predict the FFR of 253

patients with coronary stenosis, and the results were then compared with previous

methods (DS alone and a simplified scoring system). In addition to DS, we identified a

range of other independent risk factors, with the highest weighted values, for predicting

FFR, including gender, body mass index, location of stenosis, type of coronary artery

distribution, left ventricular ejection fraction, and left myocardial mass. The area under

the receiver-operating characteristic curve (AUC) for the newly developed method was

84.3% (95% CI: 79.2–89.4%), which was larger than 65.3% (95% CI: 61.5–69.1%) of

DS alone and 74.8% (95% CI: 68.4–81.2%) of the existing simplified scoring system.

The newly developed method, based on multiple independent risk factors, effectively

improves the prediction accuracy for FFR.

Keywords: fractional flow reserve, coronary stenosis, multiple independent risk factors, improved analytic

hierarchy process (IAHP), coronary heart disease (CAD)

INTRODUCTION

Coronary heart disease, including coronary stenosis, is associated with the highest mortality rate
of diseases worldwide (Bruyne et al., 2014; Yang et al., 2017; Li et al., 2021). Many numerous
studies have proved that fractional flow reserve (FFR) can effectively help to diagnose the severity
of coronary stenosis and further assist in the proposal of treatment options (Pijls et al., 2007;
Nørgaard et al., 2014; Lu et al., 2017). FFR is also known to significantly improve the prognosis
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of patients with percutaneous coronary intervention (PCI) with
severe coronary stenosis (Tonino et al., 2010; Chinnaiyan et al.,
2017; Caroline et al., 2018). Therefore, the accurate measurement
and prediction of FFR has immense clinical significance for the
treatment of patients with coronary stenosis, especially those with
severe stenosis.

Currently, the prediction of FFR is mainly based on diameter
stenosis (DS) (≥50%), as determined by coronary angiography
(Bruyne et al., 2014; Nakamura et al., 2014). However, simulation
studies and case reports have shown that the predictive accuracy
is low when only DS is used as the criterion. In a previous
study, Park et al. (2012) performed invasive FFR and coronary
angiography on 1,129 lesions with coronary stenosis, and the
predictive accuracy of FFR was 24.5% when using DS ≥ 50%
as the main criterion. In another study, invasive FFR, based
on DS coronary angiography, was performed on 200 patients
with coronary stenosis, and the predictive accuracy of FFR was
only 26% (Curzen et al., 2014). A slightly increased accuracy of
FFR prediction (30.5%) was achieved in the work of Cho et al.
(2014), who compared the results of invasive FFR and coronary
angiography on 643 lesions with coronary stenosis and used DS
as the only criterion. Based on DS of coronary angiography to
predict FFR, especially angiography-derived FFR, it had some
limitations. The angiography-derived FFR was invasive detection
for patients and inconveniently derived for cardiologists (Tu
et al., 2016; Westra et al., 2018). Geng et al. (2021) presented
that angiography-derived FFR ignored the influence of individual
risk factors of patients [such as gender, age, heart rate (HR),
and so on] on predicting FFR. Based on the available literature,
and the limitedly used DS of coronary angiography to predict
FFR, there is a clear urgency to develop a new method to
calculate FFR.

Some independent risk factors (such as gender and the
length of coronary stenosis) have been confirmed to be strongly
correlated with FFR (Kim et al., 2012; Westergren et al.,
2017). These independent risk factors have been applied to the
prediction of FFR and showed clear improvements in predictive
accuracy. Natsumeda et al. (2015) derived a scoring system based
on DS, the extent of stenosis, bifurcation, and the length of
stenosis and managed to increase the prediction accuracy by
11.8% when compared to the application of DS and coronary
angiography as the only criterion. In another study, Wong et al.
(2015) proposed the DILEMMA score for the prediction of FFR;
this involved DS, the length of stenosis, and the myocardial
jeopardy index and improved the predictive accuracy by 22.2%
when compared with a method that was based only on DS.
Subsequently, Matar et al. (2016) developed a predictive method
for FFR that was based on gender, DS, the length of stenosis,
and the structure of the left anterior descending (LAD), and
the resulting predictive accuracy of this method reached 73.5%.
However, these studies incorporated a limited number of risk
factors (<4). In addition, the relative weighting of each of the
factors used in these studies was derived from the qualitative
perspective of empirical judgment of clinicians. The predictive
accuracy of these studies was insufficient to be applied by
angiographers when compared to the method described by
Taylor (84.3%) (Koo et al., 2011). Therefore, it is necessary

to develop a new predictive method for FFR that integrates
multiple independent risk factors and quantitatively calculates
the corresponding weightings, thus improving the predictive
accuracy for FFR.

In this study, we screened the existing literature and
applied the improved analytic hierarchy process (IAHP) to
identify multiple independent risk factors. We calculated the
corresponding weightings for these factors and developed a new
method for predicting FFR, which was subsequently validated
using 253 clinical cases that underwent invasive FFR and
coronary angiography.

METHODS

Constructing a Hierarchical Structure for
the Prediction of FFR
First, we screened the existing literature to identify the
independent risk factors for predicting FFR in the coronary
artery. Our retrieval strategy included scanning two databases
(PubMed and Web of Science) for a series of query terms
(coronary hemodynamic, or FFR and risk factors) in articles
published up to December 2020. Next, two investigators
independently screened the abstracts, titles, and full text (when
appropriate). Then, they assessed the quality of the studies using
the Newcastle–Ottawa Scale (NOS), including selection (0–4
points), comparability (0–2 points), and exposure (0–3 points),
as described previously (Pham et al., 2019; Tian et al., 2020).
We focused on the literature where the number of evaluation
points was 6 or more and included the odds ratios of the
independent risk factors. Next, we constructed a hierarchical
structure for predicting FFR, including target, intermediate, and
variable layers.

Based on the odds ratio, we used the IAHP and hierarchical
structure to determine the relative weighting of each element.
To do this, we first constructed an importance degree matrix,
solved the feature vector and the maximum characteristic root
of the matrix, evaluated the consistency of the odds ratio and
importance degree of each element, and finally calculated the
total weighting (Kayet et al., 2018; Han et al., 2020).

Constructing the Importance Degree Matrix
The importance degree matrix, showing a comparison between
every two elements at the intermediate layer and the variable
layer, was derived from the odds ratios of each element. An
importance degree was assigned in the importance degree matrix
by comparing every two elements; this ranged from 1 (equally
important) to 9 (extremely important), such that the importance
degree was more than 0, or 1/9 (equally important) to 1
(extremely important) in the opposite case (Kharat et al., 2019;
Mokarram et al., 2020).

If Aij represents the importance degree for comparing the
element i with element j (i, j =1, 2, 3, 4, 5, 6) in the importance
degree matrix, then i and j represent the coordinates of the row
and column vector in the importance degree matrix. If Aij > 0,
then 1/Aij is the importance degree determined when comparing
j with i (Aij = 1, 2, 3. . . , 9; 1/ Aij = 1, 1/2, 1/3. . . , 1/9).
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Solving the Feature Vector and Maximum

Characteristic Root
After constructing the importance degreematrix, we then derived
its feature vector and the maximum characteristic root via matrix
transformation. The weighted values (from the element of the
variable layer to the element of the intermediate layer, or the
element of the intermediate layer to the element of the target
layer) were derived from the element of the normalized feature
vector (Kayet et al., 2018).

Consistency Evaluation
The consistency of the odds ratios (obtained from the literature)
was converted to the importance degree in the importance
degree matrix and evaluated using the consistency index (CI) and
random consistency ratio (RCR). The CI was determined by the
formula shown in Equation (1).

CI =
MCR− n

n− 1
(1)

In Equation (1), MCR represents the feature vector, and n
represents the order of the matrix.

A CI equal to 0 represented the complete consistency, while
a CI close to 0 represented the satisfactory consistency of the
importance degree matrix. As CI increased, the inconsistent odds
ratios that were apparent in the literature became more serious
once converted and incorporated into the importance degree
matrix. The RCR was calculated as shown in Equation (2).

RCR =
CI

K
(2)

In Equation (2), K represents the constant related to n. For
example, when n was 3, 4, 5, and 6, the corresponding K value
was 0.58, 0.96, 1.12, and 1.24, respectively.

A RCR ≤ 0.1 indicated good consistency with regard to
the odds ratio obtained from the literature when converted
into importance degrees. Otherwise, we needed to re-adjust the
importance degree in the importance degree matrix.

The normalized feature vector of the importance degree
matrix was the weighted values of the elements among layers. The
total weighted values of the elements from the variable layer to
the target layer originated from themultiplication of the weighted
values through the variable layer to the intermediate layer.

A Scoring Form Based on the Total
Weighted Values for the Elements
The weighted values of the elements in the hierarchical structure
to predict FFR were excessive. Consequently, it was inconvenient
for the cardiologists to identify which patients should undergo
FFR. Therefore, to provide a convenient application for
cardiologists, we proposed a scoring form that included the
elements with the highest total weighted values within the seven
elements selected for FFR prediction.

A scoring form was created using the seven selected elements,
and the scores were derived from the weighted values. The total
score available on the scoring form was 10 points, such that the
total score of the selected elements for a patient represented the

final score. The higher the final score, the lower the FFR in the
coronary artery ≤ 0.8.

Study Population
A total of 272 consecutive patients attending the Beijing Anzhen
Hospital of the Capital Medical University were enrolled between
December 2017 and April 2019. Clinical information was
available for all these patients, and all underwent coronary
arteriography, transthoracic echocardiography, and invasive FFR
measurement. Patients were excluded if they had unstable angina,
allergy to contrast agents and vasodilators, multivascular stenosis
disease, valvular disease, microcirculation disturbance, a history
of myocardial infarction, coronary artery bypass grafting, and
PCI. Finally, 253 consecutive patients with single-vessel stenosis
were enrolled in the study.

Transthoracic Echocardiography Analysis
The aortic velocity (AV) of all the 253 patients with available
echocardiographic data was measured by an experienced
echocardiographic doctor. The left ventricular ejection fraction
(LVEF) and left myocardial mass (LVM) were calculated by an
empirical formula based on the structure of the heart (D’Andrea
et al., 2012).

The Analysis of Angiographic and Physiological

Measurements
Coronary angiography was performed using standard techniques
to confirm the DS, location of stenosis (LS), type of coronary
artery distribution (TCAD), and collateral circulation (CC).
To induce maximum hyperemia, intravenous adenosine (140
µg/kg/min) was administrated through the central vein. Next,
we obtained the pressure waveform of the aortic pressure (Pa)
and distal arterial pressure (Pd) under maximum hyperemia and
calculated the FFR as the ratio of the mean Pd to the mean Pa
(Zhang et al., 2012; Taylor et al., 2013).

Statistical Analysis
Data analyses involved clinical statistics, coronary angiography,
and transthoracic echocardiography. Continuous variables are
presented as means, while categorical variables are presented as
numbers and percentages.

To evaluate the performance of the newly developed method,
we used the new tool to predict FFR in 253 consecutive patients
with coronary stenosis and then compared these data with those
derived from the existing methods and invasive FFR.

Next, we calculated the area under the receiver-operating
characteristic curves (AUC) with a 95% confidence interval
(CI) to evaluate the accuracy of FFR predication by comparing
previous methods with the scoring form. The results of this
analysis were then used to determine the critical value of
the final score to obtain the metrics of sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV), with 95% CI by comparing with the results derived from
invasive FFR.
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TABLE 1 | The distribution of the included eight pieces of literature.

First author Cases size Cases source Risk factors NOS score

Aoi et al. (2020) 423 Medical center Age, DS 7

Borren et al. (2017) 260 Hospital Age, gender, BMI, LS 9

Kurtul and Ozturk (2017) 2,286 Hospital CC, age, LVEF 8

Marco et al. (2017) 2,885 Hospital Age, HR, LVM 8

Megna et al. (2019) 8,816 Institute Age, gender 8

Safak et al. (2019) 170 Hospital LVEF, AV 6

Vidalpetiot et al. (2018) 22,672 Hospital DP, SP 6

Wang et al. (2019) 269 Hospital TCAD 7

FIGURE 1 | Hierarchical structure about the predicting fractional flow reserve (FFR).

RESULTS

We retrieved 1,652 articles from the existing literature by
screening the PubMed and Web of Science databases. We
excluded the articles that were duplicated between the two
databases and those published prior to 2000. We also excluded
the review articles or articles with inconsistent research content.
Finally, eight articles were identified which passed the NOS
system inspection and adopted the odds ratio for risk factors, as
shown in Table 1.

Next, we used the results of our literature analysis to construct
a hierarchical structure for predicting FFR. The target layer
included the predicting FFR. The intermediate layer included
clinical statistics, coronary angiography, and cardiac ultrasound.
The variable layer included gender, age, HR, systolic pressure
(SP), diastolic pressure (DP), body mass index (BMI), LS, DS,
TCAD, CC, AV, LVEF, and LVM, as shown in Figure 1.

Based on the odds ratios of the elements, we constructed an
importance degree matrix (B, C1, C2, and C3) of the comparison
between every two elements at the intermediate layer and the
variable layer was constructed, as shown in Figure 2.

The matrix B represented the importance degree matrix from
the elements of the intermediate layer to the target layer, while
the matrices C1, C2, and C3 represented the importance degree
matrix from the elements of the variable layer to the intermediate
layer. At each of the matrices (B, C1, C2, and C3), the diagonal
of the importance degree matrix was 1. This represented that the
clinical statistics, coronary angiography, and cardiac ultrasound,
as compared with itself, the elements of the gender, age, HR,
SP, DP, and BMI compared with itself, LS, DS, TCAD, and CC
compared with itself, AV, LVEF, and LVM compared with itself
were equally important. In matrix B, numbers 3 and 5 showed
that coronary angiography was slightly more important than the
clinical statistics and clearly more important than the cardiac
ultrasound. In matrix C1, numbers 1/3 and 1/5 included in the
first column vector demonstrate that the SP was slightly less
important and significantly weaker than the gender.

Table 2 shows that the weighting of each element in one
layer to the element in the upper layer was derived from the
normalized feature vector of the importance degree matrix. For
example, the weighted value of 0.51 represented the degree of
influence from the coronary angiography to the predicting FFR
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FIGURE 2 | The distribution of the importance degree matrix.

TABLE 2 | The distribution of weight values among the elements of the layers.

Importance degree matrix Weight value

B 0.32, 0.51, 0.17

C1 0.35, 0.1, 0.093, 0.11, 0.091, 0.256

C2 0.288, 0.387, 0.242, 0.083

C3 0.13, 0.59, 0.28

TABLE 3 | The distribution of importance degree matrix consistency.

Importance

degree matrix

MCR CI K RCR

B 3.05 0.0005 0.58 0.0009

C1 6.11 0.022 1.24 0.0177

C2 4.043 0.014 0.96 0.0146

C3 3.01 0.005 0.58 0.0086

in the feature vector of matrix B, 0.35 represented the degree of
influence from the factor of the gender to the clinical statistics in
the feature vector of matrix C1, 0.387 represented the degree of
influence from the DS to the coronary angiography in the feature
vector of matrix C2, and 0.59 represented the degree of influence
from the LVEF to the cardiac ultrasound in the feature vector of
matrix C3.

Table 3 shows that the resulting CI was close to 0 and RCR
was <0.1. This indicates that the odds ratios in the literature
showed good consistency when converted and incorporated into
the importance degree and importance degree matrix.

Table 4 shows the total weightings and the impact of each
element in the variable layer for the prediction of FFR. DS had
the greatest impact on predicting FFR, followed by the elements
of LS, TCAD, gender, LVEF, BMI, and so on.

Table 5 shows that the CI was close to 0 and that the RCR was
<0.1, thus indicating that the sequence of the total weight values
was reasonable with regard to the impact of an element in the
variable layer when predicting FFR.

The clinical variables of the 253 patients, along with the
baseline demographics, are summarized in Table 6. Of these,
there were 253 vessels that were assessed with invasive FFR. More
than half of the cases in which FFR was measured were men
(70.36%). Mean patient age was 59.2± 12.5 years, while the mean
LVEF value was 57.7 ± 19.3%. The right dominant pattern was
the most represented coronary artery distribution (73.91%). Only
a small number of patients had CC (3.95%).

Table 7 presents the distribution of DS and the vessels that had
undergone FFR measurement. Most of the measured FFRs were
related to the LAD artery (81.03%). More than half of the patients
had an intermediate degree of stenosis (51.8%).

Table 8 shows that a scoring form that includes elements with
a higher total weighting within the seven elements can be used to
predict FFR. LS and TCAD are the categorical variables. Previous
studies showed that male of gender, the LAD stenosis of LS, and a
right dominant pattern of TCAD exhibited a significant influence
on the prediction of FFR (Sakamoto et al., 2013;Matar et al., 2016;
Marco et al., 2017;Wang et al., 2019). Therefore, gender, the LAD
stenosis, and the right dominant pattern were separately assigned
1.4, 1.8, and 1.5 points, respectively. Then, DS was assigned 2.4
points, and LVM was assigned 0.7 points. Finally, the mean total
score was determined for the 253 single vessels (6.7± 2.9 points).

The AUC of the scoring form was 84.3% (95% CI: 79.2–
89.4%), which was larger than the existing methods, including
the use of DS alone of 65.3% (95% CI: 61.5–69.1%), and included
a simplified scoring system of 74.8% (95% CI: 68.4–81.2%), as
shown in Figure 3. The critical value of the proposed scoring
form was ≥6.2 points, which implied that FFR ≤ 0.8. The
sensitivity of the FFR predictionwas 94.3% (95%CI: 91.9–96.5%),
the specificity was 76.2% (95% CI: 69.9–82.5%), the NPV was
93.4% (95% CI: 89.2–97.6%), and the PPV was 78.9% (95% CI:
74.2–83.6%).

DISCUSSION

In this study, we analyzed 37,781 clinical cases, identified seven
independent risk factors, and created a new method to improve
the prediction accuracy of FFR. We used IAHP to derive the
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TABLE 4 | The sequence of total weight values.

Target layer Intermediate layer Weight value Variable layer Weight value Sequence

Predicting FFR Clinical statistics 0.32 Gender 0.35 4

Age 0.1 10

HR 0.093 11

SP 0.11 12

DP 0.091 9

BMI 0.256 6

Coronary angiography 0.51 LS 0.288 2

DS 0.387 1

TCAD 0.242 3

CC 0.083 8

Cardiac ultrasound 0.17 AV 0.13 13

LVEF 0.59 5

LVM 0.28 7

TABLE 5 | The distribution of total weight values consistency.

CI K RCR

0.015 0.979 0.0153

weight value of each risk factor and constructed the importance
degree matrix. Statistical results showed that compared with
the clinical diagnosis of the 253 patients (by invasive FFR and
coronary angiography), the predictive accuracy of our newly
proposed scoring form was 84.3%, and this was higher than the
accuracies reported in previous studies (Park et al., 2012; Cho
et al., 2014; Curzen et al., 2014; Matar et al., 2016). The main
contributors to this study that led to a high prediction accuracy
were (1) the identification of seven independent risk factors and
(2) the optimized quantitative analysis of the weightings of the
risk factors based on odds ratios.

Numerous previous studies have shown that the prediction of
FFR had some limitations whenDSwas used as the only criterion.
Many studies showed that the prediction accuracy of FFR using
DS was low (≤35%) (Park et al., 2012; Cho et al., 2014; Curzen
et al., 2014). Angiography-derived FFR was invasive detection
and ignored individual risk factors of patients to predict FFR
(Kogame et al., 2020; Suzuki et al., 2020; Ding et al., 2021). With
the development of predictive FFR technology, some studies,
including case reports, have shown that other risk factors besides
DS can also have a significant impact on the prediction of FFR.
For example, Taylor et al. (2017) showed that changes in the LVM
had a significant impact on FFR changes. In another study, Lee
et al. (2015) demonstrated that LAD stenosis was an independent
risk factor for the prediction of FFR. Sakamoto et al. (2013)
reported an association between the right dominant pattern and
FFR prediction based on the extent of the myocardial perfusion
area. Gioia et al. (2020) evaluated the significant impact of LVEF
changes on changes in the FFR. In addition, clinical statistical
studies, based on big data, showed that some basic physiological
indicators (such as gender and BMI) can also be regarded as
independent risk factors for predicting FFR. On the one hand,

TABLE 6 | Baseline demographic and clinical characteristics.

Variable Study population

Number Percent

Gender

Male 178 70.36%

Female 75 29.64%

Age (years) 59.2 ± 12.5

BMI (kg/m2) 23.6 ± 5.3

HR (beat per minute) 67.5 ± 22.5

SP (mmHg) 126.4 ± 33.6

DP (mmHg) 74.1 ± 25.9

CC 10 3.95%

AV (m/s) 1.27 ± 4.63

TCAD

Left dominant pattern 26 10.38%

Right dominant pattern 187 73.91%

Balanced dominant pattern 40 15.81%

LVEF 57.7% ± 19.3%

LVM (g) 148.56 ± 25.6

men have a larger vessel size and myocardial mass and a lower
prevalence of microvascular diseases, than women, and these
factors are known to be related to the occurrence of FFR ≤ 0.8
(Kim et al., 2012; Matar et al., 2016; Westergren et al., 2017).
On the other hand, as BMI increases, demand of an individual
for cardiac blood flow increases, but the coronary blood supply
shows a decline, thus leading to an FFR ≤ 0.8 (Matar et al.,
2016; Vidalpetiot et al., 2018). However, due to the limitations
in clinical data, only a few risk factors were used to establish the
prediction systems used in these previous studies. Therefore, a
comprehensive and analytical study of all such risk factors was
urgently required. Our analysis led to the development of a new
method for predicting FFR that exhibited high levels of accuracy.

Numerous previous studies have proved that the weighted
calculation of independent risk factors, based on the subjective
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TABLE 7 | General diameter stenosis (DS) and the vessels with measured

fractional flow reserve (FFR).

Variable Number Percent

Measured FFR vessels 253 100%

LAD 205 81.03%

LCX 33 13.04%

RCA 15 5.93%

DS (%)

30–49 13 5.1%

50–69 131 51.8%

70–90 105 41.5%

90 or more 4 1.6%

LCX, left circumflex artery; RCA, right coronary artery.

TABLE 8 | The distribution of the scoring form.

Variable Scoring value

Male gender 1.4

LAD stenosis 1.8

DS ≥ 60% 2.4

Right dominant pattern 1.5

LVEF ≤ 58% 1.2

LVM ≥ 148g 0.7

BMI ≥ 23.5 1

Total score 10

FIGURE 3 | Receiver-operating characteristic (ROC) curve analysis for

determining the area under curve (AUC).

empirical judgment of the clinicians involved, had obvious
limitations (Natsumeda et al., 2015; Wong et al., 2015; Matar
et al., 2016). Previous studies have explored the application
of a quantitative analysis for the weightings of independent
risk factors in order to improve the predictive accuracy
for FFR. Biasco et al. (2015) showed that the qualitative
analysis of weightings for lesion characteristics and supply

area led to improvements in the predictive accuracy of FFR,
based on the multivariate analysis of clinical cases. Kang
et al. (2013) explained the association between the qualitative
analysis of the weightings of gender, age, and anatomy-based
structural characteristics; this led to a clear improvement in
predictive accuracy for FFR. In another study, Lee et al.
(2019) demonstrated that the qualitative analysis of weightings
for anatomy-based models, adverse plaque characteristics, and
adverse hemodynamic characteristics led to improvements in the
predictive accuracy for FFR. Gaur et al. (2016) reported that
the qualitative analysis of the weightings for DS, low-density
non-calcified plaques, and adverse hemodynamic characteristics
had a significant impact on improving the predictive accuracy
for FFR. However, these studies ignored the direct or indirect
influence of independent risk factors and interactions among the
weightings for independent risk factors and the improvement of
predictive accuracy for FFR. Predicting FFR using the proposed
method optimized the calculation of the weighting of risk factors
into a comparison of importance degree based on the odds
ratio and was divided into three layers, namely, the target,
intermediate, and variable layers, using the method of IAHP.
Based on IAHP, FFR was predicted by way of decomposition,
comparison, and judgment; the model also featured a systematic
and integrated approach. The advantage of using the IAHP tool
was the generation of weightings for key elements, including
seven independent risk factors, clinical statistics, coronary
angiography, and cardiac ultrasound; these factors can all
influence the prediction of FFR, either directly or indirectly.
Consequently, our method ensured that we considered the
relationship between every element and the accurate prediction
of FFR. This means that the extent of different effects was
quantified in a clear and explicit way. The widespread application
of transportation planning also proved that IAHP exhibits high
performance with regard to improving the predictive accuracy
of optimized protocols (Zhang et al., 2013; Ghorbanzadeh et al.,
2018; Moslem et al., 2019). The proposed method involved the
quantitative assessment of weightings for seven independent
risk factors based on comparisons of weightings for every
two independent risk factors by IAHP. The proposed method
exhibited improved levels of accuracy for the prediction of FFR
when compared with previous methods.

Limitations and Future Work
Despite the valuable information derived from our newly
developed method with regard to improving the predictive
accuracy for FFR, several limitations are notable. First, clinical
cases were obtained from eight pieces of literature, and
it was not good enough. So, we plan to enroll clinical
cases from the database of hospitals in our future clinical
research. Second, the weighting of independent risk factors
including gender, LS, TCAD, and CC had only one value
though these independent risk factors had multiple types.
For example, the LS can be further divided into proximal
stenosis, bifurcation stenosis, and distal stenosis. So, we plan
to further optimize the predicted layered structure to calculate
the weight of each independent risk factor. Finally, 253
clinical cases that had undergone invasive FFR and coronary
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angiography were recruited from a single-center database.
The diversity of cases may have some deficiencies. Future
studies should aim to acquire the diversity of cases from
multiple centers.

CONCLUSION

In this study, we developed a new method for the prediction
of FFR that was based on multiple independent risk factors
that were identified from the published literature. We also used
IAHP to calculate the relative weightings of these factors so as to
improve the predictive accuracy of FFR. Besides the commonly
used DS, we should also consider a range of other independent
risk factors, including gender, LS, TCAD, LVEF, LVM, and BMI.
These risk factors could help to improve the predictive accuracy
for FFR. Collectively, the data from this study indicate that the
newly developed method can effectively improve the prediction
accuracy for FFR.
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