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a b s t r a c t

Motivation: One of the most relevant mechanisms involved in the determination of chromatin structure is 
the formation of structural loops that are also related with the conservation of chromatin states. Many of 
these loops are stabilized by CCCTC-binding factor (CTCF) proteins at their base. Despite the relevance of 
chromatin structure and the key role of CTCF, the role of the epigenetic factors that are involved in the 
regulation of CTCF binding, and thus, in the formation of structural loops in the chromatin, is not thoroughly 
understood.
Results: Here we describe a CTCF binding predictor based on Random Forest that employs different epi-
genetic data and genomic features. Importantly, given the ability of Random Forests to determine the re-
levance of features for the prediction, our approach also shows how the different types of descriptors 
impact the binding of CTCF, confirming previous knowledge on the relevance of chromatin accessibility and 
DNA methylation, but demonstrating the effect of epigenetic modifications on the activity of CTCF. We 
compared our approach against other predictors and found improved performance in terms of areas under 
PR and ROC curves (PRAUC-ROCAUC), outperforming current state-of-the-art methods.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The three dimensional structure of chromatin is one of the key 
elements that determines how gene expression is controlled. There 
are several mechanisms involved in the maintenance and determi-
nation of chromatin structure [1]. Among these, one of the most 
relevant is the formation of structural loops that are also related 
with the conservation of chromatin states [2]. Most of these loops 
have two copies of the CCCTC-binding factor, also known as CTCF 
protein, at their base [3]. Despite the relevance of chromatin struc-
ture and the key role of CTCF, very little is still known about the 
epigenetic factors that are involved in the regulation of CTCF 

binding, and thus, in the formation of structural loops in the chro-
matin. CTCF is a zinc finger protein expressed ubiquitously in most 
vertebrate tissues, initially characterized as a negative regulator of 
the c-myc gene [4,5]. CTCF is capable of DNA binding due to the 
action of its 11 zinc fingers which can bind to multiple conserved 
binding sites [6,7] that are located along the whole genome [8] but 
predominantly on intergenic regions [8]. Importantly, CTCF can also 
bind to less conserved DNA sequences, a fact that led to the dis-
covery of cell-specific patterns of CTCF binding sites predominantly 
located inside introns [9]. CTCF is the most important insulator re-
ported in vertebrates [10] and it has a prominent role as a chromatin 
architecture regulator mediating different epigenetic and molecular 
functions. CTCF modifies the genetic expression landscape as a re-
pressor or as a transcriptional activator due to its architectural role, 
and it is capable of acting as a chromatin insulator, interfering di-
rectly between enhancers, silencers, and promoters [6,11]. CTCF is 
also involved in gene imprinting, chromosome X inactivation and 
conservation of unmethylated regions in the whole genome [12,13].
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Another functional role for CTCF is its involvement on the es-
tablishment and maintenance of topologically associated domains 
(TADs), genomic regions of self-interaction with increased in-
tradomain contacts [14]. CTCF can also form chromatin loops due to 
the interaction of two CTCF-bound domains inside a TAD located at 
distant locations in the whole genome [3,15]. However, CTCF is only 
capable of forming loops when the bound CTCF binding sites are 
located in a convergent orientation, while divergent CTCF sites are 
unable to make loops [16]. CTCF is also capable of interacting with 
cohesin to allow proper loop stabilization, but both CTCF and co-
hesin have independent roles coordinating chromatin organization 
[17]. Since CTCF is associated with gene regulation, abnormal CTCF 
binding is related to different malignancies, such as leukemia [18], 
gastrointestinal cancer [19], lung cancer [20], cervical carcinoma 
[21], and other diseases. The role of CTCF in disease is not limited to 
gene regulation, as CTCF can prevent DNA methylation and the 
spreading of inhibitory histone marks in the promoter regions of 
tumor suppressor genes, and loss of CTCF binding can lead to an 
epigenetic silencing [22].

As changes in the CTCF landscape lead to disease, understanding 
the circumstances that determine CTCF-DNA binding will shed light 
into several disorders. There are many experimental and computa-
tional approaches that can provide new insights into how different 
proteins display different binding profiles on DNA, but the whole set 
of interrelationships between all factors involved in protein binding 
to specific DNA regions and promoters are not thoroughly known 
[23]. In this context, the determination of protein and DNA binding is 
an important but yet unsolved problem in computational biology 
and different strategies have been implemented to deal with this 
issue. Chromatin immunoprecipitation followed by sequencing [24]
(ChIP-seq) is one of the most common experimental techniques used 
to obtain protein-binding profiles in the whole genome. None-
theless, ChIP-seq experiments are expensive and experimentally 
complex [25] and it is impossible to test every cell type and tissue 
under every possible biological condition, highlighting the need for 
computational approaches to complement experimental results [26]. 
To solve this issue, machine learning algorithms have been devel-
oped and applied to the problem of in vivo prediction of transcrip-
tion factor binding [27].

Machine Learning involves the use and development of computer 
systems that are able to learn and adapt without following explicit 
instructions, by using algorithms and statistical models to analyze 
and draw inferences from patterns in data. Machine Learning algo-
rithms are capable of generating mathematical models using data-
sets (“training sets”) to make predictions or decisions without being 
specifically coded to implement a task. Different Machine Learning 
approximations have been used to predict the union of a transcrip-
tion factor to DNA and there is no specific CTCF binding predictor at 
the date of elaboration of this manuscript, however, different CTCF 
loop predictors have been developed. Kai et al. [28] trained a 
Random Forest (RF) predictor integrating sequence and epigenetic 
features to predict CTCF-mediated loops from ChIP-seq data. Zhang 
et al. [29] used word2vec to predict if two convergent CTCF binding 
sites were able to form a loop using only sequence-related features. 
Lv H et al. [30] developed a neuronal convolutional model that in-
tegrates k-tuples of nucleotide frequencies, position conservation, 
position score and natural vector features to predict CTCF loops. 
Wang al [31] used a two-step RF model to predict CTCF loops. 
However, each method is dependent on earlier CTCF occupancy in-
formation, requiring ChIP-seq information or similar to generate 
predictions.

Here we describe a CTCF binding predictor based on RF that 
employs different epigenetic data and genomic features. 
Importantly, given the ability of the RF to determine the relevance of 
features for the prediction, our approach also shows how the dif-
ferent types of descriptors impact the binding of CTCF, confirming 

previous knowledge on the relevance of chromatin accessibility and 
DNA methylation, but demonstrating the effect of epigenetic mod-
ifications on the activity of CTCF.

2. Methods

2.1. Dataset collection and processing

The bisulfite sequencing data of DNA methylation, the ChIP-Seq 
data of histone modifications (H3K9ac, H3K27ac, H3K4me3, 
H3K4me2, H3K4me1, H3K79me2, H3K9me3, H3K27me3, 
H3K36me3, H4K20me1 and H2AFZ), the data from assays for 
transposase-accessible chromatin using sequencing (ATAC-Seq), and 
ChIP-Seq data of CTCF for all four cell lines (GM12878, K562, HeLa 
and SK-N-SH) were downloaded from the ENCODE project (http:// 
genome.ucsc.edu/ENCODE/downloads.html). We used FIMO [32]
(default values, –alpha 1.0 –max-stored-scores 100000 –motif all 
–motif-pseudo 0.1 –thresh 1e-4) to identify CTCF binding motifs in 
the whole genome using the JASPAR [33] CTCF matrix profile 
(MA0139.1) and the GRCh38 XY Human Reference Genome. All data 
types were used as available at the ENCODE web page or processed 
using exactly the same protocol reported by them if needed.

2.2. Division of genome regions around CTCF motif

We next selected a window centered on each FIMO-predicted 
CTCF binding site. This window was divided into bins using different 
sizes. Bins were encoded as binary vectors that indicated the pre-
sence or absence of a feature overlapping with it, for example an-
other CTCF binding motif, each of the histone modifications, DNA 
methylation or if the bin was annotated as being accessible (Fig. 1). 
Vectors for all bins for a CTCF binding site were joined into a single 
vector describing the site and its surroundings up and downstream. 
We tested different window and bin sizes (Supplementary Methods) 
and found that in terms of performance, a window size of 2kbp 
around the CTCF binding site with a bin size of 25 bp yielded better 
performance in terms of F-Score on the GM12878 cell line (Fig. S1).

2.3. Random Forests

We used Scikit-learn [34] to split each cell line matrix into train 
and test sets as follows: 2/3rds of the data were used as a training 
set, while the remaining 1/3rd of the data was used as a test set. We 
tested each cell line against itself, and used the CTCF ChIP-Seq data 
from each cell line as truth values. We also used Scikit-learn to 
generate the RFs and reported Precision, Recall and F-Score as a 
measure of performance (Table 1, see formulas below). Afterwards, 
we picked 3 of the 4 cell lines as a training set and tested against the 
remaining cell line, while using the same performance measures 
(Table 2). We also calculated ROC and PR curves, and reported the 
AUC (Fig. 2). To properly understand which features were relevant, 
we obtained the relative importance of each feature and plotted it 
using R [35] and ggplot2 [36] (Fig. 3).

2.4. Benchmarking

To compare the performance of the RF classifier we tested it 
against other methods to predict protein binding [37,38] using de-
fault values for each tool, and the same accessibility and CTCF ChIP- 
seq results for each cell line. We tested the GM12878 cell line using 
chr20 as a testing set and the remaining chromosomes as a training 
set. We calculated ROC and PR curves, and reported the AUC of each 
predictor (Fig. 4).
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2.5. Evaluation metrics

We employed classic classification metrics [39] commonly em-
ployed to evaluate the performance of binary classification models. 
The metrics employed are Precision (P), Recall (R) and F1-score (F1), 
calculated as follows:  

P = TP/(TP+FP)                                                                          

R = TP/(TP+FN)                                                                          

F1 = 2PR/(P+R)                                                                           

where a true positive (TP) is a CTCF binding site occupied in a CTCF 
ChIP-Seq experiment properly predicted; a false positive (FP) is a, 
unbound site predicted as bound; and a false negative (FN) is a 
bound site predicted as unbound.

2.6. Availability and Implementation

We used python3 with the scikit-learn library [34] to perform all 
experiments reported in this work. All code with example files is 
freely available under GNU v3 license at https://github.com/net-
work-biolab/RF_CTCF_BP.

3. Results

Using FIMO we were able to identify 57896 possible CTCF binding 
motifs in the whole genome. We selected 4 cell lines and down-
loaded CTCF ChIP-seq experiments to assign which predicted sites 
were bound in each cell line. The sites with CTCF bound were con-
sidered positive examples, and the unbound sites were considered 
negative examples. For each cell line, we divided the dataset and 
used 2/3rds as a training set, while the remaining 1/3rd was used as 
a test set. We next used these sets to train a RF classifier to predict 
the labels of the test set and calculated precision, recall, and F-Score 
as measures of performance. In each cell line we reported a precision 
of over 0.86, with SH-N-SH attaining a precision of 0.9. In terms of 
recall, on each cell line we obtained a precision of over 0.83, with a 
precision of 0.88 on GM12878. In terms of F-Score, most cells had a 
score of 0.86, with the exception of GM12878 which had a score of 
0.87 (Table 1).

To increase the amount of examples for the training set and to 
check if the RF predictor was able to generalize properly, we decided 
to use three of the four cell lines as a training set and the remaining 
cell line as a test set. While precision and recall improved in 
GM12878 and K562, in the two remaining cell lines precision and 
recall worsened, decreasing from 0.85 to 0.84 in HeLa, 0.83–0.81 in 
SK-N-SH and F-Score to 0.85 in SK-N-SH (Table 2). To compare the 
performance on each cell line, we obtained the class probabilities for 
each cell line, and plotted ROC and PR curves. GM12878 had the 
highest AUC in both ROC and PR curves, followed by K562, SK-N-SH 
and HeLa (Fig. 2).

There is evidence that different epigenetic modifications are able 
to determine CTCF binding, but the complete dynamics of CTCF 
binding are not fully understood [40]. To understand the contribu-
tion of each feature to the binding prediction, we obtained the re-
lative importance of each feature used and plotted it for each cell 
line prediction. In the 4 cell lines, the most relevant feature by far is 
DNA accessibility, followed by histone marks and DNA methyla-
tion (Fig. 3).

We compared the RF classifier to assess its performance against 
other DNA-protein binding predictors [37,38], and plotted ROC and 
PR curves to evaluate performance (Fig. 4). We predicted CTCF 
binding sites in the chromosome 20 of the GM12878 cell line, using 
the remaining chromosomes as a training set. The RF classifier 

Fig. 1. Representation of the feature matrix. We predicted every CTCF binding site (CTCFBS) with FIMO, and for each predicted site we generated a window of 1000 bp upstream 
and downstream. After generating windows, we generated sub-bins of 25 bp inside each window. If a feature overlaps with a bin, the value of said feature in said position is 1, if 
not, the value for the bin for said feature is 0. We considered DNA accessibility, DMA methylation, and different histone marks as features. The generated matrixes were used as 
input for a random forest classifier, and the importance of each feature in each position was also reported.

Table 1.- 
Precision, Recall and F-Score of 4 cell lines being tested against themselves using a 
random forest classifier. 

Cell line Precision Recall F-Score

GM12878 0.86 0.88 0.87
K562 0.87 0.85 0.86
HeLa 0.86 0.85 0.86
SK-N-SH 0.90 0.83 0.86

Table 2.- 
Precision, Recall and F-Score of 4 cell lines using 3 of them as a training set and testing 
against the remaining one using a random forest classifier. 

Predicted Precision Recall F-Score

GM12878 0.86 0.89 0.87
K562 0.87 0.85 0.86
HeLa 0.88 0.84 0.86
SK-N-SH 0.90 0.81 0.85
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attained a competitive performance in terms of PR-AUC and a better 
performance in terms of ROC-AUC than other tools.

4. Discussion

In this article we described the development of a new CTCF 
binding site predictor based on genomic and epigenomic features 
using a RF classifier algorithm. The main idea behind this predictor is 
its application to different research fields allowing the prediction of 
CTCF binding in the absence of ChIP-seq data using different related 
features that were not directly assessed. In this context, the fact that 
accessibility was an important feature to predict CTCF binding could 
allow us to predict binding without the need of a ChIP-seq experi-
ment. This method could also be applied in the evaluation of changes 
in CTCF binding associated with disease, as methylation is an im-
portant factor that is also related with CTCF binding and the etiology 
of different diseases. While most CTCF binding sites are conserved 
[8], there is concrete evidence of different effects that may affect 
CTCF binding on different cell types and contexts [9]. There are also 
reports of aberrant CTCF binding mediated by epigenetic marks 

[18,41], and disease-specific CTCF binding [42]. Thus, CTCF binding 
identification may provide new insights about the role of CTCF and 
its contributions in genome regulation and disease. Importantly, the 
role of epigenetic marks and epigenomic information on the binding 
of CTCF is not yet fully understood. Moreover, even if it is possible to 
determine the binding sites actually occupied by CTCF experimen-
tally, using epigenetic information to do so allows to provide distinct 
knowledge about the biological landscape of the cell derived from 
other aspects of chromatin regulation such as different activation 
states [43], and promoter [44] and enhancer [44] activity. The ad-
dition of epigenomic features resulted in improvements in the pre-
diction of CTCF binding in different cell lines, allowing the RF 
predictor to outperform state-of-the-art binding predictors [37,38]
by highlighting underlying CTCF binding patterns that could not be 
identified without the consideration of these features. As most CTCF 
sites have common binding patterns, the addition of extra predictive 
features becomes increasingly relevant to identify cell-specific ef-
fects or disease-specific effects, like aberrant CTCF binding derived 
from abnormal methylation in gastrointestinal cancers and gliomas 
[44,45]. The inclusion of these features allows resolution of context- 

Fig. 2. ROC/PR-AUC curve for each CTCF binding site prediction in each cell line tested. From the 4 evaluated cell lines, we selected 3 as a training set and predicted the remaining 
cell line. The cell line name shown is the cell line predicted. We compared the results against CTCF ChIP-Seq experiments from said cell line, calculated precision, recall, and F- 
Score, and plotted ROC and PR curves, reporting the area under each curve.
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relevant CTCF binding sites, highlighting the relevance of this pre-
dictor in comparison to non-specific predictors. While our method is 
binary, other methods also consider the amplitude and the extension 
of each feature [46]. Following this non binary line of work, an in-
teresting approach could be to consider the discrimination of dif-
ferent thresholds for CTCF binding based on epigenomic features as 
an alternative to our binary approach.

Since there are many approaches for protein binding prediction 
that can use only the presence of the binding motif and DNA ac-
cessibility for a successful binding prediction [37,38,47], we tried 
using only these two features to predict CTCF binding 
(Supplementary Methods, Fig S2). While the addition of features 
improved performance, DNA accessibility around the binding site 
remained the most important feature to assess if a site was bound in 
every analyzed cell line. There are certain features that could im-
prove prediction and might deserve consideration, for instance the 
presence of other proteins that are known to interact with CTCF, 
such as YB-1 [48] or Cohesin [49], or RNA expression [50]. CTCF 
occupancy has been considered mostly invariable with many cell 
groups sharing the same occupied CTCF binding sites, nevertheless, 
there is evidence of different cell-specific CTCF binding patterns [9]
and different epigenetic factors may be contributing to CTCF binding. 
In this context, there is evidence that DNA Methylation directly in-
terferes with CTCF binding [51], and the relative importance of the 
features used to generate the RF predictor reflected this association. 
In CD4 + T-cells, approximately 26000 CTCF binding sites were 
classified according to their similarity with the canonical motif and 
CTCF occupancy. Low-occupancy sites were found to be cell specific 
and related with active histone marks and higher gene expression 

[52], high-occupancy sites were associated with repressive histone 
marks and greater gene co-expression inside CTCF-flanked genomic 
blocks [52], and while we were able to confirm some of those as-
sociations in terms of relative importance, they don’t contribute to 
classification of bound CTCF sites as much as DNA accessibility, 
followed by DNA Methylation. There is evidence that methylation is 
related with CTCF binding and may directly interfere with its union 
to the DNA [53]. It is also known that CTCF is related with DNA 
expression and active enhancers in the same way that hydro-
xymethylation is associated with active enhancers [54]. In addition, 
CTCF also has been related to maintaining the boundaries of TADs 
and the loss of CTCF binding allows the spreading of methylation 
silencing genes, leading to the loss of the cell transcriptional land-
scape. There is supplementary evidence that the DNA sequence of 
1 kb surrounding a CTCF binding site contains information that im-
proves the prediction of CTCF binding [55], thus, it contains in-
formation related to CTCF activity. However, we decided to include 
and test longer windows surrounding the CTCF binding site. These 
tests were based on the fact that the RF reports which features are 
important in relation to their position on the sequence as de-
termined by the feature importance. In this way, features such as 
DNA methylation can be important beyond the 1 kb range. 
Since CTCF binding is related with methylation, and so is nucleo-
some repositioning, it might be interesting to evaluate if nucleosome 
repositioning is a relevant feature while building RFs. However, we 
were not able to test this feature with the available ENCODE data-
sets. While we also believe that gene expression could be an im-
portant predictor of CTCF binding, gene expression could also be 
evaluated using chromatin accessibility as a proxy. This assumes that 

Fig. 3. Relative importance of each feature in each position around the CTCF binding motif in 4 cell lines, using 3 as a training set and predicting the remaining one. The relative 
importance is the mean decrease in impurity (or gini importance) attributed to each variable when used as a splitting variable accumulated over all the generated trees in the 
random forest. Higher importance means the feature is more relevant in classification. A) GM12878 as a test set. B) K562 as a test set. C) HeLa as a test set. D) SK-N-SH as a test set.
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open chromatin is related with active gene expression, and there is 
evidence that CTCF is capable of keeping the DNA accessible by 
maintaining the border of TADs and acting as a barrier for methy-
lation [53].

CTCF binding sites are depleted for H3K27me3 and enriched with 
the histone variant H3.3, as CTCF can open chromatin, incorporating 
H3.3 and removing the H3K27me3 mark [56]. CTCF is also related 
with the H2A.Z histone variant, as removal of this histone can en-
hance CTCF binding [57]. Information about histone variants was not 
available for the evaluated cell lines, however they could be an asset 
to improve CTCF binding predictions. There is evidence that histone 
acetylation, DNA methylation, and gene expression are closely re-
lated to TF binding and facilitate accurate prediction of TF-binding 
events [58]. From the features we evaluated, we could confirm a link 
between DNA methylation and CTCF binding. Further, there is also a 
connection between histone acetylation and CTCF binding, even 
though this is a much weaker relationship when compared with 
other epigenetic signatures. In our tests, accessibility was the most 
relevant feature, and assuming a positive relationship between ac-
tive gene expression and accessibility, it is possible to employ gene 
expression as a proxy for DNA accessibility. By doing so, we would 
allow to integrate disease-related aberrant gene expression datasets 

and CTCF binding. RF models trained to predict the activity of 
transcription factors have been tested in the HeLa cell line and have 
been applied to cervical cancer [58]. This study found that TFs were 
bound to promoters of genes associated with biological processes 
such as cell proliferation and DNA repair [58]. Nonetheless, we only 
analyzed cell lines instead of complex samples. However, K562, 
HeLa-S3 and SK-N-SH are associated with certain specific types of 
cancer and it would be interesting to expand the functionality of this 
predictor to check if we are able to identify distinct CTCF binding 
patterns in different diseases. There is also evidence that H3K9ac 
and H3K27ac are important features in TF-binding prediction 
models. We were able to confirm these findings, however our most 
relevant signal was by far DNA accessibility, followed by H2A.Z, DNA 
methylation, H3K4me3, and H3K4me2. H3K9ac, H3K27ac, 
H3K4me3, H3K9ac and H3K27ac are related with activation of 
transcription, and H3K4me2 is also directly related with both tran-
scriptionally active genes and genes primed for future expression 
[61]. Moreover, our results also support the idea that repressive 
marks, such as DNA methylation, are also related with CTCF binding, 
highlighting the role of CTCF in the overall control of gene ex-
pression.

Fig. 4. ROC/PR-AUC curve for 3 different tools predicting chr20 of the GM12878 cell line and using the remaining chromosomes as a training set. 
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While our approach was successful, there are many aspects that 
could be improved. One of the greatest limitations is that we are 
constrained by the FIMO predictions, and FIMO may not be able to 
predict non-canonical CTCF binding sites using only the canonical 
motif reported in JASPAR as we did. There are other approaches that 
could be used to predict binding sites of CTCF missed by FIMO [59]. 
We did not include sequence-based information besides the pre-
sence of another CTCF binding site nearby, however there is a cor-
relation between CTCF site conservation and CTCF binding [60]. 
Information about several RNAs bound to DNA could also be an 
important feature to improve our approach considering that CTCF is 
known to interact with these RNAs, in spite of requiring evaluation 
as a predictive feature.

Our approach also blurs sequence information: we consider if a 
feature overlaps with the 25 bp bin, but we are unable to pinpoint 
exactly which base overlaps with said feature, and certain features 
acquire biological meaning depending on where they are located; as 
an example, methylation over the CTCF binding site is more relevant 
than methylation away from the binding site, and methylation over 
specific bases leads to an inability to bind CTCF. Reducing DNA 
Methylation bins from 25 bp to a base-resolution could improve 
binding prediction and it will be considered in future revisions of 
this method.

While our intention here was to build a CTCF-specific binding 
predictor, many of the ideas mentioned could be applied to other 
DNA-binding proteins. However, the assessment of this approach on 
other proteins lies beyond the scope of this project. We are planning 
to expand on the functionality of this method in the future by de-
veloping a CTCF loop predictor that would allow us to determine the 
tridimensional organization of chromatin loops.

In conclusion, we built a CTCF binding predictor to evaluate the 
binding state of CTCF binding sites using genomic and epigenomic 
features. This method is capable of outperforming other state-of- 
the-art non-specific binding predictors, using an ensemble of fea-
tures not considered by other approaches, highlighting the im-
portance of epigenomic features on the CTCF binding patterns on the 
whole human genome.
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