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Background: Human monocyte inflammatory responses differ between virulent and
attenuated Francisella infection.

Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can
attenuate inflammatory cytokine responses to the less virulent F. novicida in human
monocytes.

Conclusion: F. tularensis dampens inflammatory response by an active process.

Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis.
Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease
tularemia, even upon exposure to low numbers of bacteria. One critical characteristic
of Francisella is its ability to dampen or subvert the host immune response. Previous
work has shown that monocytes infected with highly virulent F. tularensis subsp.
tularensis strain Schu S4 responded with a general pattern of quantitatively reduced
pro-inflammatory signaling pathway genes and cytokine production in comparison to those
infected with the less virulent related F. novicida. However, it has been unclear whether
the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By
using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis
actively suppresses monocyte pro-inflammatory responses. Additional experiments show
that this suppression occurs in a dose-dependent manner and is dependent upon the
viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory
responses to earlier infections with F. novicida. These results lend support that F. tularensis
actively dampens human monocyte responses and this likely contributes to its enhanced
pathogenicity.
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INTRODUCTION
Francisella tularensis is the highly infectious Gram-negative
causative agent of the disease tularemia (Sjostedt, 2007).
F. tularensis has further been classified into distinct subspecies
including F. tularensis subsp. tularensis (F. tularensis; Type
A), F. tularensis subsp. holarctica (F. holarctica; Type B), and
F. tularensis subsp. novicida (F. novicida). Francisella is especially
recognized for its low infectious dose and ability to cause severe
illness and death, which endorses its categorization as a Category
A select agent by the CDC (Sharma et al., 2011). Of note, the
most life-threatening forms of tularemia are particularly associ-
ated with Type A infections regardless of host species (Mohapatra
et al., 2013). Although known to infect a range of host organisms
and cell types (Rick and Wu, 2007; Hall et al., 2008), F. tularensis
has evolved to successfully infect human monocytes/macrophages
where it escapes the phagosome, replicates within the cytosol,
and then lyses the cell before beginning a new reinfection cycle

(Gavrilin et al., 2006; Clemens and Horwitz, 2007; Jones et al.,
2012; Celli and Zahrt, 2013).

One critical characteristic of F. tularensis is its ability to attenu-
ate the host inflammatory immune response. Indeed, early studies
in humans showed that Francisella-infected individuals exhib-
ited diminished cytokine responses to endotoxin (Greisman et al.,
1963). In the murine model, F. tularensis infection does not
lead to a classic pro-inflammatory cytokine response, which in
turn results in insufficient numbers of immune cells recruited to
infection sites (Bosio et al., 2007). Rarther, murine studies have
corroborated the findings of Griesman et al. (Greisman et al.,
1963), where challenge with LPS after infection does not lead to
the production of pro-inflammatory cytokines such as TNF-α in
mouse cell lines or in vivo (Telepnev et al., 2003, 2005; Bosio et al.,
2007). Similar findings have also been observed in F. tularensis
infected murine bone marrow and alveolar macrophages follow-
ing Pam3CSK administration (Crane et al., 2013a).

Frontiers in Cellular and Infection Microbiology www.frontiersin.org April 2014 | Volume 4 | Article 45 | 1

CELLULAR AND INFECTION MICROBIOLOGY

http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/about
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/journal/10.3389/fcimb.2014.00045/abstract
http://community.frontiersin.org/people/u/148582
http://community.frontiersin.org/people/u/23705
http://community.frontiersin.org/people/u/25963
http://community.frontiersin.org/people/u/24571
http://community.frontiersin.org/people/u/26905
http://community.frontiersin.org/people/u/16265
http://community.frontiersin.org/people/u/15920
mailto:gavrilin.1@osu.edu
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Gillette et al. Active cytokine suppression by virulent Francisella

It has been shown at the cellular level that dendritic cells
infected with F. tularensis respond poorly, exhibiting decreased
cytokine production (Bauler et al., 2011). Francisella does not
replicate within endothelial cells, nonetheless during their brief
interactions (Forestal et al., 2007), Francisella suppresses CCL2
and CXCL8 production thus limiting pro-inflammatory activa-
tion of effector immune cells (Bublitz et al., 2010). Multiple
investigations, including studies from our group, document that
F. tularensis infected cells have a stunted and/or delayed pro-
inflammatory cytokine response in contrast to other immune
stimulating agents (Telepnev et al., 2003; Sjostedt, 2006; Butchar
et al., 2008; Mares et al., 2008; Bosio, 2011; Dai et al., 2013).
Francisella’s ability to dampen immune response is not only lim-
ited to single cell populations, but is also evident in multiple cell
environments (Kim et al., 2008). It has been shown in murine
models that F. tularensis Schu S4 infections are associated with
a weak induction of immune related genes and an overall lack
of cell infiltration within the lung, which is in contrast to what
is observed in F. tularensis LVS, L. pneumophila, P. aeruginosa or
Y. pestis infection (Walters et al., 2013). Concurrently, the respi-
ratory model of tularemia is characterized by the development of
tolerogenic dendritic cells, release of anti-inflammatory cytokines
in the lungs and stimulation of Treg and Th17 cells (Woolard
et al., 2008; Periasamy et al., 2011).

We chose to examine human peripheral blood monocytes,
because a higher percentage of monocytes are infected by F.
tularensis than either F. holarctica or F. novicida during the course
of infection (Hall et al., 2008). It is well documented that avir-
ulent F. novicida is capable of inducing a potent inflammatory
program (Rick and Wu, 2007; Sjostedt, 2007; Cremer et al., 2009;
Dai et al., 2013). In human monocytes, the focus of this study,
we have previously shown that infection with F. tularensis, leads
to diminished responses of cytokines such as TNF-α, IL-6, IL-8,
and IL-12 among others (Butchar et al., 2008). Infection with
F. tularensis also leads to the downregulation of critical host
response pathway members such as TLR2, MyD88, the PI3K reg-
ulatory subunit, Type I/Type II Interferon pathway components,
and factors related to autophagy (Butchar et al., 2008; Cremer
et al., 2011).

The precise mechanism(s) by which the virulent F. tularen-
sis can elicit dampened immune responses upon infection is still
not completely understood (Oyston et al., 2004; Bosio, 2011).
There is strong evidence suggesting that this bacterium can evade
many of the host detection mechanisms, which leads to subopti-
mal immune responses and permits bacterial growth. In addition,
some studies have suggested that active mechanisms are also
at play, wherein Francisella not only escapes detection but also
preemptively dampens host cell responses. For example, it has
recently been shown that the lipids of F. tularensis but not those
of F. novicida were capable of dampening responses to subse-
quent innate immune stimuli both in vitro and in vivo (Crane
et al., 2013b; Ireland et al., 2013) and that interaction between C3-
opsonized F. tularensis and Complement Receptor 3 led to host
cell immunosuppression (Dai et al., 2013).

However, differentiating between active suppression by
Francisella and the more general phenomenon of endotoxin
tolerance/cross-tolerance (Greisman and Hornick, 1975; West

and Heagy, 2002; Morris and Li, 2012) has not been straightfor-
ward. Tolerance consists of both an early and late phase, depends
on mediators such as the inositol phosphatase SHIP (Sly et al.,
2004), and can be abrogated via molecules such as IFNγ (Chen
and Ivashkiv, 2010). Interestingly, IFNγ has been shown to be
important for cellular resistance against F. tularensis in both
human and mouse macrophages (Edwards et al., 2010).

Using a mixed infection model, we show that the virulent
F. tularensis Schu S4 can attenuate pro-inflammatory cytokine
responses to the less virulent F. novicida in human monocytes.
This process is dose-dependent and requires that F. tularen-
sis is viable. Importantly, our results show that F. tularensis
can dampen monocyte responses that are already in progress,
suggesting that it is bacterially-driven suppression rather than
host-cell-mediated tolerance. These results indicate that although
F. tularensis may evade detection by host innate immune sensors,
it also actively antagonizes host cell responses.

MATERIALS AND METHODS
HUMAN PERIPHERAL BLOOD MONOCYTE ISOLATION
Human Peripheral blood monocytes (PBM) were isolated as
previously described (Butchar et al., 2008) using centrifugation
through a Ficoll gradient followed by CD14-positive selection by
Magnet-Assisted Cell Sorting (MACS, Miltenyi Biotec, Auburn,
CA). This results in a ≥98% pure CD14-positive population of
monocytes that has been confirmed by flow cytometry. Cells were
incubated at 37◦C with 5% CO2 supplementation.

BACTERIAL STRAINS AND MONOCYTE INFECTIONS
All infections were performed with PBM in antibiotic-free RPMI-
1640 media (Gibco-BRL, Rockville, MD) supplemented with 10%
heat-inactivated fetal bovine serum (FBS, Hyclone, Logan, UT)
and 1% L-glutamine (Invitrogen, Carlsbad, CA). F. novicida -
U112 (JSG1819) and F. tularensis (Schu S4) were generously pro-
vided by Dr. John Gunn (The Ohio State University, Columbus,
OH) and grown on Chocolate II agar plates (Becton, Dickinson
and Company, Sparks, MD) at 37◦C. All experiments involv-
ing F. tularensis were performed in a BSL3 facility at The Ohio
State University as previously described (Butchar et al., 2007).
Bacteria were resuspended in RPMI-1640 and then quantified by
a spectrometer at 600 nm wave-length to calculate Multiplicity
of Infection (MOI). Heat-killed F. tularensis (t◦) was prepared
by heating at 95◦C for 10 min. Paraformaldehyde (pf) -killed
F. tularensis was prepared by treating with 4% paraformalde-
hyde for 40 min, followed by five washes in PBS and two washes
in RPMI to quench residual aldehydes as previously described
(Gavrilin et al., 2006; Cremer et al., 2012). Treated bacterial sus-
pensions were plated on chocolate II agar plates to ensure effective
killing.

For infection, monocytes were resuspended in polypropylene
tubes (Fisher Scientific) in RPMI medium 1640 supplemented
with 10% FBS (endotoxin-free; HyClone), at 1 or 2 × 106 cells
per tube. Live or killed bacteria were added to cells individ-
ually or together at various multiplicities of infection (MOI),
specified for every experiment. Cells were harvested 2, 4, 16-
18, and 24 h after infection; separated from bacteria by low-
speed centrifugation at 1000 g for 5 min; and lysed in TRIzol®
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(Invitrogen, Carlsbad, CA) or hypotonic lysis buffer for RNA
or protein isolation, respectively. After low-speed centrifugation,
cell culture media was cleared from bacteria by high speed cen-
trifugation at 16,000 g for 5 min, filtered and used for cytokine
determination.

REAL-TIME RT-qPCR
Quantitative Reverse-Transcription PCR was performed in detail
as described previously (Gavrilin et al., 2006). In short, RNA was
extracted from human PBM using TRIzol® reagent (Invitrogen,
Carlsbad, CA), reverse transcribed to cDNA, and then amplified
using SYBR Green PCR master mix (Eurogentec North America,
San Diego, Ca). Real-time PCR was performed on an Applied
Biosystems StepOne Plus system, with automatically-calculated
thresholds. Primer sequences used to amplify cDNA are
as follows: IL6 (forward, 5′-CACAGACAGCCACTCACCTC-3′;
reverse, 5′-TTTTCTGCC AGTGCCTCTTT-3′), IL8 (forward, 5′-
AGTTTTTGAAGAGGGCTGAGAAT-3′; reverse, 5′-CAACAGAC
CCACACAATACATGA-3′), and TNF (forward, 5′-GCTTGTTC
CTCAGCC TCTTCT-3′; reverse, 5′-GGTTTGCTACAACATG
GGCTA-3′). The housekeeping gene sequences are CAP1 (for-
ward, 5′-ATTCCCTGGATTGTGAAATAGTC-3′; reverse, 5′-ATT
AAAGTCACCGCCTTCTGTAG-3′) and GAPDH (forward, 5′-
ACTTTGGTATCGTGGAAG GAC T-3′; reverse, 5′-GTAGAGGC
AGGGATGATGTTC T-3′). Relative copy numbers (RCN) were
calculated as 2−�Ct, with �Ct calculated by subtracting the aver-
age Ct of two housekeeping controls (CAP1 and GAPDH) from
the experimental sample Ct (Gavrilin et al., 2006; Butchar et al.,
2008).

ELISA
Cell-free supernatants were collected from resting and infected
PBM and analyzed using sandwich ELISA kits specific for human
TNF-α, IL-6, and IL-8 (R&D Systems). Each sample was tested in
biological triplicates and instructions were followed according to
manufacturer protocols.

IMMUNOSTAINING
Infected cells were fixed in 3.7% paraformaldehyde supplemented
with 0.2% FBS for 30 min. Next, cells were washed two times with
1X PBS to remove residual paraformaldehyde. Cells were placed
on poly-Lysine coated slides and allowed to adhere prior to block-
ing with a 5% FBS and 1% BSA solution in 1X PBS for 30 min.
F. novicida-infected cells were incubated with primary anti F.
tularensis subsp. novicida monoclonal antibody Fn8.2 (Immuno-
Precise Antibodies Ltd; Victoria, British Columbia, Canada) at a
1:100 dilution for 4 h followed by the addition of Alexa Fluor 488
rabbit anti-goat antibody (Invitrogen, Carlsbad, CA). F. tularensis
infected cells were incubated with primary mouse antibody raised
against F. tularensis subsp tularensis LPS (Abcam, Cambridge,
MA) at a 1:1000 dilution for 4 h followed by the addition of Alexa
Fluor 594 goat anti-mouse antibody (Invitrogen, Carlsbad, CA).
Cover slips were mounted onto the slides using VECTASHIELD
mounting media. Images were captured using an Olympus BX41
fluorescent microscope equipped with a DP20 digital camera
(Olympus) at 100X magnification. A minimum of 50 cells were
analyzed per test group.

LACTATE DEHYDROGENASE (LDH) CYTOTOXICITY ASSAY
LDH release from the cell was used as an indicator of cell
death using an NAD+ reduction assay (Roche Applied Science).
Supernatants from treated cells were collected, clarified by cen-
trifugation at 400 g for 5 min, filtered and used for the assay. For
a positive control, total LDH content in untreated monocytes
was obtained by lysing cells with 1% Triton X-100. RPMI-1640
media was used as a blank and OD values were subtracted from
readings of samples and positive control. LDH concentration in
the medium was measured at 490 nm. Cell death was calculated
by the formula: cytotoxicity (%) = [(sample-blank)/(positive
control-blank) × 100], as described earlier (Gavrilin et al., 2012).

STATISTICS
Student’s t-test was used for comparison between two groups, and
One-Way ANOVA was used for multiple group comparisons with
a Tukey’s Multiple Comparison post-hoc test to analyze signifi-
cant differences. p ≤ 0.05 was considered to be significant. All
experiments were performed a minimum of 4 independent times
(n = 4) and results are expressed as mean values ± s.e.m.

RESULTS
VIRULENT F. TULARENSIS ELICITS A DAMPENED CYTOKINE RESPONSE
IN HUMAN MONOCYTES AND SUPPRESSES RESPONSES TO
F. NOVICIDA
It has previously been shown that F. tularensis-infected mono-
cytes generate a limited pro-inflammatory cytokine response in
contrast to those infected with F. novicida (Gavrilin et al., 2006,
2009; Butchar et al., 2008; Cremer et al., 2009), and that F. tularen-
sis could lead to weaker responses to subsequent stimuli such as
LPS (Bosio et al., 2007). Here, we aimed to determine the effects
of F. tularensis on monocyte responses to F. novicida infection,
with the expectation that active suppression (as opposed to eva-
sion of detection) by F. tularensis would significantly dampen F.
novicida-induced cytokine production. As a first step, we infected
monocytes overnight with F. novicida (Fn) or F. tularensis SchuS4
(Ft) independently and measured cytokine responses by ELISAs
and RT-qPCR. As expected, monocytes infected with F. novi-
cida showed high production of TNF-α, IL-6 and IL-8 compared
to those infected with F. tularensis SchuS4 (Ft) (Figure 1). After
establishing the effects of these bacteria as single agents we pro-
ceeded to examine the effects of virulent Francisella on mono-
cyte responses to the more pro-inflammatory F. novicida. To
explore the possibility that active mechanisms are facilitating the
observed immune suppression, we performed overnight infec-
tions of human monocytes with F. novicida, F. tularensis or both.
Cell-free supernatants were collected, filtered, and assayed by
ELISA for cytokine/chemokine production. Monocytes infected
concurrently with F. novicida and F. tularensis displayed a damp-
ened response similar to that seen with F. tularensis infections
(Figure 1A), suggesting that F. tularensis was attenuating the
response to F. novicida. We also assessed the cytokine mRNA lev-
els induced after infection. Our results showed that F. tularensis
infection led to significantly lower transcript levels both in single
and mixed infections (Figure 1B). These results indicate that F.
tularensis has a dominant immunosuppressive effect, as it was able
to blunt the monocyte responses to the less virulent F. novicida.
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FIGURE 1 | Virulent strains of F. tularensis elicit a dampened cytokine

response in monocytes. Primary human monocytes were left untreated
(NT) or infected in triplicate for 16 h with either F. novicida (Fn),
F. tularensis Schu S4 (Ft), or both at an MOI of 50 for each bacteria.
Cell-free supernatants from infected monocytes were collected and

assayed by (A) sandwich ELISAs and (B) RT-qPCR for TNF-α, IL-6 and
IL-8. “RCN” represents Relative Copy Number for the Y-axis. Graphs
represent the mean ± s.e.m. from 4 independent donors. Data were
analyzed by ANOVA. ∗p < 0.01 (Fn vs. all groups). There was no
significant difference between Ft and Fn + Ft.

BACTERIAL INTERACTIONS WITH MONOCYTES DO NOT DIFFER
BETWEEN F. NOVICIDA AND F. TULARENSIS
Since monocyte responses differ dramatically between F. novicida
and F. tularensis, we aimed to determine if the effects of F. tularen-
sis on monocyte responses compared to F. novicida infection were
due to a difference in the number of bacteria associating with
monocytes. To test this, we first infected monocytes for 5 h with
F. novicida or F. tularensis at an MOI of 50. Following this, cells
were washed two times, fixed in paraformaldehyde and stained
with antibodies generated toward each specific bacterium as
seen in representative images (Figure 2A). Our results show that
although monocytes are associated with slightly lower numbers of
F. novicida compared to F. tularensis, there is no statistically sig-
nificant difference in the number of bacteria that associate with
each cell (Figure 2B). The total percentage of cells associated with
either F. novicida or F. tularensis is comparable, i.e., both bacteria
associate with about 70% of the cells (Figure 2C).

F. TULARENSIS ACTIVE SUPPRESSION IS DOSE-DEPENDENT
Mixed-infection experiments described above were performed at
a 1:1 ratio between F. novicida and F. tularensis to allow equal

opportunity for both bacteria to evoke an immune response.
Since F. tularensis was found to suppress the normal monocyte
responses to F. novicida, we next asked whether a smaller ratio
of F. tularensis to F. novicida could still lead to suppression. To
test this we infected human monocytes with F. tularensis at an
MOI of 50, 25, or 5 in conjunction with F. novicida at a constant
MOI of 50. Our results indicated that the active suppression of F.
tularensis was dose-dependent (Figure 3).

BACTERIAL VIABILITY IS NECESSARY FOR F. TULARENSIS MEDIATED
CYTOKINE SUPPRESSION
Having established that F. tularensis could actively suppress
host cell cytokine responses in a dose-dependent manner, we
next tested whether or not bacterial viability played a role. For
this, monocytes were infected overnight with F. novicida along
with live, paraformaldehyde-killed or heat-killed F. tularensis.
Both paraformaldehyde and heat-killed Francisella were unable
to induce a pro-inflammatory response from human mono-
cytes (Figure 5). Monocytes co-infected with live F. novicida and
killed F. tularensis showed cytokine responses similar to those
infected with live F. novicida alone (Figure 4). These results are
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FIGURE 2 | F. novicida and F. tularensis associate similarly with

monocytes during infection. Primary human monocytes were infected
with F. novicida (Fn) or F. tularensis Schu S4 (Ft) at an MOI of 50 for 5 h. (A)

Representative images from cells fixed in paraformaldehyde and then
stained with Fn-82 antibody specific for F. novicida or FB-11 antibody
specific for F. tularensis. The corresponding secondary antibody for Fn-82
was Alexa Fluor 488 rabbit anti-goat IgG (green) and for FB-11 it was
AlexaFluor 594 goat anti-mouse IgG (red). Graphs represent the number of
bacteria per cell (B) or the number of infected cells (C). Graphs represent
the mean ± s.e.m. from 1 donor incorporating a minimum of 4 frames. Data
were analyzed by Student’s t-test. No significant differences were found.

in agreement with Ireland et al. (2013), who found that bacterial
viability was required for suppression of NF-κB and interferon
responses. The requirement for viability suggests that rather
than suppressing through contact alone, F. tularensis is produc-
ing and/or secreting one or more factors in order to effect the
dampening.

TIME COURSE OF F. TULARENSIS-MEDIATED SUPPRESSION
Previous in vivo studies reported that mice showed impaired pul-
monary inflammatory responses to secondary stimuli when first
challenged with F. tularensis (Bosio et al., 2007). These findings,
combined with our above results showing that bacterial viabil-
ity (and presumably production of immunosuppressive factors)
was needed for the effects brought about by F. tularensis, led
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FIGURE 3 | F. tularensis mediates immune suppression in a

dose-dependent manner. Primary human monocytes were left untreated
(NT) or infected overnight (16 h) with F. novicida (Fn), F. tularensis (Ft), or a
combination of the two. Ft MOI was administered at decreasing levels (50,
25, and 5 MOI) while keeping Fn MOI constant at 50. Cell-free
supernatants were assayed by sandwich ELISAs for TNF-α, IL-6, and IL-8.
Graphs represent the mean ± s.e.m. from 4 independent donors. Data
were analyzed by ANOVA. ∗p < 0.05 (Fn vs. selected groups), †p < 0.01
compared to Ft.

us to examine the length of time required for this suppression.
Hence, we performed time course studies in monocytes infected
with F. novicida, F. tularensis or both for 1, 4, 18, and 24 h.
Supernatants were collected and analyzed by ELISA as above. Our
results showed that although the greatest suppression occurred
following overnight infection (18 and 24 h), co-infection with F.
tularensis led to significant decreases in IL-6 cytokine suppression
as early as 4 h after infection (Figure 5).

F. TULARENSIS CAN ATTENUATE ONGOING IMMUNE RESPONSES
F. tularensis can begin dampening immune responses within
just several hours of infection but its ability to inhibit
an already-existing inflammatory response has not yet been
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FIGURE 4 | Viability of F. tularensis is essential to mediate immune

suppression. Primary human monocytes were left untreated (NT) or
infected overnight (16 h) with viable F. novicida (Fn), F. tularensis (Ft), or a
combination of the two at an MOI of 50 for each bacteria. Additionally,
monocytes were infected with heat-killed (t◦Ft) or paraformaldehyde-fixed
(pfFt) F. tularensis alone or in combination with live F. novicida (Fn). Cell-free
supernatants from infected monocytes were assayed by sandwich ELISAs
for TNF-α, IL-6, and IL-8. Graphs represent the mean ± s.e.m. from 4
independent donors. Data were analyzed by ANOVA. ∗p < 0.05 (Fn vs. Ft
and Fn + Ft); †p < 0.05 compared to Ft, t◦Ft, pfFt.

demonstrated (Mares et al., 2008). To test this, we infected mono-
cytes overnight with F. novicida, along with F. tularensis either
concurrently or 4 h after F. novicida. Cells were lysed in TRIzol®
and cleared supernatants were collected to measure cytokine tran-
script and secretion levels, respectively. Results showed that F.
tularensis led to attenuated cytokine / chemokine responses even
when added 4 h following F. novicida infection (Figures 6A,B).
These results suggest that F. tularensis is likely interfering directly
with one or more pro-inflammatory response pathways, as the
bacteria are able to modulate responses already in progress.

DISCUSSION
Here, we provide evidence that F. tularensis can actively suppress
host cell immune responses, including those already in progress.
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FIGURE 5 | F. tularensis suppression is observed during early infection

time points. Primary human monocytes were infected at for 1, 4, 18, or
24 h with F. novicida (Fn), F. tularensis (Ft) or both at an MOI of 50 for each
bacteria. Cell-free supernatants were collected and assayed using sandwich
ELISAs for TNF-α, IL-6, and IL-8. Graphs represent the mean ± s.e.m. from 4
independent donors. Data were analyzed by ANOVA. ∗p < 0.05 (Fn vs. Ft
and Fn + Ft).

We chose to examine human peripheral blood monocytes, since
Francisella predominantly targets these cells in the blood stream.
Our results showed that human monocytes infected with F. novi-
cida demonstrate robust pro-inflammatory responses. In con-
trast, co-infected with F. tularensis and F. novicida produced
cytokines at low levels, similar to those seen with F. tularensis
alone. Furthermore, F. tularensis was able to dampen monocyte
responses even if administered several hours following infection
with F. novicida. The cytokines TNF-α and IL-6 were reduced,
and we also observed a significant reduction in the neutrophil-
attracting chemokine IL-8 at 4 h after F. tularensis infection. This
would lead to the prediction that neutrophil responses might
be compromised at the whole-organism level after infection, but
Hall et al. found a substantial neutrophil influx in mice infected
with F. tularensis (Hall et al., 2008). Additional studies are needed
to determine the degree to which the IL-8 reduction we observed
would influence neutrophil responses in vivo.
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FIGURE 6 | F. tularensis administered after F. novicida infection can still

suppress the pro-inflammatory cytokine response elicited by F. novicida.

Primary human monocytes were left untreated (NT) or infected overnight
(16 h) with F. novicida (Fn), F. tularensis (Ft), or both at an MOI of 50 for each
bacteria. In other samples, F. tularensis infection was performed 4 h following

F. novicida infection. Cell-free supernatants were assayed by (A) sandwich
ELISAs and (B) RT-qPCR, for TNF-α, IL-6, and IL-8. “RCN” represents Relative
Copy Number for the Y-axis. Graphs represent the mean ± s.e.m. from 4
independent donors. Data were analyzed by ANOVA. ∗p < 0.05 (Fn vs. all
groups).

F. tularensis has pleiotropic effects on individual cell types as
well as whole organisms, and one of these is manipulation of
cytokine profile. For example, Periasamy et al. (2011) showed
that Th1 pro-inflammatory cytokines were absent within the first
72 h of pulmonary infection despite an intense neutrophil infil-
trate and high bacterial burden. However, Th2 (Singh et al., 2013)
and Th17 (Woolard et al., 2008) cytokines have been observed
in mouse models of respiratory tularemia. It was postulated that
the lack of Th1 pro-inflammatory response during the early
phase of infection was mediated by such Th2 and Th17 cytokines
(Periasamy et al., 2011).

Regarding our findings in human monocytes, it is unlikely
that F. tularensis-induced shifts toward Th2 and Th17 responses
explain its suppressive effect, either alone or during co-infection
with F. novicida. For example, we found that F. tularensis
SchuS4 supresses IL10 gene expression in a pattern similar to
Th1 cytokines (Supplementary Figure 1). In addition, TGFB1
and IL17RA expression was suppressed in human monocytes
by both F. tularensis and F. novicida (Supplementary Figure 1).

In contrast to significant IL-17 response following respiratory
Francisella LVS infection (Woolard et al., 2008), we were unable to
detect reliable expression of IL17A in human monocytes infected
with Francisella (data not shown), which is in agreement with
the finding by Periasamy et al. in mouse lung macrophages
(Periasamy et al., 2011). Thus, observed suppression of robust
human monocyte pro-inflammatory responses for F. novicida by
F.tularensis co-infection may not be explained by only Th2/Th17
activation as we did not detect this activation within the time-
frame of our experiments. However, a Th2/Th17 response may
be a potent regulator of the pro-inflammatory response during
tularemia at the whole-organism level as other cells such as den-
dritic cells may contribute by releasing Th2 anti-inflammatory
cytokines (Periasamy et al., 2011; Singh et al., 2013). Also, the dif-
ference in Francisella recognition between mice and men should
not be ignored (Gavrilin and Wewers, 2011).

There is a possibility that host cell death rather than active
suppression by F. tularensis is responsible for the reduced proin-
flammatory responses. Indeed, we observed this in the present
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study wherein infection by F. tularensis led to greater LDH release
(Supplementary Figure2). Although cell death may contribute
toward the observed suppression of cytokine production, reduced
cytokine transcripts were also observed via RT-qPCR, which
compares against 2 endogenous housekeeping genes (Figure 3).
Moreover, we were able to observe differential increases in some
genes such as RELA and NFKBIA following F. tularensis infection
(Supplementary Figure 3).

Our results also showed that inhibition of monocyte cytokine
production was dependent on the viability of F. tularensis, since
heat- or paraformaldehyde-killed F. tularensis showed no effect.
This is in agreement with the work by the Bosio group (Telepnev
et al., 2003; Bosio and Dow, 2005; Bosio et al., 2007; Chase
et al., 2009), who showed that live Francisella exposure could
lead to an attenuation of responses to subsequent innate immune
stimuli.

Numerous earlier studies have shown that Francisella is capa-
ble of evading host immune detection and eliciting subopti-
mal pro-inflammatory cytokine responses (Telepnev et al., 2003;
Bosio and Dow, 2005; Andersson et al., 2006; Sjostedt, 2006;
Chase and Bosio, 2010; Medina et al., 2010; Melillo et al.,
2010; Zarrella et al., 2011). This phenomenon is not unique
to F. tularensis, since other virulent pathogens such as the
Ebola virus and Mycobacterium leprae show similar characteristics
(Bosio et al., 2003; Sinsimer et al., 2010). Further examinations of
the mechanisms underlying host cell responses to such immuno-
suppressive pathogens will likely uncover additional commonal-
ities that may ultimately lead to new host-directed therapeutic
strategies.

It has often been suggested that Francisella could, at least
to some degree, directly antagonize pro-inflammatory responses
(Metzger et al., 2007) as well as escape detection. Discerning
between the two possibilities has been problematic, and fur-
ther complicated by the possibility that F. tularensis-mediated
suppression of immune responses could be a reflection of endo-
toxin tolerance, wherein immune cells become refractory (early
phase) and desensitized (later phase) to immune stimuli follow-
ing exposure to an initial stimulus such as mycobacterium, LPS
or TNF-α (Greisman and Hornick, 1975; West and Heagy, 2002;
Bosio et al., 2007; Morris and Li, 2012; Dai et al., 2013). However,
recent work (Bosio et al., 2007; Dai et al., 2013) along with work
detailed in this study provides strong evidence that a component
of active suppression exists. Also, the dependence of suppression
on F. tularensis viability in this study suggests that F. tularensis
is producing one or more immunosuppressive agents that act
on the host cell and that this effect is a dose-dependent man-
ner. Alternatively we cannot rule out that the lower MOIs of
F. tularensis resulted in the infection of fewer monocytes with
this bacterium (vs. F. novicida at 50 MOI presumably infecting
a greater number of monocytes).

Multiple mechanisms have been discovered to date by which
Francisella defeats host immune responses (Bosio et al., 2007;
Cremer et al., 2011; Jones et al., 2012). These include an uncon-
ventional LPS that is poorly recognized by TLR4 (Duenas et al.,
2006; Bosio, 2011), surface lipopeptides such as Tul4 that induce
TLR2 signaling but fail to elicit a strong cytokine response
(Thakran et al., 2008), OmpA that prevents nuclear translocation

of NF-κB p65 (Mahawar et al., 2012), the pathogen’s interactions
with CR3 (Balagopal et al., 2006; Ben Nasr et al., 2006; Ben Nasr
and Klimpel, 2008; Barker et al., 2009; Dai et al., 2013), and
its ability to avoid both serum-mediated killing and antibody
detection (Bosio et al., 2007; Ben Nasr and Klimpel, 2008; Clay
et al., 2008). F. tularensis also leads to host cell transcriptional
changes such that immune response pathways such as IFNγ,
PI3K, Erk and TLR2 may be weakened (Butchar et al., 2008).
Earlier results from our microarray study showed that expres-
sion of the Akt-inactivating phosphatase PTEN was higher in
monocytes infected with Schu S4 than with F. novicida (Butchar
et al., 2008), and it has been shown in human monocyte-derived
macrophages (MDM) that Schu S4 induces higher levels of PTEN
(Melillo et al., 2010). Interestingly, as well as inducing increased
PTEN levels, F. tularensis Schu S4 also inhibited the inactivation
of PTEN in human MDM via antioxidant activity, again lead-
ing to dampened Akt phosphorylation during infection (Melillo
et al., 2010). Our group also confirmed that the Akt antagonist,
PTEN, is induced in Schu S4 infections. Collectively, these find-
ings point out the multifaceted nature of Francisella with regard
to overcoming immune responses and successfully infecting the
host organism. As a facultative bacterium, F. tularensis possesses
the ability to respond to changes in its immediate environment,
which includes host cells and host organisms. Indeed, our group
has shown that suppression can occur as early as during phago-
cytosis (Dai et al., 2013) and it has been shown that F. tularensis
rapidly alters its own transcriptional profile during the course of
host cell infection (Wehrly et al., 2009). As such, it is clear that F.
tularensis employs a battery of methods in order to actively sup-
press host responses. Novel additional mechanisms will almost
certainly be uncovered as genetic and biochemical studies become
increasingly sophisticated
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fcimb.2014.

00045/abstract

Supplementary Figure 1 | F. tularensis suppresses expression of

anti-inflammatory genes. Primary human monocytes infected overnight

(16 h) with F. novicida (Fn), F. tularensis (Ft), or both at an MOI of 50 for

each bacteria were analyzed for expression levels of IL10, TGFB1 and

IL17RA genes. Data are expressed as mean ± s.e.m., n = 3 independent

experiments.

Supplementary Figure 2 | LDH release from monocytes followed by

infection with Francisella. Primary human monocytes were left untreated

(NT) or infected for 8 h (A) or 18 h (B) with F. novicida (Fn), F. tularensis
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(Ft), or both at an MOI of 50 for each bacteria. Cell-free supernatants were

assayed for LDH release as a signature of cell death. Data are expressed

as mean ± s.e.m., n = 10 independent experiments.

Supplementary Figure 3 | Differential effect of Francisella on expression of

selected genes in human monocytes. Primary human monocytes infected

overnight (16 h) with F. novicida (Fn), F. tularensis (Ft), or both at an MOI of

50 for each bacteria were analyzed for expression levels of RELA, IKBIA,

PSTPIP1 and PYCARD genes. Data are expressed as mean ± s.e.m.,

n = 3 independent experiments.
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