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Abstract

Next Generation Sequencing (NGS) is a powerful tool getting into the field of clinical exami-

nation. Its preliminary application in pre-implantation comprehensive chromosomal screen-

ing (PCCS) of assisted reproduction (test-tube baby) has shown encouraging outcomes

that improves the success rate of in vitro fertilization. However, the conventional NGS library

construction is time consuming. In addition with the whole genome amplification (WGA) pro-

cedure in prior, makes the single cell NGS assay hardly be accomplished within an ade-

quately short turnover time in supporting fresh embryo implantation. In this work, we

established a concise single cell sequencing protocol, ChromInst, in which the single cell

WGA and NGS library construction were integrated into a two-step PCR procedure of ~

2.5hours reaction time. We then validated the feasibility of ChromInst for overnight PCCS

assay by examining 14 voluntary donated embryo biopsy samples in a single sequencing

run of Miseq with merely 13M reads production. The good compatibility of ChromInst with

the restriction of Illumina sequencing technique along with the good library yield uniformity

resulted superior data usage efficiency and reads distribution evenness that ensures pre-

cisely distinguish of 6 normal embryos from 8 abnormal one with variable chromosomal

aneuploidy. The superior succinctness and effectiveness of this protocol permits its utiliza-

tion in other time limited single cell NGS applications.

Introduction

With wide application of PCR, FISH and DNA chip technology, medical examination has

moved into the age of molecular diagnosis in the past decade. Recently, high throughput

sequencing methods had shown very much promising adding in this age. The constantly

throughput increasing of Next Generation Sequencing (NGS) keeps lowering the unit cost of
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data generation that strongly promotes the application of NGS from an academic research tool

toward a powerful clinical examination method. One of such pioneer applications of NGS in

clinical setting is single cell sequencing based pre-implantation comprehensive chromosome

screen (PCCS) during in vitro fertilization (IVF) procedure [1–7].

World widely, the human infertility rate had increased up to 10–15% [8–10]. The assisted

reproduction, namely test-tube baby technology, is often the final resolution to against infertil-

ity in many cases. However, the success rate of conventional IVF procedure is merely 30–35%

in average, and could be even lower to 5–8% in females over age 40 [11–16]. Scientific

researches has revealed that embryo chromosomal abnormality is one of major causes of IVF

failure [17–20]. It’s estimated that chromosomal abnormalities exist in 40–60% embryos

obtained by IVF, and this ratio is increasing with the age of the female [21–28]. Under this cir-

cumstance, it’s substantially helpful for IVF success that performs preimplantation genetic

testing for aneuploidy (PGT-A) in a PCCS manner, of which a few or even a single cell biopsy

from in vitro cultured embryos are examined for genome wide chromosomal aneuploidy, then

choses the very embryo without chromosomal abnormalities to implant into the mother’s

womb [20, 25, 29–31].

A single cell genome counts for a few picogram DNA only. To obtain sufficient initiative

materials for NGS library construction, the single cell genome has to be amplified (whole

genome amplification, WGA) to millions fold first. The conventional NGS library construc-

tion is a time-consuming process including multiple steps of DNA fragmentation, blunt end

generation, adapter ligation, PCR amplification etc. The additional WGA process prior to

these steps makes single cell sequencing an even more time-consuming process. On the other

hand, there is clinical necessity that takes embryo biopsy on the day 3 (or 5) post in vitro fertili-

zation then implant a high-quality embryo into the mother’s womb on day 4 (or 6). This

requires the PGT-A procedure to be accomplished overnight. It’s almost impossible to achieve

this requirement by the conventional single cell sequencing procedure described above.

A commercial product (Takara) is able to accomplish single cell WGA simultaneously with

the sequencing library construction. The integrated WGA-NGS library construction protocol

significantly reduced the time consuming of single cell sequencing thus enable the potential of

overnight PGT-A. However, in the Takara’s sequencing library, artificial sequences containing

only two types of nucleotide, G and T, were added to flank each DNA fragment to be

sequenced. In an Illumina sequencing reaction, the sequencing primer has to extend and read

through these artificial bases first then reach to target sequence (Fig 1). Determined by Illumi-

na’s sequencing principle, the signal emission from the first a few base positions of a sequenc-

ing read is to be used for cluster recognition to initiate a sequencing run, and the four

nucleotide types (A, G, C and T) is preferred to be equally distributed in each of these base

positions by default [32]. Therefore, if Takara’s WGA-NGS library product is loaded alone on

an Illumina sequencer, as lacking of C and A in the first a few sequencing positions, the cluster

recognition will not be accomplished properly thus the sequencing run will end up with fail-

ure. The way to solve this problem is to add artificial random fragments, i.e. Phix (Illumina,

San Diego, USA), into the sequencing library. In this manner, the library is sequenced in com-

bined with the added in Phix fragments which provides randomness of the four nucleotides

thus enables proper cluster recognition. The minimal amount of Phix fragments added in

should not be less than 10% of total reads number [33], whereas these reads are certainly not

to contribute to effective data.

An overnight PGT-A assay is typically a sequencing run required by one particular patient

with embryo biopsy samples up to 15. It’s estimated that minimally 500–1000 K effective reads

would be needed to confidently reporting aneuploidy for any given chromosome in PGT-A

(internal data, unpublished). Therefore, a sequencer with moderate throughput, such as
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Illumina Miseq (maximal 15–25 M reads production depend on sequencing reagent version)

is a reasonable choice for this purpose. To ensure each biopsy sample being covered by suffi-

cient effective reads is essential for a successful PGT-A assay. Wasting reads on Phix fragments

is unwise, that even could be risky when a low version sequencing reagent is used, especially

once the reads generation is far less than the maximal potential in a practical sequencing run.

Taken above together, we are aiming to simplify single cell sequencing procedure in fulfill

overnight PGT-A requirement of IVF clinic and to ensure maximal data utilization efficiency

of NGS sequencing. We established an integrated single-cell WGA-NGS library construction

protocol named ‘ChromInst’. As sufficient base randomness is designed in the first a few posi-

tions of every sequencing read, the NGS library constructed in this manner is able to be loaded

alone in an Illumina sequencer, i.e. Miseq, without adding in Phix fragments. The feasibility to

perform overnight PCCS by ChromInst was then demonstrated with a mimic setup of clinical

examination.

Materials and methods

The strategy of single cell WGA in this work was adapted from Multiple Annealing and Loop-

ing Based Amplification Cycles (MALBAC) method [34], while the chemical components of

cell lysis, pre-amplification, exponential amplification and thermal cycling program remain

the same. The pre-amplification primers were modified (Table 1) to be compatible with the

adaptor sequences of Illumina sequencing library (Illumina, San Diego, USA, Table 1). Briefly,

a single cell was lysed in a 5 μl reaction with 12.5 μg/ml proteinase K, 30mM Tris-HCl (pH7.8),

0.2% Triton X-100, 20 mM KCl and 2 mM EDTA for 15 min. Subsequently, a 30 μl of pre-

amplification mixture containing pre-amplification primers and DNA Polymerase was added

to the reaction. After the 12 cycles of pre-amplification program (95˚C-2min, 95˚C-15s, 15˚C-

50s, 25˚C-40s, 35˚C-30s, 65˚C-40s and 75˚C-40s), another 30 μl of exponential amplification

mix containing exponential amplification primers was added and subjected for 17 cycles of

exponential amplification (94˚C-30s, 94˚C-20s, 63˚C-30s and 72˚C-40s). The resulting WGA

product with the format of Illumina NGS sequencing library (Fig 1) was then subject to be

sequenced on Illumina platform.

The 27 bp constant sequence of original MALBAC pre-amplification primer is underlined.

The 13 bp constant sequence of the 3’ end sequence of Illumina exponential amplification

upstream primer used to replace the 27 bp constant sequence of original MALBAC are shown

in Italic. In searching optimal primer length for effective sequencing library construction, ran-

dom nucleotides in variable length were inserted into the pre-amplification primer (design

1–5, Table 1). Barcode is a sequence of hexamer nucleotide unique for each sample in a given

sequencing run. “N” represents either base A, G, C, or T.

The works in this study were divided into three phases. In the first phase, 50 picograms

human genomic DNA were used as biological sample in protocol optimization. Conventional

Fig 1. The format of Illumina sequencing library (containing 2 variants) constructed by ChromInst. Sequence of pre-amplification primers is gray shaded. The

reverse-complimentary sequence of pre-amplification primer is shown in Bold. The sequences of exponential amplification primer 1 is underlined. The reverse-

complimentary sequences of exponential amplification primer 2 is dash-underlined. The sequencing primer (Read 1 primer of Illumina) is indicated by the black arrow.

The barcode is a sequence of hexamer nucleotides that is unique for each sample in a given sequencing run. The barcode sequencing primer is indicated by the dashed

black arrow. The number 1 to 6 indicate the first 6 base position of a sequencing read, of which the signal emission is used for cluster recognition to initiate a sequencing

run (N: either base of A, G, C, or T).

https://doi.org/10.1371/journal.pone.0251971.g001

PLOS ONE ChromInst: A single cell sequencing technique to accomplish PGT-A overnight

PLOS ONE | https://doi.org/10.1371/journal.pone.0251971 May 20, 2021 3 / 13

https://doi.org/10.1371/journal.pone.0251971.g001
https://doi.org/10.1371/journal.pone.0251971


agarose gel (2%) electrophoresis were used to evaluate the efficiency and size range of WGA

product (namely, sequencing library).

In the second phase, single cells of in vitro cultured human lymphocytes (GM12878) were

picked by mouth pipetting under stereo microscope, then used as biological samples. Illumina

NGS sequencer MiSeq was used to evaluate the quality of sequencing library upon the inte-

grated WAG-NGS library construction process. To apply multiple samples in a single sequenc-

ing run, unique barcode sequences were incorporated respectively into the primers of

exponential amplification (of WGA) for each sample. After the WGA-NGS library construc-

tion, the libraries of each sample were mixed at equal volume and then purified with MagBead

DNA Purification Kit (CoWin Biotech, Beijing, China) followed the manufacture’s protocol.

The DNA concentration of purified library mixture was determined by Qubit12.0 (Thermo

Fisher Scientific, Waltham, MA, USA) followed the manufacture’s protocol. To determine the

amount of library to be loaded into the sequencer, the molarity of the library was calculated

from the Qubit results (in nanogram per microliter). The library was sequenced alone without

adding of artificial random fragments (Phix). The MiSeq Reagent Kit v3 (theoretical Maximal

25 M reads production) was used and SE75 sequencing program was applied at early ending of

55bp following Illumina’s sequencing protocol.

For data analysis, the sequencing raw data (in.bcl format) was demultiplexed and converted

to the FASTQ format using a Perl script configure BclToFastq.pl in CASAVA(Consensus

Assessment of Sequence and Variation, version 1.8.2) [35] package based on the sample sheet

information. Illumina adaptors, low quality bases (bases with quality score less than 20) were

removed from the FASTQ file using Trimmomatic [36] (version 0.35). High quality reads

were mapped to human reference genome (hg19) [37] using BWA (Burrows-Wheeler Align-

ment Tool, version 0.7.12-r1039) with default parameters [38]. The mapped reads were sorted

and converted to binary format.bam using SamtoBam.jar in Picard (version1.119) package

[38].

In the third phase, trophectoderm biopsy samples of in vitro cultured human embryo

donated from an anonymous volunteer were examined to validate the application of the proto-

col established in clinical setting of overnight PCCS. The human embryo biopsies were col-

lected on May 5, 2017 and testing and analysis were carried out from that day to May 6. We do

not have access to information that can identify individual participants during or after data

Table 1. The primer designs.

Designs Sequences(5’-3’)

Original MALBAC GTGAGTGATGGTTGAGGTAGTGTGGAGNNNNNGGG

GTGAGTGATGGTTGAGGTAGTGTGGAGNNNNNTTT

1 GCTCTTCCGATCTNNNNNGGG

GCTCTTCCGATCTNNNNNTTT

2 GCTCTTCCGATCTNNNNNNGGG
GCTCTTCCGATCTNNNNNNTTT

3 GCTCTTCCGATCTNNNNNNNGGG
GCTCTTCCGATCTNNNNNNNTTT

4 GCTCTTCCGATCTNNNNNNNNGGG
GCTCTTCCGATCTNNNNNNNNTTT

5 GCTCTTCCGATCTNNNNNNNNNGGG
GCTCTTCCGATCTNNNNNNNNNTTT

exponential amplification primer- modified Illumina

adapter sequence

Upstream: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

Downstream: CAAGCAGAAGACGGCATACGAGAT[Barcode]
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

https://doi.org/10.1371/journal.pone.0251971.t001
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collection. This study was approved by the Ethics Committee of Nanjing Jinling Hospital (ref-

erence number 2016NZKY-028-02), and written informed consent was obtained prior to

embryo analysis. Biopsy sample duplicates from each embryo were examined separately by the

protocol established above and original MALBAC WGA followed by routine library construc-

tion based NGS descripted previously [7, 34, 39]. To validate whether the library yield unifor-

mity enables sufficient reads coverage among multiple samples over limited total reads

production, MiSeq reagent kit v2 with a theoretical maximal output of 15M reads, was used in

the test. In addition to the resulting data observed in the phase two for library quality evalua-

tion, the chromosomal copy number variation (CNV) of each embryo biopsy was analyzed by

the program descripted in previous publication [35–38, 40]. Briefly, unique mapped reads

were extracted from the alignment reads (.bam file) using Samtools (version 1.2.1) [41]. The

whole reference genome was divided into a serial of 200Kb or 1M bins. Reads number, GC

content were calculated within each bin. GC bias correction was processed for every 1% GC

content by local Perl [42] scripts. The R (version 3.0.0) [43] was used to generate the graphs of

the GC corrected relative reads number (RRN) of each bin to visualize copy number varia-

tions. The CNV identified was subsequently compared between the protocol established in

this work and routine MALBAC-NGS based PGT-A.

Results

In order to combine the MALBAC WGA procedure and Illumina sequencing library construc-

tion into an integrated process, the 5’ end 27 bp of MALBAC pre-amplification primer

sequence (Table 1 underlined sequence) was firstly replaced by the 3’ end sequence of the Illu-

mina adapter. To determine the optimal sequence length should be used for random nucleo-

tide of pre-amplification primer, length serials of 5bp, 6bp, 7bp, 8bp and 9bp (Table 1, design

1, 2, 3, 4 and 5) were tested. The experimental results showed that, while the design 1 produced

amplification product in wider size range and the design 4 and 5 generated lower yield, the

design 2 and 3 produces shorter amplification products at higher yield (Fig 2). Thus, the design

2 was chosen for the subsequent protocol development.

In the phase two of the study, single cells were picked from in vitro cultured human lym-

phocytes then the WGA protocol optimized above was applied to each of the cell. Fifteen single

cells were used in the test. To minimize examination turnover time, we simply pooled the

library from each sample at equal volume instead of the conventional pooling strategy that per-

forms qPCR quantification to each library then pools them in equal molar manner. The pooled

library was loaded on MiSeq sequencer without adding artificial random fragments (Phix).

The sequencing run was successfully completed that 26M reads at Q30>90% were yield with

average length of 55bp. The average reads yield of 15 samples was 1.6M, with maximal reads of

2.3M and minim reads of 1.3M (Table 2). The data that support the findings of this study have

been deposited into CNGB Sequence Archive (CNSA) [44] of China National GeneBank Data-

Base (CNGBdb) with accession number CNP0001733. The evenness of sequencing reads dis-

tribution over the samples (less than two folds variation) demonstrated the robustness of the

protocol on library yield uniformity. With the unique mapping rate more than 80% (Table 2),

the library yield uniformity ensures each single cell sample is covering by sufficient data. At

this point, a single cell NGS sequencing protocol was established which was potentially able to

accomplish overnight PCCS. We called it ‘ChromInst’ to emphasize its capability to perform

chromosomal screening in a swift manner.

To validate whether the ChromInst protocol is indeed able to achieve overnight PCCS as

clinically needed, 14 embryo biopsy samples donated by an anonymous volunteer were tested

in a single MiSeq run. Based on our previous PGT-A application, a minimal read of 500K is
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adequate for comprehensive chromosomal aneuploidy screening (unpublished data). As the

phase two results showed satisfied library uniformity among samples, we decided to perform

the phase three test in a low read yield manner by using MiSeq reagent kit v2 that gives maxi-

mal reads production at 15M only, in examining the practicability of the protocol.

While the embryo biopsy samples were arrived in our laboratory at 6 pm, the WGA-NGS

library construction was accomplished at 9:30 pm. After equal volume pooling, purification

Fig 2. WGA-NGS library construction result from variable pre-amplification primer designs. Fifty picograns

human genomic DNA was used as amplification template. The amplification products are visualized on a 2% agarose

gel as routine. M: DM2000 DNA Marker; Lane 1–5: the WGA products of design 1–5.

https://doi.org/10.1371/journal.pone.0251971.g002

Table 2. QC data of 15 single cells in a single run of Miseq sequencing.

sample raw reads GC% high quality of raw Mapping rate Mapped of raw Unique mapped of raw

1 1,514,213 40 96.04% 94.86% 91.1% 84.03%

2 1,616,350 40 95.79% 94.09% 90.14% 83.02%

3 1,837,612 40 96.07% 94.65% 90.93% 83.83%

4 1,495,434 40 96.12% 93.71% 90.07% 82.98%

5 2,381,030 40 96.32% 95% 91.51% 84.36%

6 1,944,712 40 96.28% 94.85% 91.32% 84.22%

7 1,992,210 40 96.27% 93.99% 90.48% 83.46%

8 2,174,977 40 96.7% 95.64% 92.48% 85.49%

9 1,700,875 40 96.46% 94.65% 91.31% 84.43%

10 1,567,411 40 96.06% 94.62% 90.9% 83.99%

11 1,505,962 40 96.18% 94.24% 90.64% 83.83%

12 2,110,626 40 96.24% 94.85% 91.28% 84.3%

13 1,481,780 41 96.09% 89.85% 86.34% 79.84%

14 1,888,895 40 96.14% 93.62% 90.01% 83.1%

15 1,389,200 40 95.88% 94.47% 90.58% 83.71%

CVa 16.9% 0.6% 0.2% 1.4% 1.5% 1.5%

aCV: coefficient of variation

https://doi.org/10.1371/journal.pone.0251971.t002
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and quantification, the library mixture of 14 samples (in addition with positive and negative

controls) was loaded onto the MiSeq sequencer at 11:30 pm. The sequencing run was accom-

plished at 5:30 AM on the next day and data analysis was accomplished at 6:00 AM. The time-

line of the whole procedure and major measures to reduce time cost is summarized in the

Table 3.

The sequencing run was successfully accomplished with 13M reads at Q30> 90% and an

average read length of 55 bp. The average reads yield per samples was 871K, with maximal

reads of 1.42M and minim reads of 541K (Table 4). Chromosomal CNVs were identified in 8

samples of the 14 embryos examined, while the other 6 samples were euploidy genome (Fig 3).

No significant differences were observed in the paired comparison between the results above

and the routine MALBAC-NGS based assay (data no shown).

Discussion

In this work, we established a modified MALBAC protocol namely ChromInst, which com-

bines the single-cell WGA and Illumina NGS library construction into an integrated proce-

dure. In addition to time saving, the good compatibility of ChromInst with Illumina

sequencing principle along with its good library yield uniformity provided superior data usage

efficiency and reads distribution evenness. All these advantages allowed the feasibility of using

ChromInst to perform overnight PCCS on multiple embryo biopsies in a sequencing run with

relatively low throughput, such as by MiSeq reagent kit v2.

A collective evidence indicate that PGT-A in PCCS manner is beneficial to improve the suc-

cess rate of IVF [18, 20, 22, 23, 29, 45–47], and NGS is a promising technique to perform

PCCS [1, 2, 5, 6, 48, 49]. Nevertheless, the conventional NGS-PGT-A protocol takes days to

accomplish the assay. As the optimal time for embryo biopsy is on the day 5 post in vitro fertili-

zation and the timing for embryo implantation should be on the day 6 [50], in the conven-

tional NGS based PGT-A, the post biopsy embryos have to be frozen in liquid nitrogen before

the examination results turnover. The influence of embryo frozen is remaining in controversial

[51–55]. A recent study published in the New England Journal of Medicine demonstrated that

frozen embryo resulted higher IVF successful rate [53]. However, the same study also revealed

that embryo frozen may cause higher chance of delivering overweight babies and three folds

higher chance of gestational pre-eclampsia. Therefore, the benefit and risk balance between

frozen and fresh embryo implantation is still to be further evaluated. At this moment, both

Table 3. The timeline of overnight PGT-A procedure in this work.

Steps Duration (hr) Hands on time (hr)

Reagent preparation upon sample receiving 0.5 0.5

WGA-NGS library construction 3 0.5

Library pooling, purification, quantification and loading into sequencer 2 2

Sequencing running 6 0

Data analysis 0.5 0.5

Total 12 3.5

Summary of major time saving measures Integrate WGA and NGS library

construction to a two-step PCR process

of ~2.5 hr reaction time

Library pooling at equal volume of each

sample instead of conventional qPCR

quantification

A short length single-ended sequencing

run of 55 bp

https://doi.org/10.1371/journal.pone.0251971.t003
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frozen and fresh embryo implantation are applied in clinical practices. Furthermore, for a

patient failed of pregnancy in the first attempt of conventional IVF procedure, her leftover

embryos (have to be frozen) are worthy to PGT-A prior to the next try of implantation. Once

defrosted, one should avoid the embryos from frozen again before implantation when at all

possible. In this circumstance, the overnight PGT-A can be the only way to perform PCCS to

improve the chance of IVF success in the second attempt of embryo implantation. As the

result, it is necessary to establish an overnight PGT-A procedure that enables fresh embryo

implantation in the reality.

The WGA amplification of ChromInst is based on that of MALBAC [34]. MALBAC is a rel-

atively new WGA method which was invented in 2012. It’s amplification uniformity and allele

dropout (ADO) rate are superior to previous WGA methods, such as Degenerate Oligonucleo-

tide Primer PCR (DOP-PCR) and Multiple Displacement Amplification (MDA) [56–58] for

single cell genome amplification. Two major modifications of the ChromInst protocol were

substituting the 27 bp constant part of MALBAC’s pre-amplification primer sequence to the

13 bp (Table 1 Design 2) of the 3’ part of Illumina’s library construction adaptor and were

extending the straight 5 “N” to 6 “N” (Table 1, Fig 1). There modifications kept the amplicon

looping forming feature of MALBAC in the pre-amplification stage thus inherited the innate

high uniformity feature in MALBAC WGA, while accomplishes the sequencing library con-

struction simultaneously. As illustrated in the Fig 3, the WGA uniformity of ChromInst was

sufficient for effectively detecting chromosomal aneuploidy from embryonic biopsy by NGS.

When multiple samples are simultaneously examined on a sequencer with limited reads

yield capacity, the reads number uniformity over each sample in the sequencing run is impor-

tant to ensure all samples covered by sufficient sequencing data. Normally, the good unifor-

mity of inter-sample reads yield is achieved by qPCR quantification to the sequencing library

of each sample, then pool the samples in equal molar manner. The qPCR is however not

Table 4. QC data of 14 embryo biopsy sequencing.

sample Raw reads High quality GC% High quality of raw Mapping rate Mapped of raw Unique mapped reads Unique mapped of raw

1 765,904 41 97.11% 97.17% 94.36% 621,999 81.21%

2 569,266 41 97.35% 97.43% 94.85% 457,252 80.32%

3 1,151,433 42 97.62% 97.87% 95.53% 954,220 82.87%

4 848,321 41 97.39% 96.82% 94.29% 680,302 80.19%

5 1,013,240 41 97.31% 97.32% 94.70% 823,884 81.31%

6 724,464 41 97.38% 97.03% 94.48% 585,789 80.86%

7 860,599 41 97.28% 97.61% 94.96% 709,675 82.46%

8 759,668 42 97.47% 97.05% 94.59% 619,175 81.51%

9 818,820 41 97.15% 97.67% 94.88% 676,557 82.63%

10 541,819 42 97.59% 97.60% 95.26% 439,336 81.09%

11 1,018,913 42 97.45% 97.78% 95.28% 837,823 82.23%

12 813,351 41 97.41% 97.25% 94.73% 657,646 80.86%

13 1,420,866 41 97.25% 90.75% 88.25% 1,086,243 76.45%

14 899,714 42 97.18% 96.31% 93.60% 732,360 81.40%

NCa 33,236 43 90.89% 57.68% 52.43% 15,001 45.13%

PCb 959,591 41 97.62% 95.13% 92.87% 764,751 79.70%

CVc (except NC) 25.1% 1.2% 0.2% 1.8% 1.9% 24.0% 1.9%

aNC: negative control, reagent only
bPC: positive control, 20 pg genomic DNA
cCV: coefficient of variation

https://doi.org/10.1371/journal.pone.0251971.t004
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generally available in the clinical laboratory setting and the extra time cost is highly undesir-

able for an overnight assay constrained by time. In our protocol presented, by merit of the

reaction constancy of ChromInst, sequencing library of each sample was simply pooled at

equal volume prior to load into the sequencer. And the resulted reads yield uniformity was

fairly acceptable in term of either reads number on each sample or reads number CV among

samples (Tables 2 and 4). Consequently, the ploidy of the 14 tested embryos, including 6

euploidy and 8 aneuploidy samples, were all well identified by merely 13M total reads yield

from the sequencing run (Fig 3). The concise experimental protocol and satisfactory examina-

tion results demonstrated that the presented approaches are well practical to accomplish PCCS

overnight in clinical laboratory setting.

In principle, the sequencing library construction of ChromInst belongs to the category of

“random short fragmentation” that is uncapable of detecting the chromosomal structural rear-

rangement, such as inversion and translocation. In Mate-Pair sequencing, self-cyclization of

long DNA fragment is conducted prior to library construction, thus chromosomal structural

rearrangement can be identified by sophisticated strategy in subsequent sequencing data anal-

ysis [59]. However, the integration of single cell WGA with Mate-Pair library construction

remains a great challenge. We also observed that the ADO rate of ChromInst was not as good

as in the original MALBAC (unpublished data), presumably due to the suboptimal design of

the pre-amplification primers in comparison to the original MALBAC. For this reason, Chro-

mInst may not be suitable in detecting SNPs or point mutations like other single-cell NGS

applications.

Fig 3. Chromosomal CNV examination of embryo biopsy samples. Chromosomes are aligned along X axis from 1 to

22 with X and Y at the end. Chromosomal copy number was set as Y axis. Aneuploidy was identified from 8 of the 14

embryos examined, which are as shown in the panel A: Sample 1; B: Sample 4; C: Sample 5; D: Sample 6; E: Sample 7;

F: Sample 8; G: Sample 9; H: Sample13. Panel I shows a random example of normal diploid genome (Sample 11).

https://doi.org/10.1371/journal.pone.0251971.g003
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In summary, a modified MALBAC protocol, ChromInst, was established in this work,

which combines single cell WGA and Illumina sequencing library construction into an inte-

grated procedure that reduces the time cost of WGA plus sequencing library construction to

an approximately 2.5 hours reaction time. By maintaining the merit of high amplification uni-

formity of original MALBAC WGA and additional conciseness and superior data efficiency,

ChromInst fulfills the clinical necessity of NGS based overnight PCCS. These advantages are

also permitting the application of ChromInst in other pressing single-cell NGS applications.
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