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Background
The salmon louse, Lepeophtheirus salmonis, is a parasitic
copepod (family Caligidae) that feeds on the mucous, tis-

Abstract

Background: Genetic variation has been shown to play a significant role in determining
susceptibility to the salmon louse, Lepeophtheirus salmonis. However, the mechanisms involved in
differential response to infection remain poorly understood. Recent findings in Atlantic salmon
(Salmo salar) have provided evidence for a potential link between marker variation at the major
histocompatibility complex (MHC) and differences in lice abundance among infected siblings,
suggesting that MHC genes can modulate susceptibility to the parasite. In this study, we used
quantitative trait locus (QTL) analysis to test the effect of genomic regions linked to MHC class |
and Il on linkage groups (LG) 15 and 6, respectively.

Results: Significant QTL effects were detected on both LG 6 and LG 15 in sire-based analysis but
the QTL regions remained unresolved due to a lack of recombination between markers. In dam-
based analysis, a significant QTL was identified on LG 6, which accounted for 12.9% of within-family
variance in lice abundance. However, the QTL was located at the opposite end of DAA, with no
significant overlap with the MHC class Il region. Interestingly, QTL modelling also revealed
evidence of sex-linked differences in lice abundance, indicating that males and females may have
different susceptibility to infection.

Conclusion: Overall, QTL analysis provided relatively weak support for a proximal effect of
classical MHC regions on lice abundance, which can partly be explained by linkage to other genes
controlling susceptibility to L. salmonis on the same chromosome.

(page number not for

sue, and blood of salmonid fish [1-3]. Infected hosts can
suffer from mild skin damage to stress-induced death,
including reduced growth, osmoregulatory stress, and sec-
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ondary infections [1]. In Northern Europe, L. salmonis has
become endemic on farmed Atlantic salmon (Salmo salar),
with disease outbreaks initially resulting in heavy losses
[1,4]. Pest management programs now implemented
across most of the industry have significantly reduced
mortality due to infestations but farmed populations are
still exposed to high infection pressure and require fre-
quent delousing treatment [4].

Atlantic salmon is generally regarded as more susceptible
to L. salmonis than other salmonid hosts [5,6]. However,
some degree of heritable variation has also been reported
in levels of infestation among individuals [7,8]. For exam-
ple, Glover et al. [7] observed a heritability of 0.07 for lice
abundance in a single fish cohort naturally exposed to L.
salmonis. In a separate study, Kolstad et al. [8] estimated
average heritabilities of 0.14 and 0.26 for susceptibility to
infection in multiple year-classes following natural and
experimental challenges, respectively. Together, these
results confirm earlier evidence of genetic variation for
susceptibility to L. salmonis in Atlantic salmon [9] and
indicate that host genes play a significant role in deter-
mining infection levels.

The underlying mechanisms involved in differential sus-
ceptibility to initial infection and subsequent interactions
with L. salmonis remain poorly understood. Species differ-
ences in host response have been linked to epidermal
inflammation [5,6,10] but the functional basis of differ-
ences in the susceptibility of individual hosts have yet to
be elucidated. A possible link has recently been identified
between marker variation at major histocompatibility
complex (MHC) genes and lice abundance in families of
Atlantic salmon naturally infected with L. salmonis [11].
Significant associations were found with both classical
MHC class I (UBA) and II (DAA) in multiple families,
indicating that susceptibility to infection may be modu-
lated by genes within the MHC. Alternatively, the MHC
may merely act as a marker of host susceptibility through
linkage to other genes controlling lice abundance on the
same chromosome.

In this study, we used quantitative trait locus (QTL) anal-
ysis to elucidate the relationship between MHC variation
and susceptibility to L. salmonis. We reasoned that, if MHC

Table I: Overview of QTL families
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genes have sizeable effects on susceptibility to infestation,
QTL analysis of lice abundance in infected siblings should
identify the MHC regions as contributing to a significant
proportion of family variance. A confounding factor with
this approach, however, is the strong suppression of male
recombination in Atlantic salmon, which can cause chro-
mosomally distant regions to co-segregate from sires to
offspring [12,13]. Thus, we expected that sire-based anal-
ysis would broadly confirm the presence of QTL influenc-
ing lice abundance on the MHC chromosomes, while
dam-based analysis would allow us to better resolve the
location of QTL effects.

Results

Overview of QTL families

Body weight and lice abundance in the families selected
for QTL analysis are summarized in Table 1. Further infor-
mation on lice abundance in each family is provided in
Additional file 1 . Each family was chosen based on previ-
ous results [11] suggesting significant associations
between lice abundance and marker variation at UBA
(family 4), DAA (family 6) or both (family 3). Overall,
lice abundance ranged from 4 to 38 parasites per fish
(mean = 19.1 = 5.5), with no significant differences
between families (two-sample t-test, p > 0.05). As noted
previously [11], lice abundance was positively correlated
with body weight in all three families (Pearson's correla-
tion test, p < 0.05).

Sex-specific maps of MHC chromosomes

MHC class I and II are unlinked in Atlantic salmon, with
each region present in duplicate copies on different chro-
mosomes [14-16]. The major class I locus (UBA) has been
shown to reside on a small chromosome [14,15], which
in the current map is represented by LG 15 [17]. Classical
MHC class II genes, including DAA, have been linked to
markers currently assigned to LG 6 [14,16,18].

Dam-based maps of LG 15 in families 3 and 4 were rela-
tively short, with UBA in the central region (Figure 1). In
sires, map distances were considerably reduced due to
strong recombination suppression, resulting in a highly
biased female-to-male recombination ratio across the
linkage group (28.8:1). Linkage analysis of LG 6 markers
in families 3 and 6 resulted in generally longer maps, sug-

Family N Body weight (g) Lice abundance (fish-') Corr.
range mean (sd) range mean (sd)

Family 3 73 142-1010 513.0 (162.8) 4-31 19.6 (5.4) 0.42°%

Family 4 109 112-874 445.7 (148.6) 7-38 19.4 (5.8) 0.20*

Family 6 112 228-654 447.4 (91.6) 7-32 18.6 (5.4) 0.20*

Notes. Corr.: Pearson's correlation coefficient between body weight and lice abundance (* p < 0.05, ** p < 0.001); distribution plots of lice

abundance in each family are provided in Additional file I.
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Sex-specific maps of LG 15 in families 3 and 4. Linkage
maps are shown for each sire (right) and dam (left). Absolute
map distances are given in cM. The position of UBA is high-
lighted in bold.

gestive of a larger chromosome (Figure 2). In dams, DAA
mapped towards the distal end of the chromosome, near
marker BHMS382. In sires, recombination was again
strongly reduced across the most part of the linkage group.
However, recombination rates in the distal region were
comparable between sexes, resulting in a relatively mod-
erate female-to-male recombination ratio overall (5.0:1).

QTL scan of MHC chromosomes

Single-QTL scans for lice abundance based on sex-specific
maps of LG 15 and LG 6 are shown in Figures 3 and 4,
respectively. Three different profiles are shown for each
parent, with each analysis corresponding to an alternative
covariate model for the effect of putative sex on lice abun-
dance (see Methods). Due to the lack of recombination
between markers, QTL profiles derived from sire-based
analysis were relatively flat, with little variation across
map intervals (Figure 3). Nevertheless, LOD values
exceeded the 95% chromosome-wide significance level
on LG 15 in the sire of family 3 and LG 6 in the sire of fam-
ily 6, irrespective of the covariate model (Figures 3a and
3d). In addition, markers on LG 6 reached chromosome-
wide significance in the sire of family 3 when sex was
included as an interactive covariate (Figure 3c). No signif-
icant QTL effects were found on LG 15 in the sire of family
4 (Figure 3b). At the experiment-wide threshold, QTL
effects on LG 15 in the sire of family 3 and LG 6 in the sire
of family 6 remained significant when sex was used as an
interactive covariate (Figure 3a and 3d). However, it was
not possible to assign either QTL to a specific chromo-
some region as confidence intervals spanned the entire
length of the linkage group.

In dam-based analysis, QTL effects above the chromo-
some-wide significance threshold were detected on LG 6,
but not on LG 15 (Figure 4). In the dam of family 6, two
QTL peaks were detected on either side of the MHC class

http://www.biomedcentral.com/1471-2156/10/20

IT region in the QTL-by-sex interaction model (Figure 4d).
However, neither peak reached experiment-wide signifi-
cance. In the dam of family 3, all three models were signif-
icant at the chromosome-wide threshold, although the
QTL peak was higher and better resolved when sex was fit-
ted as a covariate (Figure 4c). The highest peak (LOD =
3.07) remained significant at the experiment-wide thresh-
old, with a predicted location at position 3.0 cM, near
marker Rsa560. Bayesian credible intervals estimated with
a posterior probability of 95% included the proximal
region of LG 6 from positions 0.0 to 28.0 cM.

QTL modelling of lice abundance in family 3

To further characterize QTL effects identified on LG 6 in
the dam of family 3 (Figure 4b), we modelled lice abun-
dance as a function of QTL genotypes, body weight, and
sex (Table 2). Overall, the fitted model explained 38.4%
of the total family variance in lice abundance, with QTL
genotypes accounting for an estimated 12.9% of the total
variation. Associated QTL effects were approximately 4
lice or 0.75 standard deviations. Sex and body weight
accounted for a further 10.6% and 9.6% of family vari-
ance, with estimated effects of 3.6 lice and 1.0 louse per
100 g, respectively.

Discussion

Association of MHC genotypes with lice abundance
Significant QTL associations between MHC genotypes
and lice abundance were confirmed in families 3 and 6,
but not in family 4. In both cases, QTL associations were
detected in sires but not in dams, although we did find
suggestive evidence of a possible QTL near the MHC class
IT region on LG 6 in the dam of family 6. However, this
QTL was only significant at the chromosome-wide level
and should be regarded as tentative until additional dams
are examined. Conversely, the QTL detected on LG 6 in
the dam of family 3 was significant at the experiment-
wide threshold but a causal link with MHC variation is
unlikely due to its predicted location at the opposite end
of MHC class II (see below). Overall, therefore, we were
unable to corroborate that either MHC region has a signif-
icant effect on lice abundance, despite sire-based analysis
pointing to potential QTL variation on both MHC chro-
mosomes.

Detection of a QTL for lice abundance on LG 6

The most important finding of this study was the detec-
tion of a QTL influencing lice abundance within the prox-
imal region of LG 6. The QTL peak was located at position
3.0 cM, with a 95% posterior probability that the QTL
region lies within 28 ¢M of the most proximal marker
(OMM5074). The MHC class Il region, on the other hand,
was located towards the opposite end of the linkage group
at position 53.2 cM. Taken together, these results strongly
suggest that the observed QTL variation is unlikely to be
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Sex-specific maps of LG 6 in families 3 and 6. Linkage
maps are shown for each sire (right) and dam (left). Absolute
map distances are given in cM. The position of DAA is high-
lighted in bold.

caused by DAA or other genes within the MHC class II
complex, although we cannot exclude the possibility that
the QTL region contains regulatory elements that can
modulate MHC class II activity, for example through tran-
scriptional control.

Accounting for the effect of body weight and sex, the QTL
on LG 6 explained nearly 13% of the total variance in lice
abundance among progeny in family 3. This level of
explained variation is generally regarded as moderate in
QTL studies, although in this case it appears to represent
a relatively large proportion of the observed heritability
for lice abundance (0.06 to 0.19) in naturally infected fish
[7,8]. If this estimate was representative of the breeding
population, the QTL would account for much of the
genetic variation in lice abundance, at least in some fami-
lies. However, gene frequencies at the QTL need to be
taken into account and our results are also consistent with
a relatively rare QTL allele accounting for a smaller pro-
portion of the total genetic variance across the popula-
tion.

Linkage groups 6 and 15 were specifically targeted in this
study because they carry the classical MHC class I and II
genes previously linked to differences in susceptibility to
L. salmonis [11]. Other linkage groups were not examined,
with the exception of one marker on the sex chromo-
somes (LG 1). However, it is possible that important QTL
influencing lice abundance also exist elsewhere in the
salmon genome. Further QTL studies should therefore
focus on fine-mapping the QTL identified on LG 6 as well
as searching for additional QTL on other linkage groups.

http://www.biomedcentral.com/1471-2156/10/20

Effect of sex on lice abundance

Sex was not directly recorded in the fish used in this study
but it was possible to differentiate between males and
females within each family using a sex-linked marker (see
Methods). However, since linkage phases were unknown,
it was not possible to assign male or female status to prog-
eny inheriting alternative sire alleles at the sex marker
(i.e., progeny were assigned to groups of opposite sex but
actual sex was unknown). Nevertheless, sex predicted with
this method accounted for over 10% of the variation in
lice abundance in family 3, indicating that males and
females may have different susceptibility to L. salmonis.

To our knowledge, only a few studies have explicitly
examined the effect of sex or maturation on lice abun-
dance [19,20]. No differences were observed between
males and females, although fish size, which is known to
vary between sex, has been found to be an important fac-
tor in determining lice abundance [7]. In this study, body
weight was generally higher in the gender with higher lice
numbers (537.2/481.9 g versus 21.0/17.3 lice, respec-
tively) but size alone cannot fully account for these differ-
ences as lice abundance was corrected for body weight in
QTL analysis (see Methods). Sex differences in parasite
infections are not uncommon in vertebrates and may be
mediated by a variety of ecological (e.g., behavioural) and
physiological (e.g., hormonal) causes [21]. Whether such
factors may be involved in susceptibility to L. salmonis is
currently unknown and will require a more detailed com-
parison of host response in males and females.

Sex differences among siblings may also be caused by a
sex-linked QTL, rather than sex itself. In this context, it is
interesting to note that the sex linkage group (LG 1) and
LG 6 share extensive homologous regions inherited from
a whole-genome duplication in the salmonid ancestry
[12]. Thus, it is possible that duplicated QTL regions with
ancestrally conserved effects on susceptibility to parasite
infection may have been retained on both linkage groups
through evolutionary time. Evidence for the apparent
retention of QTL function between duplicated chromo-
somes has previously been found for life-history traits
[22-24] but this would be the first example of a duplicate
QTL region for a disease trait.

Functional basis of differential susceptibility to L.
salmonis

It is now apparent from the present and previous studies
[7,8,11] that host genes are important determinants of
susceptibility to L. salmonis in Atlantic salmon. However,
further research is required to elucidate the functional
basis of differential susceptibility to infection among indi-
viduals. Possible mechanisms include a variety of host fac-
tors, such as non-specific defences [25], adaptive
immunity [26], mucous biochemistry [6], and skin thick-
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Figure 3

Sire-based QTL scans of LG 6 and LG 15 for lice abundance. Multipoint LOD score profiles were generated using
alternative covariate parameters for the effect of putative sex on lice abundance (solid line: no effects; dashed line: additive
effects; dotted line: interactive effects). Triangles along the x axis indicate marker positions. Asterisks show the location of UBA
and DAA on LG 15 and 6, respectively. Horizontal lines across each plot indicate LOD significance thresholds (lower threshold:
chromosome-wide significance; upper threshold: experiment-wide significance).
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Dam-based QTL scans of LG 6 and LG 15 for lice abundance. Multipoint LOD score profiles were generated using
alternative covariate parameters for the effect of putative sex on lice abundance (solid line: no effects; dashed line: additive
effects; dotted line: interactive effects). Triangles along the x axis indicate marker positions. Asterisks show the location of UBA
and DAA on LG |5 and 6, respectively. Horizontal lines across each plot indicate LOD significance thresholds (lower line: chro-
mosome-wide significance; upper line: experiment-wide significance).

ness [1]. Perhaps most significant are the inflammatory
differences associated with variation in susceptibility to
initial infection among salmonid species [5,6,10]. Atlan-
tic salmon, for example, exhibit only minor tissue
response to the presence of L. salmonis, regardless of devel-
opmental stage [5]. By contrast, L. salmonis larvae attached

to coho salmon (Oncorhynchus kisutch) or pink salmon
(Oncorhynchus gorbuscha) elicit a well-developed inflam-
matory reaction and hyperplesia of the epithelium around
the site of attachment [5,10]. In addition, enhanced resist-
ance to L. salmonis in pink salmon has been linked to ear-
lier onset and greater up-regulation of pro-inflammatory
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Table 2: Dam-based QTL modelling of lice abundance in family 3
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df SS LOD effects (sd) % var p-value
Full model
Model 3 817.8 78 384 1.9 e-07
Error 70 1312.5
Drop-one-term analysis
cébloc3d | 275.9 3.1 4.07 (1.06) 12.9 2.7 e-04
Sex | 225.5 2.5 3.61 (1.04) 10.6 9.0 e-04
Body weight | 205.1 2.3 0.01 (0.03) 9.6 1.5 e-03

Notes. Degrees of freedom (df), sum of squares (SS), LOD scores (LOD), estimated effects (sd: standard deviation), percent of variance explained
(% var), and p-values in drop-one-term analysis were obtained by comparing the full model to the reduced model with the term in the first column
dropped; c6loc3d denotes predicted QTL genotypes at position 3.0 cM of LG 6 in dam-based analysis.

genes, such as interleukin-1p (IL-1f) and tumour necrosis
factor-a. (TNF-a) [10]. In Atlantic salmon, L. salmonis also
induces changes in the expression of pro-inflammatory
and other immune-related genes [27-29] but it is currently
unknown whether transcriptional regulation can mediate
differential susceptibility to infection.

Conclusion

Overall, QTL analysis provided relatively weak support for
a proximal effect of classical MHC regions on lice abun-
dance in the families examined in this study. The identifi-
cation of a QTL for lice abundance at the opposite end of
MHC class Il on LG 6 in dam-based analysis indicates that
the reported association with MHC variation may, at least
in part, reflect linkage disequilibrium. However, sire-
based analysis remained inconclusive and the existence of
MHC QTLs segregating in the sire line cannot be excluded
using this approach. Nevertheless, the discovery of a QTL
influencing susceptibility to L. salmonis represents a signif-
icant step toward a better understanding of the host
response to infection, which in turn will assist in develop-
ing improved methods of parasite control in salmon
farming.

Methods

Fish samples

The samples used in this study were part of an infection
trial conducted on the west coast of Norway in 2004 [11].
In brief, 15 full-sib families (age 1+) derived from the
Aqua Gen AS breeding programme were transferred to
seawater in May 2004 and held in a single net-pen with-
out delousing treatment for a period of 6 months. In
October 2004, fish were sampled by groups of 5-10 indi-
viduals into large buckets containing an overdose of
anaesthetic. Sedated fish were killed by a sharp blow to
the head, placed into individual buckets, and immedi-
ately transferred to the laboratory for examination.
Weight and lice abundance were recorded for a total of
1,342 individuals. A random sample of approximately
1,000 fish from 11 families were subsequently genotyped
at simple sequence repeat (SSR) markers located within

the 3'-UTR of the MHC class I (UBA) and II (DAA) alpha
chain genes. A subset of 294 fish from three families were
selected for QTL analysis in this study based on initial
results indicating significant associations between lice
abundance and MHC variation (see Table 1).

Parasite data

Parasite data consisted of whole-body lice counts
recorded from each individual at the time of sampling.
Both L. salmonis and Caligus elongatus were present on the
infected fish but C. elongatus was excluded from analysis
due to low prevalence [11]. In addition, developmental
stage was not recorded as initial inspection of infected
samples indicated that most parasites were adults and pre-
adults [11]. Thus, in the context of this study, lice abun-
dance represents the total number of mobile L. salmonis
recovered per fish.

Marker genotyping

Genomic DNA was isolated in 96 well-plate format using
QIAGEN DNAeasy kit. SSR markers located on LG 6 and
LG 15 were selected based on data obtained from the
Salmon Genome Project [30], the cGRASP database [17],
and recent genotyping in the SALMAP families [31].
Between 4 and 19 markers were genotyped in each family.
Polymerase chain reactions (PCR) were carried out in 15-
pl volumes containing 1x GoTaq reaction buffer
(Promega), 1.5 mM MgCl, (Promega), 300 nM forward
primer end-labelled with HEX, FAM, or TAMRA (MWG
Biotech), 300 nM reverse primer (MWG Biotech), 200 uM
dNTPs (Invitrogen), 0.25 units GoTaq polymerase
(Promega), and 30 ng genomic DNA. Cycle amplifica-
tions were performed in PTC-200 or Dyad thermocyclers
(MJ Research) for 5 min at 96°C; 5 cycles of 1 min at
96°C, 30 sec at 48-62°C, 30 sec at 72°C; 30 cycles of 30
sec at 95°C, 30 sec at 53-58°C, 30 sec at 72°C; 5 min at
72°C; and a final soak at 10°C (see Additional file 2 for
details of primer sequences and optimized PCR condi-
tions). PCR products from groups of up to three markers
with different dye labels were diluted 1:2-1:4 into dis-
tilled water and 2 ul of each diluted sample were added to
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0.75 pl GeneScan 400HD ROX size standard (Applied
Biosystems) and HiDi formamide (Applied Biosystems)
up to a 20-ul final volume. Samples were denatured at
95°C for 5 min prior to genotyping on an ABI PRISM
3130 xI Genetic Analyzer (Applied Biosystems). Genotyp-
ing files were analyzed using GeneMarker version 1.70
(SoftGenetics).

Linkage analysis

Linkage analysis was performed with CARTHAGENE ver-
sion 1.0R [32] using genotype data converted to a back-
cross format. As grandparent genotypes were unknown,
linkage phases were determined retrospectively by exam-
ining assortment of alleles among linked markers.
Graphic representations of linkage groups were generated
with MAPCHART version 2.1 [33] using raw recombina-
tion fractions as estimates of map distances.

QTL analysis

Parasite data were checked for deviation from normality
prior to QTL analysis using the Shapiro-Wilk test (p =
0.05). As a result, one individual identified as an outlier
was excluded from family 6. All QTL analyses were carried
out using simple interval mapping (SIM) in R/qtl version
1.09 [34]. Single-QTL models were fitted in each parent
using the Haley-Knott regression method [35] with condi-
tional genotype probabilities calculated at 1 cM intervals
and a constant genotyping error rate of 1%. Body weight
was used as a covariate in all QTL models to control for
the effect of fish size on lice abundance [11]. In addition,
sex was included as an optional covariate in alternative
QTL models using genotypes from a duplicated SSR
marker (Omy11INRA/i) closely linked to the major sex-
determining locus on LG 1 [36]. Three separate QTL mod-
els were produced for each parent by changing covariate
parameters for sex (i.e., null, additive, and interactive,
respectively).

Chromosome-wide thresholds for QTL significance (p-
value = 0.05) were estimated empirically by permutation
sampling with 1,000 replicates. Experiment-wide signifi-
cance thresholds were derived from permutation esti-
mates by dividing the nominal p-value by the total
number of chromosomes examined in the study (i.e.,
0.05/8~0.006). Confidence intervals for the location of
significant QTL were estimated using Bayesian credible
intervals with a 95% probability coverage (see R/qtl doc-
umentation).

Further QTL modelling was carried out by analysis of var-
iance (ANOVA) using the fitgtl function in R/qtl. Putative
QTL genotypes were added to the model using condi-
tional genotype probabilities calculated at 1 cM intervals
and a genotyping error rate of 1%. Estimates of QTL
effects and percentage of variance explained were

http://www.biomedcentral.com/1471-2156/10/20

obtained by comparing the full model to the sub-model
without QTL. A similar approach was used for estimating
covariate effects.
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