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Purpose. Postresuscitation neuroprognostication is guided by neurophysiological tests, biomarker measurement, and clinical
examination. Recent investigations suggest that circulating microRNAs (miRNA) may help in outcome prediction after cardiac
arrest. We assessed the ability of miR-574-5p to predict neurological outcome after cardiac arrest, in a sex-specific manner.
Methods. In this substudy of the Target Temperature Management (TTM) Trial, we enrolled 590 cardiac arrest patients for
which blood samples were available. Expression levels of miR-574-5p were measured by quantitative PCR in plasma samples
collected 48 h after cardiac arrest. The endpoint of the study was poor neurological outcome at 6 months (cerebral performance
category scores 3 to 5). Results. Eighty-one percent of patients were men, and 49% had a poor neurological outcome. Circulating
levels of miR-574-5p at 48 h were higher in patients with a poor neurological outcome at 6 months (p < 0 001), both in women
and in men. Circulating levels of miR-574-5p were univariate predictors of neurological outcome (odds ratio (OR) [95%
confidence interval (CI)]: 1.5 [1.26-1.78]). After adjustment with clinical variables and NSE, circulating levels of miR-574-5p
predicted neurological outcome in women (OR [95% CI]: 1.9 [1.09-3.45]), but not in men (OR [95% CI]: 1.0 [0.74-1.28]).
Conclusion. miR-574-5p is associated with neurological outcome after cardiac arrest in women.

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a devastating
condition, with overall survival rates lower than 10% [1].
Survival post-OHCA is associated with age, bystander

cardiopulmonary resuscitation (CPR), type of first monitored
rhythm,andtime fromcardiacarrest (CA) to thereturnof spon-
taneous circulation (ROSC) [2, 3].Whether survival rate differs
between men and women is not clear although several studies
reported that women had higher survival rates thanmen [4].
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It is well documented that the brain is highly sensitive to
ischemia, and half of OHCA survivors suffer neurological
damage which impacts their quality of life and survival [5].
Currently, most deaths after OHCA occur after withdrawal
of life-supporting therapies in patients with severe and irre-
versible neurological sequelae [6]. The decision to withdraw
life-supporting therapies is currently based on a multimodal
approach including clinical examination, electrophysiological
tests (absence of somatosensory evoked potential), electroen-
cephalography, brain imaging, and assessment of protein bio-
markers such as neuron-specific enolase (NSE) and S100b [7].
Cardiac biomarkers such as N-terminal probrain natriuretic
peptide (NT-proBNP) and high-sensitive cardiac troponin T
(hs-TnT) are associated with neurological outcome and death
after OHCA but are not included in the guidelines [7–9].
Despite this multimodal approach, predicting outcome after
OHCA, especially at an early stage and in patients with mod-
erate brain damage, is challenging and would benefit from
novel biomarkers.

MicroRNAs (miRNA) are small single-stranded RNA
molecules that regulate gene expression and are involved in
multiple pathophysiological processes. As they circulate in
the blood and reflect disease status, they are considered prom-
ising biomarkers towards personalized medicine [10]. Several
circulatingmiRNAhavebeen shown tobe associatedwithout-
come after OHCA [11]. Previous studies showed associations
between circulating levels of miR-21, miR-124-3p, and miR-
122-5p and neurological outcome after OHCA [12–15]. The
ability of brain-enrichedmiR-124-3p to predict outcome after
OHCAhas been validated in a substudy of the large TTM trial
[16]. A combined use of miR-124-3p and miR-122-5p
improved the outcome prediction in the same cohort [13].

We hereby aimed to extend previous investigations to
novel miRNA which may provide an incremental predictive
value. We focused on miR-574-5p,which is upregulated in
the blood and heart tissue from patients with ischemic heart
disease [17, 18] and in atrial tissues from patients with atrial
fibrillation [19], two frequent causes of CA [17, 20, 21]. Of
note, miR-574-5p is upregulated in the blood after intracere-
bral haemorrhage independently of the sex and, after ische-
mic stroke, specifically in men [22]. miR-574-5p is also
upregulated by oestradiol treatment in breast cancer cells
MCF-7 [20]. Hence, we centred our attention on sex differ-
ences, since the knowledge of the effect of sex on prediction
modalities after OHCA is limited.

2. Materials and Methods

2.1. Patients. Nine hundred and thirty-nine unconscious
adults admitted to an intensive care unit after an OHCA of
presumed cardiac cause were enrolled in the TTM trial, in
36 recruiting centres from November 2010 to July 2013.
The trial is aimed at evaluating the potential benefit of a tar-
geted temperature management at 33°C compared to 36°C
[23]. The TTM trial and collection of blood samples in par-
ticipating countries was approved by ethical committees of
each participating country and fulfils the declaration of
Helsinki [24]. The trial is accessible at www.clinicaltrials.gov
(NCT01020916), and the protocol of the trial is accessible at

https://clinicaltrials.gov/ct2/show/NCT01020916?term=ttm-
trial&rank=1. The design and protocol including statistical
analysis, results, and interpretations of the results of the trial
have been previously published [23, 25, 26]. Blood samples
were collected at each site and centrally stored at the
Integrated Biobank of Luxembourg, in compliance with the
International Society for Biological and Environmental
Repositories Best Practices and with International Organi-
zation for Standards (ISO 9001:2008, 17025:2005 and NF
S96-900:2011).

2.2. Endpoints. In the present substudy, the endpoint was a
poor neurological outcome at 6 months after OHCA as
assessed with the cerebral performance category (CPC) scale
[27]. CPC scores 1 and 2 are considered a good neurological
outcome. CPC scores 3 to 5 are considered a poor neurolog-
ical outcome. For each patient, the CPC score was measured
as indicated in the TTM trial protocol [25].

2.3. Measurement of miRNA Levels. Samples recovered 48 h
after ROSC were used to measure circulating levels of
miRNA by quantitative PCR as previously described and as
detailed in Supplementary Material [13, 16].

2.4. Measurement of NSE, hs-TnT, S100b, and NT-proBNP
Levels. Six months after the end of the trial, a core laboratory
measured NSE, hs-TnT, S100b, and NT-proBNP levels in
serum samples recovered 48 h after OHCA, as previously
described [8, 9, 28, 29].

2.5. Statistical Analysis. For demographic and clinical data,
the Mann-Whitney test was used to compare two groups of
continuous variables. The Chi-square test or the Fisher exact
tests were used to compare two groups of categorical vari-
ables. A p value < 0.05 was considered statistically significant.

The Mann-Whitney test was used to compare miR-
574-5p levels between two groups of patients. The Spear-
man correlation test on ranks was used to correlate miR-
574-5p levels with age, levels of NSE, S100b, NT-proBNP,
hs-TnT, miR-122-5p, and miR-124-3p.

For thepredictionofneurological outcome, univariate and
multivariable analysis with logistic regression allowed to esti-
mate the association betweenmiR-574-5p levels (log10-trans-
formed and scaled) and neurological outcome at 6 months
afterOHCA,whichwas dichotomized: CPC1or 2was consid-
ered a good outcome (0 value), and CPC 3, 4, or 5 was consid-
ered a poor outcome (1 value). 150-fold multiple imputation
was used for missing values (51 values for NSE, 36 values for
lactate). Odds ratio (OR) and 95% confidence intervals (CI)
were computed for an increase of 1 unit for continuous vari-
ables and were centred and scaled. The Akaike information
criterion (AIC) was used to estimate the prediction value of
multivariable models: a low AIC indicates a better model fit.
The likelihood ratio test was used to compare two AIC values.
The AIC is penalized by the number of variables included in
themodel allowing to avoid model overfitting due to the mul-
tiplication of covariates. The incremental predictive value of
miR-574-5p to the baselinemodel was evaluated by a decrease
of AIC and the integrated discrimination improvement (IDI).
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SigmaPlot version 12.5 was used for statistical analysis
related to descriptive results such as the demographic and
clinic feature of the patients, comparison between two groups
of patients, correlations, and logistic regression. R software
was used with the following packages (PredictABEL, lmtest)
for univariate and multivariable analysis.

3. Results

3.1. Patient Selection and Characteristics. A study design
chart is available (Figure 1). Among the 939 patients of the
TTM trial, plasma samples were available for 593 patients
enrolled in 29 of the 36 recruiting centres. Three of these
patients were excluded because of missing CPC data, allow-
ing the inclusion of 590 patients in the present substudy.
There was no difference in demographic and clinical features
between the whole TTM cohort and the present substudy
cohort (Supplementary Table 1), apart from a higher
prevalence of alcohol abuse in the TTM cohort as
compared to the present substudy (4% vs. 1.9%, respectively).

The demographic and clinical characteristics of the
study population are presented with a comparison between
patients with good neurological outcome (CPC 1-2) and
patients with poor neurological outcome (CPC 3-5), for all
patients (n = 590; Table 1) and separately for men (n = 481)
and women (n = 109; Supplementary Table 2). Eighty-one
percent of patients were men, and 49% had a poor
neurological outcome. Patients with a poor neurological
outcome were older; had more often comorbidities, longer
time between CA and ROSC, and higher initial levels of

serum lactate; and less frequently had bystander CPR
compared to patients with a good neurological outcome. A
higher proportion of patients with poor neurological
outcome presented with shock at admission and had an
initial nonshockable rhythm compared to patients with a
good neurological outcome (Table 1). There was no
difference betweenmen andwomen (SupplementaryTable 2).

3.2. Association between Circulating Levels of miR-574-5p and
Patient Characteristics. We first sought to determine poten-
tial associations between circulating levels of miR-574-5p
measured 48 h after OHCA and the age and sex of the
patients. Levels of miR-574-5p were very moderately yet
statistically significantly correlated with the age of all patients
(r = 0 16, p < 0 001, Supplementary Figure 1a), in men
(r = 0 16, p < 0 001, Supplementary Figure 1b) but not in
women (r = 0 129, p = 0 192, Supplementary Figure 1c).
There was no significant difference in miR-574-5p levels
between men and women (Supplementary Figure 1d).

3.3. Circulating Levels of miR-574-5p according to Neurological
Outcome and Temperature. Levels of miR-574-5p were higher
in patients with poor neurological outcome (CPC 3-5,
Figure 2(a)), independently of sex (Figures 2(b) and 2(c))
and of the targeted temperature management regimen
(33°C vs. 36°C, Supplementary Figure 2a-f). Interestingly,
levels of miR-574-5p were higher in patients treated at
33°C (Supplementary Figure 2g), in both women and men
(Supplementary Figure 2h-i).

All TTM patients
n = 939

No plasma sampled
n = 346 

Excluded patients n = 3
Missingdata for CPC 

n = 593

Study population
n = 590

Treated at 33°C
n = 261

Treated at36°C
n = 278 

CPC 1-2 at day 180
n = 144

CPC 3-5 at day 180
n = 117

CPC 1-2 at day 180
n = 146

CPC 3-5 at day 180
n = 132

Figure 1: Study workflow.
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3.4. Sex-Specific Association between miR-574-5p Levels and
Neurological Outcome. Levels of miR-574-5p measured 48 h
after OHCA were univariate predictors of neurological out-
come in all patients (OR [95% CI]: 1.50 [1.26-1.78], Supple-
mentary Table. 3), in men (OR [95% CI]: 1.36 [1.13-1.64];
Supplementary Table. 3) and in women (OR [95% CI]: 2.28
[1.44-3.60]; Supplementary Table. 3). Consistent with past
studies [13, 16, 28, 29], multivariable analyses included the
following variables: age, sex (female), time from CA to ROSC,
CPR, first monitored rhythm, circulatory shock on admis-
sion, initial serum lactate levels, NSE levels at 48 h, targeted
temperature regimen, and miR-574-5p levels.

As shown in Figure 3(a), age and NSE were significant
predictors of neurological outcome. After adjustment with
demographic and clinical variables, miR-574-5p remained
an independent predictor of neurological outcome in women
(OR [95% CI]: 1.9 [1.09-3.45], Figure 3(c)) but lost signifi-
cance in men (OR [95% CI]: 1.0 [0.74-1.28], Figure 3(b))
and in all patients (OR [95% CI]: 1.1 [0.87-1.42], Figure 3(a)).

We next estimated the incremental predictive value of
miR-574-5p to a baseline model including all variables
included in multivariable analyses. The AIC and the IDI were
calculated, bearing in mind that a lower AIC and a higher IDI
indicate a better predictive value. Of note, we chose to

calculate the AIC instead of the area under the curve to avoid
model overfitting. Adding miR-574-5p to the baseline clini-
cal model improved the prediction of neurological outcome
in women, as attested by a significant decrease of AIC
(p = 0 018) and an IDI of 0.04 [0.007-0.079] (Table 2). No
incremental value was found in men or in all patients
(Table 2).

3.5. Association between Circulating Levels of miR-574-5p
and Markers of Neurological and Cardiac Damage. For
all patients, and independently of sex, we observed a modest
but significant correlation between miR-574-5p and NSE
levels (r = 0 24, p < 0 001), as well as S100b levels (r = 0 29,
p < 0 001, Supplementary Table 4). Circulating levels of
miR-574-5p were modestly correlated with NT-proBNP
levels (r = 0 17, p < 0 001) and hs-TnT levels (r = 0 20,
p < 0 001; Supplementary Table 4). Interestingly, for all
these markers of neurological and cardiac injury,
correlations with miR-574-5p levels were slightly higher
for women.

3.6. Association between Circulating Levels of miR-574-5p,
miR-124-3p, and miR-122-5p. Levels of miR-574-5p were
not correlated with circulating levels of miR-122-5p

Table 1: Demographic and clinical features of the 590 patients included in the present substudy.

All patients
(n = 590)

Good outcome
(n = 299)

Poor outcome
(n = 291)

p value
(Good vs. poor)

Age (years) 65 (20-94) 61 (20-90) 68 (35-94) <0.001
Comorbidities

Hypertension 240 (41%) 102 (34%) 138 (47%) 0.001

Diabetes mellitus 86 (15%) 34 (11%) 52 (18%) 0.034

Known ischemic heart disease 163 (28%) 67 (22%) 96 (33%) 0.005

Previous MI 118 (20%) 48 (16%) 70 (24%) 0.020

Heart Failure 36 (6%) 9 (3%) 27 (9%) 0.003

COPD 55 (9%) 18 (6%) 37 (13%) 0.008

Renal failure 5 (1%) 1 (0%) 4 (1%) 0.353

Previous cerebral stroke 50 (8%) 19 (6%) 31 (11%) 0.084

Alcohol abuse 11 (2%) 4 (1%) 7 (2%) 0.513

First monitored rhythm <0.001
VF or nonperfusing VT 467 (79%) 276 (92%) 191 (66%)

Asystole or PEA 104 (18%) 16 (5%) 88 (30%)

ROSC after bystander defibrillation 7 (1%) 5 (2%) 2 (1%)

Unknown 12 (2%) 2 (1%) 10 (3%)

Witnessed arrest 529 (90%) 276 (92%) 253 (87%) 0.045

Bystander CPR 433 (73%) 241 (81%) 192 (66%) <0.001
Time from CA to ROSC (min) 25 (0-170) 20 (0-160) 30 (0-170) <0.001
Initial serum lactate (mmol/l) 6.1 (0.5-25) 5.2 (0.5-20) 6.7 (0.5-25) <0.001
Shock on admission 76 (13%) 27 (9%) 49 (17%) 0.007

Continuous variables are indicated as the median (range), and categorical variables are indicated as the number (frequency). CA: cardiac arrest; COPD: chronic
obstructive pulmonary disease; CPR: cardiopulmonary resuscitation; MI: myocardial infarction; PEA: pulseless electric activity; ROSC: return of spontaneously
circulation; VF: ventricular fibrillation; VT: ventricular tachycardia. Good outcome is CPC 1 or 2. Poor outcome is CPC 3, 4, or 5. Missing data: heart failure
status for 2 patients, ischemic heart disease status for 1 patient, hypertension status for 1 patient, previous cerebral stroke status for 1 patient, diabetes mellitus
status for 3 patients, alcohol abuse status for 1 patient, and lactate levels for 36 patients. p values < 0.05 were considered statistically significant and are in bold.
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(r = 0 06, p = 0 19), but were positively correlated with
miR-124-3p levels (r = 0 29, p < 0 001), independently of
sex (Supplementary Table 4).

4. Discussion

This substudy of the TTM trial highlighted an association
between circulating levels of miR-574-5p measured 48 h after
OHCA and patient outcome. More specifically, we observed
that this miRNA was an independent predictor of 6-month
neurological outcome in women, but not in men.

We focused on miR-574-5p in the present study because
it has been reported to be upregulated in plasma and cardiac
samples from patients with ischemic heart disease, a frequent
cause of CA [17, 18, 21]. However, circulating levels of miR-
574-5p were only modestly correlated with the cardiac
markers NT-proBNP and hs-TnT. This might be due to the
inclusion of all OHCA of cardiac origin patients in the
TTM trial, independently of the presence of ischemia.

Currently, miR-574-5p is not considered organ- or
tissue-specific. It is expressed in the human heart and liver
[30] and also in different cancer cell lines and adipose cells
[31–33]. In mice, miR-574-5p plays different roles in the
brain. It promotes the differentiation of neural progenitor
cells into neurons [34], and levels of miR-574-5p were
decreased in the brain of mice following injury by exposure
to fine particles. Increased levels of miR-574-5p restored syn-
aptic and cognitive impairment caused by fine particle expo-
sure [35]. On the other hand, patients suffering of
intracerebral haemorrhage showed an upregulation of circu-
lating miR-574-5p levels, independently of sex [22]. In our
study, circulating levels of miR-574-5p were weakly corre-
lated with NSE and S100b levels. NSE is known to be
expressed by neurons whereas S100b is expressed by glial
cells. Both are released after brain injury following CA or in
other neurological conditions such as traumatic brain injury
[28, 29, 36, 37]. Our observations do not confirm that miR-
574-5p only originates from the brain. The association
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Figure 2: Plasma levels of miR-574-5p according to neurological outcome. Plasma levels of miR-574-5p were measured 48 h after the return
of spontaneous circulation (ROSC) using quantitative PCR and were compared between patients with good (CPC 1-2) and poor (CPC 3-5)
neurological outcomes. (a): 590 patients; (b): 481 men; (c): 109 women. Box plots represent the median and quartiles. Levels of miR-574-5p
are expressed as the number of copies per microliter of plasma and are log-scaled. Plasma levels of miR-574-5p according to neurological
outcome. Plasma levels of miR-574-5p were measured 48 h after the return of spontaneous circulation (ROSC) using quantitative PCR
and were compared between patients with good (CPC 1-2) and poor (CPC 3-5) neurological outcomes. (a): 590 patients; (b): 481 men;
(c): 109 women. Box plots represent the median and quartiles. Levels of miR-574-5p are expressed as the number of copies per microliter
of plasma and are log-scaled.
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between miR-574-5p and ischemia in different contexts
(cerebral and cardiac) suggests that circulating levels of
miR-574-5p may originate from different organs during or
after ischemic-reperfusion injuries simultaneously after CA.
Further animal experiments would be needed to test whether
miR-574-5p is released from the brain and/or from other
organs simultaneously after CA. Such studies would allow
characterization of the tissue and cellular origin of miR-
574-5p which remains poorly known.

Other miRNA have been previously studied in the con-
text of OHCA, a number of them showing potential as prog-
nostic indicators [11]. In the TTM cohort, both miR-124-3p
and miR-122-5p showed strong associations with neurologi-
cal outcome [13, 16]. miR-124-3p is enriched in the brain.
The weak correlation between miR-574-5p and miR-124-3p
do not support the possibility that miR-574-5p could be
exclusively released from the injured brain after OHCA.
Since miR-122-5p originates from the liver, the absence of

All patients − n = 590

Age
Sex (female)

Time to ROSC
Bystander CPR

VT-VF
Shockon admission

Lactate
NSE

Targeted temperature
miR-574-5p

OR (95% CI)

<0.001

<0.001
0.358
0.846
<0.001
0.621
0.377

0.127
0.475
0.231

p-value

10−1 100 101 10210−2

(a)

0.842

Age
Time to ROSC

Bystander CPR
VT-VF

Shockon admission
Lactate

NSE
Targeted temperature

miR-574-5p

OR (95% CI)

<0.001

<0.001
0.357
0.616
<0.001
0.926

0.26
0.713

p-value
Men − n = 481

100 101 10110−1

(b)

Age
Time to ROSC

Bystander CPR
VT-VF

Shock on admission
Lactate

NSE
Targeted temperature

miR-574-5p

OR (95% CI)

0.011

0.052
0.920
0.215
0.003
0.194

0.459
0.360

0.024

p-value
Women − n = 109

10−1 100 10110−2

(c)

Figure 3: Sex-specific association between miR-574-5p levels and neurological outcome. Multivariable analyses (a–c) of the association
between plasma miR-574-5p levels measured 48 h after OHCA and neurological outcome in all 590 patients (a), 481 men (b) and 109
women (c). Odds ratios OR ± 95% confidence intervals (95% CI) are shown for the prediction of poor neurological outcome (CPC 3-5)
6 months after OHCA. Variables included in the models: age, sex (female), time from cardiac arrest to return of spontaneous circulation
(ROSC), bystander cardiopulmonary resuscitation (CPR), first monitored rhythm (ventricular tachycardia- (VT-) ventricular fibrillation
(VF)), circulatory shock on admission, initial serum lactate levels, NSE levels at 48 h, targeted temperature regimen, and miR-574-5p levels.

Table 2: Added value of miR-574-5p to predict neurological outcome in all patients and in men and women separately.

Models AIC p value IDI [95% CI] p value

All patients (n = 590)
Baseline model 493.7

Baseline model + miR-574-5p 494.9 0.376 (vs. baseline) 0.0009 [-0.0016; 0.0035] 0.465

Men (n = 481)
Baseline model 395.2

Baseline model + miR-574-5p 397.1 0.842 (vs. baseline) 0.0002 [-0.0005; 0.0009] 0.644

Women (n = 109)
Baseline model 109.3

Baseline model + miR-574-5p 105.7 0.018 (vs. baseline) 0.0433 [0.0071; 0.0794] 0.019

The baseline model includes age, sex, bystander cardiopulmonary resuscitation (CPR), first monitored rhythm, time from cardiac arrest to ROSC, initial serum
lactate levels, shock on admission, NSE levels at 48 h, and targeted temperature regimen. Log10-transformed miR-574-5 p values were used in these analyses.
AIC: Akaike information criteria. A lower AIC indicates a better predictive value. IDI: integrated discrimination improvement. A higher IDI indicates a better
predictive value. The statistical significance was assessed using the likelihood ratio test. A p value < 0.05 was considered significant and is highlighted in bold.
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correlation between miR-122-5p and miR-574-5p levels sug-
gests that circulating levels of miR-574-5p are not only
released by the liver, hence strengthening the assumption
that miR-574-5p could be released simultaneously by several
organs. In previous smaller-scale studies, miR-21 and miR-
122-5p were also considered potential prognostic biomarkers
[12, 14], although a recent small trial did not report signifi-
cant associations between admission levels of miR-122-5p
and all-cause mortality [15]. This lack of association might
be due to the time of measurement (admission vs. 48 h post
OHCA), and this highlights the need for future studies with
serial assessment of miRNA, from admission to a few days
after OHCA. This would determine the kinetics of miRNA
release after OHCA as well as the optimal time point(s) for
measurement, as studies on the kinetics of miRNA levels
after OHCA are sparse.

In our study, circulating levels of miR-574-5p were
higher in patients of the 33°C group. Hypothermia at
33°C induces lower clearance than hypothermia at 36°C
[38], which could be involved in this upregulation of
miR-574-5p. Simultaneously, Eskla et al. showed that, in
HeLa cells, hypothermia at 32°C for 24h increased the
expression of hypoxia-inducible factor- (HIF-) 1a [39],
and another study showed that overexpression of HIF-1a
led to miR-574-5p overexpression [40]. These results sug-
gest HIF-1a may play a role in the higher levels of miR-
574-5p observed in patients of the 33°C group. The exact
pathway (and the clinical or neurological significance)
leading to increased levels of miR-574-5p in the circula-
tion after OHCA remains to be elucidated.

Sex disparities have been reported in the context of
CA, for instance, a lower proportion of witnessed OHCA
occurring in women or the fact that women have less
OHCA from cardiac aetiology than men [41, 42]. Differences
in treatment modalities, such as the utilization of coronary
angiography, have been reported [43, 44]. Despite these,
and after adjustment with confounders, no significant differ-
ence in mortality between men and women has been
reported [44, 45], including in the TTM trial [41]. This is
consistent with our present substudy in which sex was not
associated with neurological outcome. We report here for
the first time a sex-specific association between a candidate
biomarker and outcome after OHCA. More specifically, we
present data suggesting a prognostic value of miR-574-5p
in women but not in men.

Patients after CA have higher blood levels of oestradiol
than healthy controls [46] and miR-574-5p expression
upregulated by oestradiol treatment in vitro [20]. This may
suggest that higher levels of oestradiol in the blood may
increase miR-574-5p expression, which would lead to higher
circulating levels of miR-574-5p in women. Further studies
are required to define a possible functional link between
miR-574-5p and oestradiol which may explain the different
prognostic value of miR-574-5p observed in the present
study between men and women.

From a clinical point of view, predicting neurological
outcome after OHCA represents a step forward towards per-
sonalized medicine. Predicting outcome at an early stage
after OHCA would allow clinicians to optimize therapies in

patients who would mostly likely benefit while guiding
early decision making in patients with irreversible and severe
neurological sequelae, thereby avoiding long and painful
waiting periods for relatives [11]. Novel biomarkers will
increase the accuracy of current multimodal prediction tools,
and circulating miRNA may have the potential to attain an
optimal predictive value. It will be important to conduct
future studies in a sex-specific manner to avoid extrapolating
results obtained on a mainly male population to women.

The limitations of this study are as follows: First, the
choice of miR-574-5p relied on a known association with
ischemic heart disease and atrial fibrillation while many
other miRNA are regulated in the ischemic heart and may
also deserve further investigation in the context of OHCA
[10]. Second, we did not determine the cellular origin of
miR-574-5p, which should be further investigated. Third,
miR-574-5p was measured at a single time point. Fourth,
our patient population contained only 109 women compared
to 481 men, a difference which decreased the power of the
study and emphasizes the need for additional validation.

5. Conclusion

We identified miR-574-5p as a female-specific predictor of
neurological outcome after OHCA. Our data require fur-
ther independent and large-scale testing of the ability of
miR-574-5p to predict outcome after OHCA, focusing on
sex disparities.
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