
Citation: Trinh, K.T.L.; Lee, N.Y.

Recent Methods for the Viability

Assessment of Bacterial Pathogens:

Advances, Challenges, and Future

Perspectives. Pathogens 2022, 11, 1057.

https://doi.org/10.3390/

pathogens11091057

Academic Editors: Chyer Kim and

Eunice Ndegwa

Received: 30 August 2022

Accepted: 15 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Review

Recent Methods for the Viability Assessment of Bacterial
Pathogens: Advances, Challenges, and Future Perspectives
Kieu The Loan Trinh 1 and Nae Yoon Lee 2,*

1 Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu,
Seongnam-si 13120, Korea

2 Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu,
Seongnam-si 13120, Korea

* Correspondence: nylee@gachon.ac.kr

Abstract: Viability assessment is a critical step in evaluating bacterial pathogens to determine infec-
tious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity,
and membrane integrity), current viability assessments are categorized into three main strategies.
The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that
it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the
metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes
can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they
cannot be detected based on culturability and metabolic activity. In order to overcome this drawback,
viability assessments based on membrane integrity (third strategy) have been developed. However,
these techniques generally require multiple steps, bulky machines, and laboratory technicians to
conduct the tests, making them less attractive and popular applications. With significant advances
in microfluidic technology, these limitations of current technologies for viability assessment can be
improved. This review summarized and discussed the advances, challenges, and future perspectives
of current methods for the viability assessment of bacterial pathogens.

Keywords: viability assessment; viable but nonculturable bacteria (VBNC); culturability; metabolic
activity; membrane integrity

1. Introduction

Throughout history, humanity is continuing the fight against bacterial pathogens, but
it has been met with challenges, as bacterial infectious diseases are among the leading
causes of mortality worldwide [1,2]. Along with the development and improvement of
food processing, drinking water treatment, and sanitation, the threats of infectious diseases
from the environment have been significantly reduced. However, many bacteria persist
in food, water, and environmental samples even when these samples have been treated
to remove the contamination [3,4]. Therefore, a method that can evaluate the viability of
bacterial pathogens in food, water, and environmental samples is critical in decreasing the
risks of microbial infections.

To evaluate the viability of bacterial pathogens, culturability, metabolic activity, and
membrane integrity are three widespread and accepted criteria [5]. The bacterial culturabil-
ity can be measured by determining their ability to produce a colony—A visible mass of
bacteria originating from a single mother cell when plated on an appropriate solid media.
In order to form a colony, bacteria must be reproducible and metabolically active and
have an intact bacterial membrane [6]. However, sometimes bacteria can enter the viable
but nonculturable (VBNC) state due to unfavorable conditions, such as low temperatures,
low-nutrient environments, and high antibiotic concentrations [7–12]. When bacterial
pathogens enter the VBNC state, they cannot be evaluated based on culturability criteria.
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As an alternative strategy, VBNC bacteria can be detected by measuring their metabolic
activity. Numerous studies have reported that VBNC bacteria can be evaluated by mea-
suring the uptake of substrates, such as fluorescent dyes and glucose [13–16]. However,
VBNC bacteria can enter the dormant state in which the metabolic activities of VBNC
bacteria are inactive [17,18]. As a result, bacteria in the dormant state cannot be detected
by measuring metabolic substrates. Therefore, another criterion for viability assessment
has been introduced, relying on membrane integrity. In this approach, a dead bacterium
would have a disrupted and/or broken membrane, whereas a live bacterium has an intact
membrane [19–21]. Based on three accepted criteria (culturability, metabolic activity, and
membrane integrity) for bacterial viability, various methods have been developed for eval-
uating bacterial viability (Figure 1). This review summarized the current methods for the
viability assessment of bacterial pathogens and discussed their advances, challenges, and
future perspectives.
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2. Viability Assessments Based on Culturability

As a traditional method, the plate culture method has been widely accepted for detect-
ing bacterial viability for >100 years [22]. This technique was first discovered by Robert
Koch in 1881 for culturing, detecting, and quantifying viable bacteria [23]. A contaminated
sample can be plated on an agar plate, followed by incubation for various times at var-
ious temperatures depending on the bacterial species. After incubation, viable bacteria
form colonies, whereas nonviable bacteria do not [24,25]. Different bacterial types can
form colonies with different shapes, sizes, and colors. Culture-dependent methods not
only provide information about bacterial viability but can also be helpful in identifying
bacteria [26]. However, the culture-dependent method must combine with other tech-
nologies, such as biochemical tests, Gram staining, catalase test, and sporulation test, for
bacterial identification [27,28]. Quantifying viable bacteria using the culture-dependent
method requires manual steps, such as spreading samples on an agar plate and counting
colonies. Recently, automated instruments for spreading have been well developed and are
even available in the market, such as Microstreak® and commercial spiral platers [29,30].
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For counting bacterial colonies, various automatic systems have been published. For ex-
ample, Zhu et al. reported an automatic analysis system for counting bacterial colonies
based on images captured with near-infrared light [31]. This system is convenient and
cost-effective for counting colonies automatically by processing images. It takes 11–21 s
to count colonies on each agar, with an average relative error of 0.2%. In another study,
Molina et al. used Scan® 500 (Interscience) to capture images and digitalize them to count
the number of Escherichia coli colonies [32]. Therefore, an automated system reduces time
consumption and manual steps. Although automatic systems could improve the efficiency
of culture-dependent methods, the process requires 2–3 days for bacterial isolation and up
to 1 week to obtain the final results of viability and quantification. Furthermore, as stated
earlier, the most serious limitation of culture-dependent methods is that they cannot detect
VBNC bacteria.

3. Viability Assessments Based on Metabolic Activities
3.1. Dyes Uptake Assay

The metabolic activity of viable bacteria can be detected based on their uptake of
dyes through bacterial membranes. When the dyes enter the bacterial membrane, they
are hydrolyzed by an active enzyme system, such as esterases, lipases, and proteases, to
convert nonfluorescent to detectable fluorescent signals. Fluorescein diacetate (FDA) is a
common dye used for viability assessment based on the activity of nonspecific enzymes, as
mentioned above, and it is a nonpolar and nonfluorescent dye. FDA has lipophilic proper-
ties because it comprises two acetate groups and is, therefore, permeable to lipid bilayer
membranes of bacteria [33]. After the transportation of FDA into bacteria, it is hydrolyzed
to fluorescein by nonspecific intracellular enzymes and releases measurable fluorescent
signals (Figure 2a) [34]. Fluorescein is a polar molecule and, therefore, cannot move across
bacterial lipid membranes. As a result, fluorescent signals are accumulated inside bacteria.
The advantages of this technology are as follows: (1) FDA uptake does not require any
specific transport pathway through the membranes because FDA can enter bacteria via a
passive transport mechanism, and (2) extracellular FDA does not produce any background
signal [33]. However, FDA carries severe disadvantages [35]. First, the quenching effect
can occur when the fluorescein concentration inside bacteria is too elevated. Second, the
FDA-based method is highly sensitive to pH. The acidic environment can enhance the
protonation of fluorescein, which can enhance the efflux of fluorescein via passive efflux,
decreasing the fluorescent signal. The product of FDA hydrolysis is acetic acid; therefore, it
can decrease the intracellular pH. The pH also affects intracellular enzyme activity; each
enzyme has different optimal pH conditions. Because plenty of intracellular enzymes cat-
alyze FDA hydrolysis, optimizing the pH condition for FDA hydrolysis is difficult [36–38].
Nevertheless, biological metabolism-based fluorescent labeling can greatly improve bac-
teria labeling using the combination of a fluorescent probe and a bio-orthogonal group.
Furthermore, it can be employed as an effective approach for the discrimination of peptido-
glycan of gram-positive bacteria and lipopolysaccharide of gram-negative bacteria [39–42].
For example, a bacteria-metabolizable dual-functional probe TPEPy-d-Ala was developed
for fluorescence turn-on imaging of bacteria based on aggregation-induced emission [39].
When metabolically bound with bacterial peptidoglycan, the mobility of the TPEPy-d-Ala
probe is inhibited, resulting in clear visualization of intracellular bacteria by fluorescence
signal enhancements. In another study, Wu et al. designed a bio-orthogonal fluorescence
dye (TPEPA) for discriminating gram-positive (Staphylococcus aureus) and gram-negative
(E. coli) bacteria by metabolic engineering (Figure 2b) [42]. Due to the different structures of
bacteria morphology, this synthesized TPEPA dye could distinguish live and dead bacteria
via selective imaging of metabolically decorated gram-negative bacteria with Kdo-N3 and
gram-positive bacteria with D-Ala-N3 under a fluorescence microscope, respectively.
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3.2. Glucose Uptake Assay

Glucose is a monosaccharide composed of an aldehyde group (–CHO) and six carbon
atoms. Compared to other carbon sources, such as fructose, sucrose, and lactose, glucose
is more abundant and can be found in most beverages. In energy metabolism, almost all
organisms, including bacteria, use glucose as the main source of energy and the building
block for biopolymers in all kingdoms of life [43]. Some viable bacteria would consume
glucose from the environment into their cytoplasm through the membrane transport system.
Once glucose is imported into the cytoplasm, it is metabolized through different pathways
to become ready-to-use energy [44]. Therefore, glucose content has become one of the most
important parameters for evaluating the metabolic activity of bacteria.

Methods for viability assessment based on glucose can be categorized into two main
strategies: using artificial fluorescent glucose and using enzymatic assays. For the first
strategy, glucose uptake can be measured using artificial fluorescent glucose, namely, 2-
[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG). Only viable
bacteria with active metabolisms can consume 2-NBDG via a glucose transporting system.
Once 2-NBDG is incorporated into bacteria, it is decomposed as a nonfluorescent com-
pound. Meanwhile, dead bacteria cannot degrade 2-NBDG, resulting in the remaining
fluorescent signals. However, not all bacteria can consume 2-NBDG. Vibrio mimicus 10393,
Bacillus cereus JCM 2152, Plesiomonas shigelloides NP321, Aeromonas hydrophila JCM 1027, and
E. coli W539 could not take in 2-NBDG [45–47]. Moreover, a fluorescent spectrophotometer
or a fluorescence microscope is usually required to analyze fluorescent signals that could
limit their application in low-resource settings.
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For the second strategy, the remaining glucose can be measured by enzymatic assays.
In the presence of glucose oxidase, glucose is oxidized to form D-gluconic acid and H2O2.
After that, the H2O2 level is measured by a colorimetric reaction with o-dianisidine under
the catalyzation of peroxidase to switch o-dianisidine from a colorless to a colored com-
pound [48–50]. Generally, enzymatic assays are expensive, and natural enzymes have low
stability and are difficult to store. With the development of nanotechnology, nanozymes
have been developed to address the limitations of natural enzymes. Nanozymes are nano-
materials with enzyme-like activities. Unlike natural enzymes, nanozymes are low-cost and
easy to store and have high stability and tunable catalytic activities [51]. Given these ad-
vantages, glucose oxidase- and peroxidase-mimicking nanozymes for glucose assays have
proven their potential for viability assessment [52,53]. In general, detecting viable bacteria
using enzymatic assays, along with significant advances in nanozymes, obviously have
many advantages over the fluorescent glucose-based method, including (1) the method is
suitable for almost all bacteria, (2) the results can be observed by the naked eye, and (3) the
method is cost-saving and portable because it does not require bulky machines, such as a
fluorescence microscope or fluorescent spectrophotometer.

3.3. Adenosine Triphosphate (ATP) Assay

ATP Bioluminescence assay is inspired by the enzymatic reaction in fireflies, which
releases detectable light by converting luciferin to oxyluciferin in the presence of ATP
and luciferase [54]. ATP is an energy-carrying molecule that is essential for the metabolic
activities of living organisms [55]. Therefore, ATP is widely used as a marker for viable cells,
which are detected by luciferin–luciferase luminescence reactions with increasing light
intensity correlating to a higher number of live cells [56,57]. The reaction can be performed
within minutes and does not require heavy equipment, having assay kits with portable
luminescence detectors that are already available on the market by many suppliers [57].
However, since ATP is a common energy currency for all living cells, using ATP as a marker
for live bacteria might result in misinterpretation if the samples contain non-bacterial or
extracellular ATP [58,59]. In addition, the ATP level can vary between bacterial species and
depends on the physiological states, making direct interpretation of ATP levels to bacteria
counts unreliable [60,61].

4. Viability Assessments Based on Membrane Integrity

As mentioned earlier, among the three criteria (culturability, metabolic activity, and
membrane integrity) for viability assessments, membrane integrity is the most reliable
criterion. Bacteria can enter the states allowing them to silence the reproducibility and
metabolic activity; therefore, some bacteria cannot be detected using the culturability and
metabolic activity criteria. However, membrane integrity is critical for bacterial function
and survival [62].
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4.1. Dye Exclusion Assays

For the viability assessment of bacteria based on membrane integrity criteria, the
dye exclusion assay is one of the most common and useful techniques. The mechanism
of the dye exclusion assay is based on the fact that bacteria with intact membranes are
highly selective concerning the dyes that can move across their membrane, whereas a
compromised membrane permits easy access. When dyes enter bacteria with damaged
membranes, they interact with intracellular proteins or nucleic acids and release detectable
fluorescent signals [63–65]. As a typical example, trypan blue is an anionic hydrophilic
azo dye widely used to stain dead cells (Figure 3a). Due to its high negative charge,
it is excluded from the bacteria with intact membranes. In contrast, dead bacteria can
take up trypan blue because they lose membrane selectivity. After entering the bacterial
cytoplasm, trypan blue interacts with cytoplasmic proteins and emits blue fluorescent
signals [66,67]. The relative number of live and dead bacteria can be measured using a
fluorescence microscope [68,69], light microscope [70–72], or flow cytometer [71,73,74] by
counting unstained and stained bacteria.

As another example of dye exclusion assays, propidium iodide (PI) is also widely used
for the viability assessment of bacteria, especially after the report of Boulos in 1999 [75].
Like trypan blue, PI only stains dead bacteria because it can only penetrate bacteria with
compromised membranes. However, PI does not interact with intracellular proteins as try-
pan blue; instead, PI intercalates to DNA and RNA inside dead bacteria. The reaction with
nucleic acids enhances ~30-fold the fluorescence of PI and shifts the excitation/emission
maximum of PI to 535/617 nm, whereas free PI has an excitation/emission maximum of
493/636 nm [76]. The fluorescent signal can be analyzed using fluorescence microscopy,
flow cytometry, or confocal laser scanning. For viability assessments, PI is usually coupled
with dyes that can penetrate and stain nucleic acids of live and dead bacteria, thereby
obtaining total bacteria counts. Khan et al. optimized the staining protocol and flow
cytometry to detect VBNC and VC bacteria within 70 min [77]. Various fluorescent probes,
such as SYTO 9, SYTO 13, SYTO 17, SYTO 40, and PI, were performed to qualify VBNC and
VC E. coli O157:H7, Pseudomonas aeruginosa, Pseudomonas syringae, and Salmonella enterica.
Recently, a highly sensitive approach using DNA dyes for bacterial viability was sug-
gested by Feng et al., who used SYBR Green I and PI dyes for identifying S. aureus, E. coli,
Klebsiella pneumoniae, Mycobacterium tuberculosis, and Acinetobacter baumannii in <30 min
(Figure 3b) [78]. Another protocol was based on the dual SYTO9/PI staining assay to
rapidly detect Staphylococcus and P. aeruginosa, and fluorescent signals were observed by
fluorescence microscopy [76]. SYTO 9 can penetrate live and dead bacteria regardless of
their membrane integrity, intercalate to DNA and RNA, and release a green fluorescent
signal. Because PI exhibits a stronger affinity toward nucleic acids than SYTO 9, PI can
replace SYTO 9 when both dyes are exposed to the same nucleic acid. As a result, dead
bacteria are stained by PI with a red fluorescent signal, whereas a green fluorescent signal
released from SYTO 9 represents live bacteria [79–82].

Although dye exclusion assays are one of the most common methods among viability
assessments mentioned above, a major disadvantage of this approach is it cannot distin-
guish different bacterial species. In other words, dye exclusion assays can only evaluate
the ratio of viable and nonviable bacteria; they cannot provide information about which
bacterial species are present in the samples. This drawback may limit the application of
dye exclusion assays in identifying viable pathogens.
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4.2. Nucleic Acid-Based Methods

In recent years, by coupling photoreactive DNA-intercalating dyes, biomolecular
techniques [e.g., polymerase chain reaction (PCR), loop-mediated isothermal amplifica-
tion (LAMP), and recombinase-aided amplification (RAA)] have been widely applied for
bacterial viability assays (Figure 4a) [83–86]. In this approach, DNA-intercalating dyes,
such as ethidium monoazide (EMA) and propidium monoazide (PMA), are used to pen-
etrate only nonviable bacteria with compromised membranes, whereas viable bacteria
with intact membranes should pose a barrier for DNA-intercalating dyes [87,88]. Von-
drakova et al. suggested that the killing methods and species-specific differences can affect
EMA/PMA-quantitative PCR (qPCR) efficacies because some bacterial species are resistant
to the EMA/PMA pretreatment technique [89]. In addition, to enhance the selectivity and
sensitivity, a new DNA modification dye (named PMAxx, an improved version of PMA)
has been developed and applied for bacterial viability assays [90–92]. After the penetration
of dyes, they are exposed to bright visible light to stimulate the interaction between dyes
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and DNA [93,94]. EMA and PMA contain an azide group that can be converted into a
highly active nitrene radical under exposure to bright visible light. The active nitrene
radicals can bind covalently to DNA from nonviable bacteria, whereas unbound nitrene
radicals are simultaneously inactivated by reacting with H2O in samples. The covalent
bond between DNA and nitrene radical changes the DNA structure in nucleotide angle,
inhibiting DNA elongation by polymerases. Nitrene radicals also reduce the solubility
of DNA, enabling DNA removal by the DNA extraction process. Dye-treated samples
undergo DNA extraction, followed by PCR to amplify DNA from viable bacteria. In con-
trast, DNA from nonviable bacteria cannot be amplified because of the covalent bond
between DNA and nitrene radicals [95–99]. A combination of PMA dye and qPCR is
the most popularly studied for the viability assay of various bacteria, such as S. aureus,
E. coli O157, P. aeruginosa, Lactobacillus spp., M. tuberculosis, B. cereus, etc. [100–106]. For
example, Li et al. introduced viability PCR with PMA and DyeTox13-qPCR methods for
detecting the invA gene from Salmonella typhimurium [107]. In this study, by optimizing the
DyeTox13 assay with EMA, the PCR signal from dead cells was reduced, which helped to
overcome the main limitation of the PCR approach concerning its inability to discriminate
dead from live bacteria. In other words, false-positive results from dead bacteria were
eliminated using this method. In 2019, Cao et al. developed real-time PCR and LAMP
approaches to detect Vibrio parahaemolyticus in shrimp samples, which achieved the limit
of detection (LOD) of ~10.5 colony-forming units (CFU)/mL [90]. Using the PMA-LAMP
approach, VBNC E. coli O157:H7 and S. enterica were successfully detected and quan-
tified in fresh produce [108]. In another study, Xu et al. proposed a modified PMAxx
dye combined with RAA to detect viable S. aureus in milk samples, and the LOD was
~102 CFU/mL [86]. Recently, apart from DNA-based methods, RNA-based methods are
also being used for bacterial viability assays using RNA as an indicator [109–111]. Viable
vancomycin-resistant Enterococcus was successfully discriminated against using reverse
transcription LAMP for RNA amplification combined with colorimetric detection within
1 h [111]. As an alternative platform for bacterial viability, many studies tried to detect
live bacteria without requiring nucleic acid extraction and amplification as usual [112,113].
Remarkably, with the advancement of clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated proteins (Cas), Zhang et al. recently introduced a
light-up RNA aptamer signaling-CRISPR/Cas13a principle for identifying live B. cereus
without requiring transcription and amplification (Figure 4b) [112]. The system could detect
~10 CFU of B. cereus in spoiled food. Adapting the same concept, Wei et al. developed
a highly specific and sensitive detection method based on the aptamer-based Cas14a1 to
determine live S. aureus with a LOD of ~400 CFU/mL live cells [113]. Therefore, this new
approach allows live bacterial detection without amplification based on Cas14a1 and a
pathogenic aptamer. Although this new approach could open a new way for live bacteria
with high sensitivity and specificity compared to other amplification approaches, the LOD
is higher, and the total time was >150 min.
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ria. Broccoli is a special RNA aptamer sequence that can bind and turn on specific dyes, and it was
designed to serve as the signal reporter for CRISPR−Cas13a [112].

4.3. Microfluidic Technology for Viability Assessments

In recent years, microfluidics, also known as lab-on-a-chip, has been introduced and
gained much attention from the public due to its wide-ranging applications in different
fields, especially in cell biological research [114–117]. Generally, microfluidic technology is
a fast-rising system that offers the integration of various processes into a single microdevice
(micrometers to centimeters in size). Microdevices can offer highly efficient, sensitive,
and rapid analysis with low energy consumption [118]. Due to these advantages, various
viability assessments based on microfluidics have emerged for discriminating between
live and dead bacterial cells [119,120]. For example, Bamford et al. introduced a combined
system, including microfluidic channels and time-lapse microscopy, for observing VBNC
cells before, during, and after drug treatment based on a fluorescent signal from SYTO
9 dyes (Figure 5a) [121]. Using this microdevice, a series of actions, such as culturing
bacteria, treating drugs, and staining live/dead cells, could be performed simultaneously
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under microscopy and could capture images to investigate phenotypic or genotypic hetero-
geneity. In contrast, Qiu et al. fabricated a digital microfluidic device for an antimicrobial
susceptibility test using an optical oxygen sensor film (Figure 5b) [122]. By measuring
extracellular dissolved oxygen, this device could allow on-chip culturing and monitoring
of E. coli growth (red fluorescent signals) with minimal sample handling and lower-volume
cultures. In 2015, Chang et al. invested an integrated microfluidic system to rapidly de-
tect live Staphylococcus from joint fluid as a medical application, helping with immediate
medical decisions and antibiotic choices [123]. The bacterial sample was incubated with
EMA and vancomycin-conjugated magnetic beads for distinguishing live bacteria and
amplified 16S for bacterial typing by PCR. Using a PDMS integrated device, live bacteria
were successfully detected within 30 min, and the LOD was ~102 CFU per reaction. For
foodborne pathogen detection, Etayash et al. used the microfluidic cantilever for the in
situ detection and discrimination of Listeria monocytogenes and E. coli, and the microde-
vice could detect bacteria at a concentration of single-cell per microliter [124]. Briefly, a
biomaterial microcantilever embeds a microfluidic channel where the internal surfaces
are chemically or physically functionalized with receptors that can selectively capture
bacteria. Moreover, this device also can serve as a high-throughput device for the real-time
detection of bacteria and allows discrimination between intact and dead E. coli and their
metabolic response to antibiotics based on the presence of metabolic activity. In another
study, Tung et al. introduced a paper-based microfluidic device that integrated treatment
and molecular biology to detect viable E. coli O157:H7 and Salmonella spp. (Figure 5c) [125].
The paper-based device employed the most advanced techniques, such as chitosan-based
DNA extraction, isothermal amplification (LAMP), and colorimetric detection, for screening
multiple pathogens. In another study, E. coli was successfully discriminated against using
microfluidics based on a centrifuge platform to perform a LIVE/DEAD BacLight bacterial
viability assay [126]. For environmental application, Zhu et al. reported a high-resolution
three-dimensional printed microdevice for E. coli detection using an integrated PMA-PCR
device [127]. Especially, an on-chip PMMA pretreatment was used to improve the accuracy
by eliminating the need for pipetting steps. As a global public health issue, M. tuberculosis is
a bacterium that causes serious disease, namely tuberculosis, and is slower in growth than
other infectious bacteria; thus, making it difficult and challenging for early detection [128].
Recently, Wang et al. introduced an integrated microfluidic system to automatically detect
live M. tuberculosis and distinguish dead bacteria from clinical samples [129]. In this study,
using this fully integrated microdevice (including bacterial capture, PMA treatment, lysis,
and PCR quantification), M. tuberculosis could achieve automated detection in a single
chip within 90 min, and the LOD was as low as 100 CFU. From these examples, numerous
microfluidic devices have been fabricated to integrate various processes required for vi-
ability assessment, such as dye treatment, DNA extraction, amplification, and detection.
DNA-based analyses using a microdevice reduce the time and cost of the bacterial viability
test. Therefore, the obvious advantages provided by microfluidic technology make this
approach powerful for viability assessment.
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Figure 5. Representative microfluidic devices for the bacterial viability test. (a) A novel single-
cell approach to study VBNC E. coli cells using microfluidic channels combined with time-lapse
microscopy. The schematic illustrates a step-by-step procedure to distinguish VBNC cells from
susceptible nonlysed (SNL), susceptible lysed (SL), and persister (P) cells. Adapted with permission
from Ref. [121]. Copyright 2017, Springer Nature. (b) An integrated digital microfluidic chip with
an oxygen sensor for an E. coli culture droplet applied in antimicrobial susceptibility test. The
photos show a real image of a microdevice observed under ultraviolet light after a 16 h on-chip
culture of E. coli. MIC, minimum inhibitory concentration. Adapted with permission from Ref. [122].
Copyright 2021, American Chemical Society. (c) A fully integrated origami microdevice for live
bacterial identification based on nucleic acid analysis. MB, methylene blue; LAMP, loop-mediated
isothermal amplification; PMA, propidium monoazide. Adapted with permission from Ref. [125].
Copyright 2019, American Chemical Society.
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5. Conclusions

This review summarized the current techniques for viability assessment. Based on
three viable criteria (culturability, metabolic activity, and membrane integrity), current
viability assessments were categorized into three main strategies (Table 1). The earliest
published viability assessment is the plate culturing method, which relies on culturability.
However, this technique cannot detect VBNC bacteria. In order to evaluate VBNC bacteria,
the next generation for viability assessment has been developed, which relies on metabolic
activity. Although VBNC bacteria reproduce poorly, they still maintain metabolic activity
by the uptake of nutrients through the bacterial membrane. Dye and glucose uptake are
the most common viability assessments relying on metabolic activity. Only metabolically
active bacteria can uptake and convert artificial fluorescent or natural glucose and emit
detectable signals. However, bacteria can enter the dormant state in which the metabolic
activities of VBNC bacteria are inactive and, therefore, cannot be detected when using
metabolic activity criteria. In order to overcome this limitation, dye exclusion assays
relying on membrane integrity have been developed. In this approach, fluorescent dyes,
such as trypan blue and PI, are used to penetrate and stain only nonviable bacteria. The
major disadvantage of this approach is that it cannot distinguish different bacteria species.
With the combination between dye exclusion assays and PCR, technology for viability
assessment took a giant step, which allows the determination of certain viable bacteria
in samples. Generally, all listed technologies require multiple processes, bulky machines,
and laboratory technicians to conduct the whole process and analyze the results. Along
with significant advances in microfluidic technology, almost all processes required for
detecting viable bacteria have been simply integrated into a single microfluidic device. The
obvious advantages of microfluidic devices, such as cost-effectiveness, high automation,
and user-friendliness, make them a potential technology for viability assessment.

Table 1. Advantages and disadvantages of current viability assessments.

Method Principle Advantages Disadvantages Cost Estimation Ref.

Culture-based
method

• Colony
morphology

• Counting
colonies from
viable bacteria

• Cost effective
• Evaluates

viability
• Ability to

identify bacteria

• Time-consuming
(>24 h)

• Labor-intensive
• Inability to

detect VBNC
• Requirement of

additional
methods (e.g.,
staining) for
bacteria
identification

• Low cost
• Optical

microscope
(<2 K USD)

[24–26]

Metabolism-
based

method

• Metabolic
activity of
viable bacteria

• Hydrolyzed
dye/glucose by
enzymes
(e.g., esterases,
and lipases
proteases)

• Detection of
fluorescent
signals from
dead bacteria

• Fast time for
detection

• Ability to
detect VBNC

• Ability to
discriminate
between
gram-negative
and gram-
positive
bacteria

• Labor-intensive
• Inability to

identify bacteria
• Requirement of

an instrument
(e.g., fluorescence
microscope,
and fluorescence-
based microplate
readers)

• Requirement of
dyes/artificial flu-
orescent glucose

• High cost
• Fluorescence

microscopy
(20 K–100 K
USD)

• Fluorescence-
based microplate
readers
(10 K–100 K
USD)

[33,42,45–47,130]
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Table 1. Cont.

Method Principle Advantages Disadvantages Cost Estimation Ref.

Membrane
integrity-based

method

• Membrane
integrity
of bacteria

• Amplification of
nuclectic acid of
viable bacteria

• Fast time
for detection

• Ability to
identify bacteria

• High sensitivity
and specificity

• Multiplex
bacteria detection

• Labor-intensive
• Requirement of

an instrument
(e.g., thermal
cycler, fluorescent
microscope, and
flow cytometry)

• Requirement of
dyes/DNA
intercalating dyes

• Very high cost
• Flow cytometry

(50 K–500 K
USD)

• Fluorescence
microscopy
(20 K–100 K
USD)

• Thermal cycler
(5 K–15 K USD)

[70–74,97–103,130]
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