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Abstract: Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely
used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and
evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract
exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant
activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-
diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions
of the crude extracts of different parts were separated and identified using high-performance liquid
chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were
established and tested for their cytotoxicity and apoptotic activity. Results showed that silver
nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent
cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 µg/mL
and 0.94 µg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction,
Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced
total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by
15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated
the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for
anti-prostate cancer candidates.

Keywords: Cynara scolymus L.; antioxidant activity; total phenolic; HPLC-DAD; flower; bract; stem;
silver nanoparticles; PC-3; A549

1. Introduction

Globally, medicinal plants are widely used for the prevention or treatment of many
illnesses with minimal or no side effects. Curing with herbal medicine is back to prehis-
toric times [1], and it is expressed in about 90% of traditional therapies [2]. So, many
scientific papers were oriented to illustrate how these plants undergo their pharmaco-
logical effects. Previous studies involved green medicine as a crude extract of the whole
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plant [3,4], an extract of certain parts [5,6], purified natural compounds [7–9], or iso-
lated certain bioactive fractions such as polyphenols, essential oils, saponins, alkaloids,
polysaccharides, etc. [10–14].

Plant-based foods naturally comprise polyphenolic compounds. Polyphenols are
well-known for their free radical scavenging, antioxidant, and anti-carcinogenic activi-
ties. Artichoke or Cynara scolymus L. (Family: Compositae) is an edible plant famous
for its hepatoprotective, antioxidant, antiviral, hypoglycemic, anti-hypercholesterolemic,
antimicrobial, chemopreventive, and cytotoxic effects [15–17]. C. scolymus L. is traditionally
consumed in the Mediterranean diet. The edible parts are a flower head (inflorescence)
surrounded by fleshy leaves called bracts, and the proximal part of the stem [18]. Despite
its low caloric value, it is a nutritious source of carbohydrates (6.8%), nitrogen compounds
(2.9%), inulin (19–36%), fiber, vitamin C, folates, vitamin B complex, potassium, calcium,
sodium, magnesium, phosphorus, iron, copper, and manganese [18]. C. scolymus L. is an
enriched source of polyphenolic compounds classified as flavonoids, phenolic acids, antho-
cyanins, and glycosides. These polyphenols were identified using liquid chromatography
equipped with mass spectrometry as chlorogenic acid, ferulic acid, coumaric acid, syringic
acid, dicaffeoylquinic acid, gallic acid, rosmarinic acid, cyanidin 3,5-diglucoside, cyani-
din 3-glucoside, luteolin, rutin, quercetin, naringenin, chrysoeriol, isoquercitrin, cynarin,
and cynaroside [19,20]. Although artichoke was reported as traditional phytotherapy for
the treatment of many diseases, few clinical trials about C. scolymus L. were provided.
A previous study demonstrated the positive effect of C. scolymus L. on obesity treatment
and lowering body mass index. C. scolymus L. can also control blood pressure in hyper-
tensive patients through vasodilation and upregulation of endothelial-type nitric-oxide
synthase gene expression [21]. Another study reported the ability of C. scolymus L. to reduce
fasting blood glucose level, A1C-derived average glucose (ADAG), and homeostatic model
assessment (HOMA), which assess β-cell function and insulin resistance, in prediabetic
patients [22]. Fallah Huseini and his coworkers proved the antihyperlipidemic effect of C.
scolymus L. via a reduction in total cholesterol level and low-density lipoprotein (LDL) [23].
All these findings pertained to existing polyphenolic compounds. Polyphenolic compounds
exhibited a crucial impact in the treatment of cancer [24]. So, previous studies reported the
cytotoxic effect of C. scolymus L. against different types of cancer such as cervical (HeLa) [25],
breast (MCF-7) [26], liver (HepG-2) [27], and colon (HCT-116) cancer cell lines [28]. Prostate
cancer is the fifth key reason of death around the world and the second most common
tumor (after lung tumor) in men as well [29]. Therefore, the current study handled the
efficacy of C. scolymus L. in the treatment of prostate cancer and lung cancer.

Nowadays, delivery systems of green medicine have been designed and developed as a
result of recent breakthroughs in drug manufacturing. A nanocarrier of silver nanoparticles
(AgNPs) is a sophisticated and well-designed system created for optimal delivery of
biomaterials due to their surface-adsorbed molecules [30,31].

In view of the above, formulation of AgNPs of a phenolic portion of edible parts of
flower, bract, and stem of Cynara scolymus L. (artichoke) is handled as a part of ongoing
efforts to compare their cytotoxic activity versus their non-formulated crude extracts against
lung and prostate cancers.

2. Results
2.1. In Vitro Antioxidant Activity of Crude Extracts of Flower, Bract, and Stem of C. scolymus L.

Artichoke is well-known for its antioxidant and free radical, and scavenging activities.
The comparative in vitro antioxidant activity of the flower, leaf, and stem parts was assessed
using three different methods, total antioxidant capacity (TAC) assay, ferric reducing
antioxidant power (FEAP) assay, and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging
assay. From the data shown in Table 1, the crude extract of the flower part displayed the
highest TAC. The TAC is defined as the total quantity of antioxidant which can react with
an oxidant and is expressed as gallic acid equivalent per gram extract [32]. In addition,
the flower extract exhibited a promising DPPH free radical scavenging activity and a
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potent ferric reducing power with IC50 of 45.91 and 64.39 µg/mL, respectively, compared
with ascorbic acid as a reference drug. FRAP evaluates the potential of crude extracts of
different parts of the plant to reduce ferric ion complex through the donation of an electron,
while the DPPH assay evaluates the potential of crude extracts to donate an electron to
neutralize DPPH free radicals [32]. The lower concentration of IC50 of the crude extracts
under investigation, the better antioxidant potential.

Table 1. Total antioxidant capacity, ferric reducing antioxidants power, and DPPH radical scavenging
assays of flower, bract, and stem of C. scolymus L.

Sample TAC Assay
(mg GAE/g) IC50 of FRAP Assay (µg/mL) IC50 of DPPH Scavenging

Activity (µg/mL)

Crude extract of Flower part 34.07 a ± 3.15 77.12 c ± 4.23 45.91 c ± 2.97
Crude extract of Bract part 32.13 a ± 2.49 91.11 b ± 6.17 64.39 b ± 3.45
Crude extract of Stem part 28.16 a ± 2.34 604.13 a ± 17.85 514.02 a ± 9.86

Ascorbic acid 2.49 b ± 3.91 17.11 d ± 0.90 10.65 d ± 0.83
ANOVA (p-value) <0.001 *** <0.001 *** ANOVA (p-value)

TAC: total antioxidant capacity; FRAP: ferric reducing antioxidant power; DPPH: 1,1-diphenyl-2-picrylhydrazyl;
GAE: gallic acid equivalent. *** Significant at p < 0.001. Means followed by different letters (a, b, c, d) are
significantly different according to One-way ANOVA in GraphPad Prism software.

Stem extract showed the lowest value in the TAC assay. Additionally, neither FRAP
nor DPPH scavenging activities of stem extract were observed.

2.2. Determination of Total Phenolics Content and Total Flavonoids Content in Crude Extracts of
Flower, Bract, and Stem of C. scolymus L.

The antioxidant activity is highly correlated to phenolic compounds. In accordance
with the results of the in vitro antioxidant assays, the crude extract of the flower part
manifested the highest content of both flavonoids and phenolic compounds (Table 2).

Table 2. Total phenolics and total flavonoids in flower, bract, and stem of C. scolymus L.

Sample Total Phenolic
(mg GAE/gm)

Total Flavonoids
(mg QE/gm)

Crude extract of Flower part 74.29 a ± 3.85 46.03 a ± 1.99
Crude extract of Bract part 60.94 b ± 3.28 21.89 b ± 1.07
Crude extract of Stem part 26.59 c ± 1.37 8.26 c ± 0.92

ANOVA (p-value) <0.001 *** <0.001 ***
GAE: gallic acid equivalent; QE: quercetin equivalent. *** Significant at p < 0.001. Means followed by different
letters (a, b, c) are significantly different according to One-way ANOVA in GraphPad Prism software.

Of the three different extracts, it was noticed that flavonoid content in the flower is
two-fold higher than that in bract and five-fold that in the stem, which contributes to the
highest antioxidant activity of the flower. Moreover, the total phenolic content in the stem
is half the amount of that found in bract and one third amount of that found in the flower,
resulting in the lowest antioxidant activity as mentioned above.

2.3. HPLC-DAD Identification of Polyphenols in Crude Extracts of Flower, Bract, and Stem of
C. scolymus L.

A comparison of polyphenolic compounds in flower, stem, and bract extracts was
conducted using HPLC-DAD analysis. On the one hand, the HPLC chromatogram of
flower extract is closely related to that of the bract, showing almost the same major peaks
(Figure 1). Among the investigated reference standards, the peaks of catechin, chlorogenic
acid, cynarin, cymaroside, rutin, and quercetin were detected in both flower and bract
extracts. Cynarin is the most commonly identified polyphenolic compound in flower and
leaf extracts. On the other hand, the HPLC chromatogram of stem extract is poor with
polyphenolic peaks. Only the peaks of gallic acid and chlorogenic acid were detected.



Molecules 2022, 27, 6304 4 of 19

Additionally, the peaks of ellagic acid, caffeic acid, hesperidin, and kaempferol are missing
in all the represented chromatograms.
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Figure 1. HPLC-DAD chromatograms: (A) Chromatogram of ten reference standards of polyphenols;
(B) Chromatogram of polyphenols in flower crude extract; (C) Chromatogram of polyphenols in bract
crude extract; (D) Chromatogram of polyphenols in stem crude extract.
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2.4. Characterization of AgNPs of Phenolic Portions of Crude Extracts of Flower, Bract, and Stem
of C. scolymus L.
2.4.1. UV-VIS Spectroscopy

Due to the unique surface-plasmon resonance absorption band in the region of 400–500 nm,
all AgNPs formulations developed a brown color, as shown in Figure 2.
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2.4.2. Transmission Electron Microscopy (TEM)

The total phenolics AgNPs of the flower are spherical in shape, fairly monodispersed,
and well distributed without aggregation, according to the TEM image (Figure 3A). The par-
ticle size distribution of AgNPs generated from TEM data using Nano Measurer software
is shown in Figure 3B.
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2.4.3. Particle Size and Zeta Potential Determination

The mean particle size values of the prepared AgNPs obtained ranged between
21.31 ± 0.43 and 26.42 ± 1.08 nm. The smallest particle size obtained using the DLS
technique was of total phenolics AgNPs of the flower part (Nano-TP/Flower), but it is
larger than that derived from the TEM image. This is expected as the DLS measures
the hydrodynamic size, not the physical size [33]. Diegoli and coworkers mention that
this difference is because the DLS technique is sensitive to the double layer surrounding
the nanoparticles in dispersion, which is expected to lead to overestimating the mean
particle diameter [34].

All generated AgNPs formulas had PDI values ranging from 0.101± 0.017 to 0.112 ± 0.020,
exhibiting uniform size distribution and excellent homogeneity (Table 3). In addition,
the zeta potential values of the prepared formulations ranged from −31.9 ± 2.22 to
−35.5 ± 2.69 mV, as shown in Table 3. According to the ZP data, all generated AgNPs
contain sufficient charges to prevent agglomeration and are regarded as highly stable.

Table 3. Particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the synthesized AgNPs.

Formula PS (nm) PDI ZP (mV)

AgNPs of total phenolics of flower
(Nano-TP/Flower) 21.31 ± 0.431 0.109 ± 0.014 −34.0 ± 4.45

AgNPs of total phenolics of bract
(Nano-TP/Bract) 22.05 ± 0.912 0.101 ± 0.017 −35.5 ± 2.69

AgNPs of total phenolics of stem
(Nano-TP/Stem) 26.42 ± 1.082 0.112 ± 0.020 −31.9 ± 2.22

2.5. In Vitro Cytotoxic Activity
2.5.1. In Vitro Cytotoxic Activity of Phenolic Fractions and Their AgNPs of Flower, Bract,
and Stem against PC-3 and A549 Cell Lines

Samples of total phenolic fractions of different parts of C. scolymus L.; bract, flower,
stem, and their AgNPs forms were screened for their cytotoxicity against prostate (PC-3)
and lung (A549) cancer cell lines using MTT assay. As seen in Table 4, total phenolics
of bracts, flowers, and stems exhibited moderate cytotoxic activity against PC-3 and
A549 cell lines with an IC50 range of 16.35 to 56.3 µg/mL. Interestingly, AgNPs formula-
tions improved the cytotoxicity results compared with their non-formulated forms. Nano-
TP/Flowers displayed potent cytotoxicity against PC-3 and A549 cell lines with IC50 values
of 0.85 µg/mL and 0.94 µg/mL, respectively (Figure 4), compared with doxorubicin with
IC50 values of 5.13 and 6.19 µg/mL, respectively.

Table 4. IC50 values of different fractions of total phenolics and their AgNPs forms of different parts.

Samples Working
Concentration

IC50 * [µg/mL]

PC-3 A549

TP/Flower

0.1, 1, 10, 50, 100
µg/mL

16.35 ± 0.76 17.38 ± 0.75
TP/Bract 19.65 ± 0.97 21.04 ± 0.96
TP/Stem 43.2 ± 1.51 56.3 ± 2.12

Nano-TP/Bract 1.01 ± 0.1 1.34 ± 0.23
Nano-TP/Flowers 0.85 ± 0.01 0.94 ± 0.02

Nano-TP/Stem 14.3 ± 0.43 13.6 ± 0.34
Doxorubicin 5.13 ± 0.64 6.19 ± 0.58

* IC50 were calculated by non-linear regression curve fir using GraphPad prism; TP: total phenolic fraction.

Additionally, Nano-TP/Bract showed potent cytotoxicity with IC50 values of 1.01 and
1.34 µg/mL. At the same time, Nano-TP/Stem exhibited moderate cytotoxicity with IC50
values of 14.3 and 13.6 µg/mL. These results highlighted the potent cytotoxicity of the
Nano-TP/Flowers; hence it was worthy of being further tested for the mechanism of action
in PC-3 and A549 cells.
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2.5.2. Apoptosis-Induction Activity

• Annexin V/PI staining

Further investigation of the mechanism of apoptosis-induction of Nano-TP/Flowers
against PC-3 and A549 cells was handled using Annexin V/PI staining. As seen in Figure 5,
Nano-TP/Flowers induced total prostate apoptotic cell death by 25% (15% early and 10%
late apoptosis) compared with 0.11% in the untreated control cells. So, it induced apoptosis
in PC-3 cells by 227-fold change. Additionally, it induced total lung apoptotic cell death
by 10.5% compared with 0.67% in the untreated control cells. So, it induced apoptosis in
A549 cells by a 15.6-fold change. Consequently, Nano-TP/Flowers exhibited apoptosis in
PC-3 with a higher ratio than in A549 cells.

• Gene expression analysis using RT-PCR

Gene expression analysis for the apoptosis-related genes was carried out in the
untreated and treated PC-3 cells with Nano-TP/Flowers. As seen in Figure 6, Nano-
TP/Flowers upregulated the P53 gene by 6.66-fold, the Bax gene by 6.88-fold, and caspases
3, 8, 9 by 9.05, 5.43, and 7.08-fold, respectively. While it downregulated the Bcl-2 gene by
0.25-fold, this behavior of apoptosis-induction in PC-3 cells upon treatment agreed with
routine results of proving apoptosis-induction [35,36].
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3. Discussion

C. scolymus L. is famous for its hepatoprotective effect as a result of having a high
number of polyphenolic compounds. These polyphenols exhibited antioxidant and free
radical scavenging activities that help in the prevention and treatment of many diseases.
The total antioxidant capacity assay determines what number of free radicals or metal ions
scavenged by the different samples [37]. On the one hand, DPPH has been widely used in
the determination of the ability of polyphenolic compounds to capture free radicals. Free
radicals are the root cause of cell damage, cancer, inflammation, aging, and other diseases.
An advantage of the DPPH assay is that the free radical is commercially available and
stable, and it doesnot generate in different ways [38]. On the other hand, the FRAP assay
was developed as an alternative way to determine iron reduction in biological fluids [38].
Iron has an essential role in biochemical processes in our body. It is responsible for oxygen
transport and storage, appropriate immune response, energy metabolism, and synthesis
of collagen. The reduction of ferric iron is a key biological process during cellular iron
uptake. So, it is a good way to assay the ability of polyphenolic compounds to reduce ferric
iron that in high levels is involved in rusting blood vessels [39]. C. scolymus L. showed a
positive effect on both mechanisms. Interestingly, flavonoids and phenolic acids are large
groups of secondary metabolites that act as a donor of a hydrogen atom or an electron.
The hydroxyl group at carbon number 3 in the flavonoid skeleton potentiates FRAP activity
without any effect on DPPH scavenging activity. So, lacking this hydroxyl group in the
structure of phenolic acids lessens FRAP activity [37]. The highest content of both total
phenolics and total flavonoids was recorded in the crude extract of the flower part of
C. scolymus L. As reported in the literature [19], C. scolymus L. is a fruitful source of phenolic
compounds apart from flavonoids. Now, it is clear why the crude extract of the flower part
of C. scolymus L. demonstrated a higher FRAP, DPPH scavenging activity, and TAC than
these of bract or stem.

UPLC/MS-MS Analysis of some members of the family Asteraceae revealed the pres-
ence of high levels of luteolin-7-O glycoside (cynaroside) and apigenin-7-O glycoside as
the most common flavonoids [40]. Concerning phenolic acids, chlorogenic acid is the most
detected phenolic acid. An earlier study reported that caffeoyl derivatives are considered



Molecules 2022, 27, 6304 10 of 19

the major metabolite in the family Asteraceae, such as cynarin (dicaffeoylquinic acid) in
artichoke and chicoric acid (dicaffeoyltartaric acid) in chicory [41]. The HPLC-DAD detec-
tion of polyphenols in flower, bract, and stem extracts was another comparative point in
the current study. Our findings accord with those found in previous studies reporting the
presence of chlorogenic acid, gallic acid, cynarin, cynaroside, rutin, and quercetin, as well
as the absence of ellagic acid and hesperidin [19]. Unlike stem extract, the polyphenolic
compounds in flower and bract extracts are almost the same. Different caffeoylquinic acid
derivatives and flavonoids were previously isolated from leaf and flower parts, and then
they were identified as chlorogenic acid, 1,3-di-O-caffeoylquinic acid (cynarin), 1,5-di-O-
caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, luteolin-7-
rutinoside, luteolin-7-O-β-D-glucoside (cymaroside), apigenin-7-rutinoside, and apigenin-
7-O-β-D-glucopyranoside [42]. Herein, cynarin and cymaroside are common existing
polyphenolic compounds in both flower and bract extracts. In contrast to previous studies,
neither caffeic acid nor apigenin were detected in our species. Cynarin is the main deriva-
tive of caffeoylquinic acid in leaves and flower extracts of C. scolymus L. It was reported
that cynarin could reduce the growth of cancerous cells promoting longevity of normal
cells [43,44]. Cynaroside has anti-cancer properties through monitoring the processes of
cell proliferation, apoptosis, autophagy, invasion, and tumorigenesis [45]. Chlorogenic
acid introduces a new strategy in the treatment of cancer through the differentiation of
cancer cells rather than killing them [46]. Rutin can act as a chemotherapeutic and chemo-
preventive agent that suppresses or prevents either the occurrence of carcinogenesis or
the progression of premalignant cells to the invasive stage [47]. Its antitumoral effects can
be mediated through the suppression of cell proliferation, the induction of apoptosis or
autophagy, and the hindering of angiogenesis and metastasis [48]. Quercetin can prevent
and treat different types of cancer by acting as an apoptosis inducer or growth inhibitor [49].
Additionally, catechins showed anticancer activity against various types of cancer through
regulation of inflammation, proliferation, cell cycle, oxidative stress, and metastasis pro-
cesses [50]. So, the isolation of the phenolic fraction of these biologically active compounds
from leaf, flower, and stem parts of commercially available artichoke (C. scolymus L.) was a
must for further assessment of their nanoformulations.

Metal nanoparticles exhibit surface plasmon resonance absorption in the UV-visible
range. Because of the small particle size, the surface plasmon band is caused by the
continued existence of free electrons in the conduction band [51,52]. This indicates that the
Ag+ ion has been reduced to colloidal Ag.

TEM was used to show the surface morphology, size distribution, and shape of
the produced AgNPs. The image analysis (n = 50 particles) shows a mean particle size
of 12.7 nm. This small particle size could enhance the efficacy and cytotoxic effect of
the nanoparticles.

The effect of particle size, surface charge, and NP shape on pharmacokinetics, tissue
distribution, cellular uptake, and elimination has been extensively proven. Physiological
activities such as hepatic absorption and tissue diffusion, tissue extravasation, and renal
excretion are also largely dependent on particle size [53]. Furthermore, optimizing the
nanocarrier’s particle size, charge, and surface chemistry allows for the avoidance of
traditional therapy drawbacks such as excessive dose administration, poor bioavailability,
and chemical instability of the delivered medication [54]. The size of AgNPs influences
their biological behavior in vivo as well as the nanocarrier’s targeting capabilities [55].
Sriram and his coworkers studied the biologically synthesized AgNPs’ size-dependent
cellular cytotoxic effects in primary bovine retinal endothelial cells in vitro. They found
that smaller particles of size 22.4 nm, which is comparable with those obtained in this
study, exhibited significant toxicity even at the lowest doses compared with the larger size
Ag-NPs of size 42.5 nm [56].

PDI, on the other hand, is a tool for estimating size distribution and typically ranges
from 0 to 1. Low PDI values reflect a limited size distribution and promote long-term



Molecules 2022, 27, 6304 11 of 19

nano dispersion stability, but values greater than 0.5 reveal that the size distribution is not
uniform [57]. For a lesser fluctuation in AgNPs formulation, lower PDI values are preferred.

The cumulative charges gained by particles are referred to as the zeta potential. It is
critical to make precise assessments of the stability of nanoparticle dispersions. Because of
electrostatic repulsion between particles, colloidal dispersions with ZP values of 30 mV or
above are regarded as highly stable [58]. A high zeta potential will assist the nanocarrier in
resisting aggregation by ensuring system stability. When the zeta potential is exceedingly
low, the attraction forces outnumber the repulsive forces, causing the dispersion to become
unstable. As a result, higher zeta potential nanoparticles are electrically stabilized [59].

Some members of the family Compositae are widely used in folk medicine and have
been reported to imply a cytotoxic effect against prostate cancer. Extracts of Vernonia
guineensis Benth., Melampodium leucanthum, Achillea wilhelmsii, Achillea teretifolia Willd,
Gochnatia hypoleuca, and Verbesina virginica were found to exhibit anti-proliferative and
cytotoxic activity against the PC-3 and DU145 prostate cancer cell lines through induction
of apoptosis or cell cycle arrest [60].

Our biological results indicated that the AgNPs forms of a polyphenolic fraction of
flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against PC-3 and A549 cell
lines with IC50 values of 0.85 µg/mL and 0.94 µg/mL, respectively, compared with dox-
orubicin as a standard. Investigating the apoptosis-induction, nano-TP/Flowers exhibited
apoptosis in PC-3 with a higher ratio than in A549 cells through flow cytometry and gene
expression assays. Our results agreed with their reported anticancer activities [25,61], either
through apoptosis-induction or antioxidant activation. A previous study [26] synthesized
AgNPs via Cynara scolymus leaf extracts and showed their anticancer activity through
apoptosis-induction. Mitochondrial pathway activation and Bcl-2 family protein analysis
were used to investigate the apoptotic activity. In mitochondria-mediated apoptosis, cas-
pases play critical roles in the initiation and completion of the death process. Enhancement
of pro-apoptotic subgroups over anti-apoptotic proteins such as Bcl-2 protein can induce
mitochondria to lose mitochondrial potential. The intrinsic apoptotic pathway can be
activated by elevating pro-apoptotic proteins over anti-apoptotic ones. This can lead to
mitochondria losing their mitochondrial potential (∆Ψm), and releasing cytochrome c.,
thereby activating cascade reactions of caspase 3 and 9 activations that led to cell death
through caspase-dependent apoptosis. So, for the intrinsic pathway, Bcl-2 proteins are
essential [62]. These results of AgNP-flower extract are consistent with a recent study
showing strong anticancer action of silver nanoparticles functionalized with Cornus mas L.
extract in an in vivo model through Bcl-2, p53, and metalloproteinase-2 activity, ultimately
resulting in apoptosis induction [63]. In the same way that p53 overexpression increases
the production of pro-apoptotic proteins such as PUMA, NOXA, and Bax, it also increases
apoptotic protein synthesis. For the purpose of mitochondrial membrane instability, these
proteins compete with the anti-apoptotic Bcl-2 family members, against which they function
as antagonists. On the other hand, the FAS receptor and other surface death receptors are
produced thanks to p53, which results in an extrinsic mechanism of cell death. Previous
studies on silver nanoparticle-loaded plant extracts found that they activated apoptosis in
cancer cell lines, including MCF-7, LNcap, A549, AMJ-13, and THP-1 [64–67].

Concerning the promising implication of this study, AgNPs proved their success-
fulness as cytotoxic particles. The green synthesized AgNPs showed the potential of
combining the action of both nanoparticles and the naturally occurring agents from the
plant extracts. AgNPs are now implemented as biocompatible nanopharmaceuticals, effi-
cient drug delivery vehicles, and biosensors. The use of polyphenols from plant extracts as
reducing and capping agents makes eco-friendly delivery systems that are promising in the
treatment of lung and prostate cancer which might be effective against other malignancies.

Although AgNPs have been shown to be advantageous for their ease of synthesis,
improved efficacy, and potency against cancer cell lines, there are some limitations that
should be overcome before they can reach the drug market. Accurate exposure levels of
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AgNPs for humans and the environment should be optimized. In addition, accurate dosing
and accumulation should be further assessed [68].

Finally, these beneficial outcomes recommended further in vivo study of AgNPs of the
total phenolic fraction of flower extract of C. scolymus L. against an animal model of prostate
cancer. Further in-depth estimation of the pharmacokinetics of AgNPs of polyphenols in
flower extract will be handled in the future. Moreover, the isolation of other classes of
bioactive metabolites combined with molecular docking studies is a topic of interest.

4. Materials and Methods
4.1. Chemicals

Cynarin and cynaroside were purchased from Phyproof ®, Phyto Lab, Bavaria, Germany,
while the remaining herbal reference standards were purchased from Nawah Scientific®,
Cairo, Egypt. All solvents required for extraction and partitioning processes were of an-
alytical grades. HPLC solvents were purchased from Millipore Sigma (Burlington, MA,
USA). Silver nitrate was purchased from Merck (Darmstadt, Germany), ethanol was pur-
chased from Fisher (Waltham, MA, USA), and sodium hydroxide was purchased from
Lobechem (Delhi, India). RNeasy™ Mini Kit 50 (QIAGEN, Cat. No. 74104, Germany),
i-Script cDNA synthesis kit (BioRad, Cat. No. ]170-8691, Hercules, CA, USA), and Fluo-
Cycle II™ SYBR® Master Mix, Italy, were used. Other chemicals were of analytical grade,
and the deionized water was used to wash all the glassware and prepare necessary solutions.

4.2. Instruments

A rotary evaporator (Rotavapor R-II, Buchi, Switzerland) was utilized for the solvent
evaporation process. The antioxidant assays, as well as quantification assays, were con-
ducted using a spectrophotometer (UV-1601, Shimadzu, Japan). The qualitative identifi-
cation of phenolic compounds was performed using Waters 2690 Alliance HPLC system
and Waters 996 photodiode array detector, Milford, CT, USA. Laminar Flow (model 1386,
Thermo Fisher Scientific, Waltham, MA, USA) and BIO-RAD microplate reader (model
iMark, Japan) were utilized. Centrifugation of the AgNPs was done using a cooling
centrifuge (PRO-Research K241R; Centurion, West Sussex, UK), characterization of the
prepared NPs was done using a double-beam spectrophotometer (V630, Jasco, Tokyo,
Japan), transmission electron microscope (TEM) (JTEM model 1010, JEOL®, Tokyo, Japan)
and Malvern Zetasizer (Nano ZS, Malvern Instruments Ltd., Malvern, UK).

4.3. Collection of Plant Material and Extraction Process

One kilogram of the plant was purchased from the local Egyptian market in December
2020. The plant was authenticated with the help of the Department of Botany, Faculty
of Science, Suez Canal University, Ismailia, Egypt. A voucher specimen was kept at the
herbarium of the Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University,
under registration code (CS-2020). Three different parts were detached from the plant to be
investigated separately: bracts, flowers, and stem. Each part was air dried by placing it on
a shallow tray lined with a layer of paper towels in a dry place with good air circulation
for 7 to 10 days, and then they were finely ground using an electric grinder. Each part was
cold macerated with methanol at room temperature for 1 week. The extraction process was
repeated three times to ensure complete extraction. The three extracts were concentrated
under reduced pressure using a rotary evaporator to afford crude extracts of different parts:
flower (73 g), bract (57 g), and stem (48 g).

4.4. In Vitro Antioxidant Activity Assays Crude Extracts of Flower, Bract, and Stem of C. scolymus L.
4.4.1. Determination of Total Antioxidant Capacity (TAC) by Phosphomolybdenum Assay

The total antioxidant capacity of crude extracts of different parts was carried out using
a phosphomolybdenum assay. This method was carried out as previously mentioned in
detail [7,69]. A volume of 0.3 mL of each methanolic crude extract was mixed with 2.7 mL of
phosphomolybdenum reagent solution (28 mM sodium phosphate and 4 mM ammonium
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molybdate in 0.6 M sulphuric acid). Then, the mixture was capped and incubated at
95 ◦C. After 90 min, the mixture was cooled at ambient temperature, and then the intensity
of the green color was recorded spectrophotometrically at 695 nm using methanol as a
blank. The experiment was repeated three times. The values were expressed as gallic acid
equivalent per gram extract (mg GAE/gm), and ascorbic acid was used as a reference drug.

4.4.2. Ferric Reducing Antioxidant Power (FRAP) Assay

The reducing potential of crude extracts of different parts was assessed by mixing 2 mL
of each crude extract with 2 mL of sodium phosphate buffer solution (0.2 M; pH = 6.6) and
2 mL of potassium ferricyanide (10 mg/L). The reaction mixture was incubated for 20 min at
50 ◦C and then acidified using 2 mL of trichloroacetic acid (100 mg/L). After centrifugation,
2 mL of the supernatant was picked up, and diluted with 2 mL of distilled water and 0.4 mL
of ferric chloride (0.1%). After 10 min, the intensity of color was measured spectrophoto-
metrically using at 700 nm using methanol as a blank [7,69]. The percent FRAP activity was
calculated according to the following formula: %FRAP activity = [(An − As) × 100]/An,
where An is the final absorbance value of negative control, and As is the final absorbance
value of samples. The value of IC50 (the concentration that is required to reduce the initial
concentration of Fe3+ ions by 50%) was determined by a linear concentration/percentage
inhibition curve with a correlation coefficient (R2) of 0.993. The experiment was also
done in triplicate. Ascorbic acid was used as a reference drug and applied at the same
concentrations of the sample, 2.5, 5, 10, 20, 40, 80, 160, 320, 640, and 1280 µg/mL.

4.4.3. DPPH Radical Scavenging Assay

The free radical scavenging activity of crude extracts of different parts was evaluated
via mixing equal volumes of each sample with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free
radical (200 µM). The reaction mixture was incubated for 30 min in dark conditions at 30 ◦C.
The intensity of the yellow color was measured spectrophotometrically at 516 nm using
methanol as a blank. The experiment was also done in triplicate. The scavenging percent-
age was calculated based on the following equation: [(Acontrol − Asample)/Acontrol × 100],
where A control is referred to the absorbance of the DPPH solution only, and Asample is
referred to the absorbance of both DPPH solution and sample at different concentra-
tions (5–1000 µg/mL) [7,69]. The value of IC50 (the concentration that is required to in-
hibit the initial concentration of DPPH by 50%) was determined by a linear concentra-
tion/percentage inhibition curve (R2 = 0.998). Ascorbic acid was used as the reference
standard and applied at the same concentrations of the sample, 2.5, 5, 10, 20, 40, 80, 160,
320, 640, and 1280 µg/mL.

4.5. Spectrophotometric Quantification of Total Phenolics Content and Total Flavonoids Content in
Crude Extracts of Flower, Bract, and Stem of C. scolymus L.
4.5.1. Estimation of Total Phenolic Content Using Folin–Ciocalteu Method

The total phenolic content in different parts of C. scolymus L. was determined spec-
trophotometrically using Folin–Ciocalteu (Folin-C) method. As mentioned before [5],
each sample (500 µL) was mixed with Folin-C reagent (2.5 mL, 10%) and sodium carbonate
(2 mL, 7.5%). The reaction was stored for 2 h in a dark condition at room temperature.
The intensity of the blue color was measured spectrophotometrically at 760 nm using
distilled water as a blank. The experiment was replicated three times. The total phenolic
content values are expressed as gallic acid equivalent per gram extract (mg GAE/gm).

4.5.2. Estimation of Total Flavonoids Content Using Aluminum Complexation Method

Concerning estimation of total flavonoid content in crude extracts of flower, bract,
and stem, an aluminum complexation reaction was done [5]. One mL of sample was
mixed with 0.3 mL of sodium nitrite solution (5%), 4 mL of distilled water, and 0.3 mL of
AlCl3.6H2O solution (10%). The mixture was incubated for 5 min at 25 ◦C. At last, 2 mL of
1 M NaOH solution was added, and the total volume was completed to 10 mL with distilled
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water. The intensity of yellowish-orange color was measured at 510 nm against distilled
water as a blank. In addition, the experiment was repeated three times. The values of total
flavonoid content are expressed as quercetin equivalent per gram extract (mg QE/gm).

4.6. HPLC-DAD Identification of Polyphenols in Crude Extracts of Flower, Bract, and Stem of
C. scolymus L.

For comparative assessment of polyphenols in crude extracts of different parts,
gallic acid, chlorogenic acid, ellagic acid, catechins, cynarin, cymaroside, rutin, hesperidin,
quercetin, kaempferol, and apigenin were purchased. Chemical profiling was performed
using high-performance liquid chromatography combined with a diode array detector
(HPLC-DAD). First, a standard mixture of all reference polyphenols was prepared, and an
injection volume of10 µL was applied into the C18 column Inertsil ODS (4.6 × 250 mm,
5 µm). The mobile phase consisted of 0.1% phosphoric acid in water: acetonitrile with a
constant flow rate of 1 mL/minute and a pH of 3.5 [5]. The absorbance was measured
at 280 nm. Then, 100 mg of the methanolic crude extracts of flower, bark, and stem was
accurately weighed, dissolved in 100 mL methanol, sonicated for 15 min, filtered through a
0.22 µm Nylon syringe filter, and then an amount of 10 µL was injected.

4.7. Preparation of Phenolic Portions of Flower, Bract, and Stem of C. scolymus L.

The phenolic portion was extracted from different parts by suspending 2 gm of
different extracts of flower, bract, or stem with 100 mL of an aqueous solution of 5% sodium
carbonate for one hour with the aid of sonication to ensure the acid-base reaction process.
Then, the reaction mixture was filtered and washed with distilled water for complete
extraction [69,70]. The aqueous solution was partitioned with n- butanol to extract a
non-phenolic portion. The remaining aq. solution was neutralized by hydrochloric acid
using litmus paper as an indicator. Finally, the phenolic portion was extracted with ethyl
acetate three times by liquid-liquid extraction and concentrated under a vacuum. The total
phenolic fractions of flower (300 mg), bract (180 mg), and stem (170 mg) were obtained.

4.8. Formulation of Silver Nanoparticles (AgNPs) of Different Phenolic Portions
4.8.1. Preparation of Silver Nanoparticles

The synthesis of AgNPs using a biogenic pathway in the presence of the phenolic
extracts of flower, bract, and stem was prepared using a modified method that was pre-
viously reported [71–73]. Initially, 10 mg of the extract was dissolved in 1 mL ethanol,
then added to 10 mL of 10 mM AgNO3. A few drops of 1 M NaOH were added, and the
mixture was agitated for 1 h at 400 rpm at 60 ◦C in the dark. All prepared nanoparticles
were purified by centrifugation at 15,000 rpm for 1 h at 4 ◦C. The AgNPs were re-dispersed
in double-distilled water and sonicated for 30 s in a sonicating water bath, then centrifuged
under the same previous conditions. The washing procedures using double-distilled water
were repeated three times.

4.8.2. Characterization of Silver Nanoparticles

• UV-VIS Spectroscopy.

The reduction of Ag+ ion was verified by using a double-beam spectrophotometer
to analyze the UV-vis spectrum. The spectra were captured over a wavelength range of
300–600 nm.

• Transmission electron microscopy (TEM).

The size and surface appearance of the produced AgNPs were examined using TEM.
The sample preparations were then diluted with double distilled water 50 times. The diluted
samples were then stained negatively with phosphotungstic acid before being dried on
carbon-coated copper grids. The thin film was produced and examined using a transmission
electron microscope with an accelerating voltage of roughly 80 kV [74]: particle size and
zeta potential determination.
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Photon correlation spectroscopy (PCS) was used to correctly quantify average par-
ticle size (Z-average), zeta potential (ZP), and polydispersity index (PDI) using Malvern
Zetasizer. Before analysis, each sample was diluted 20 times with distilled water. All mea-
surements were carried out in triplicates at room temperature (25 ◦C). Finally, the mean
and standard deviation were determined with precision [75].

4.9. Comparative Assessment of In Vitro Cytotoxic Activity
4.9.1. MTT Assay

Lung (A549) and prostate (PC-3) cancer cell lines were obtained from the National Can-
cer Institute in Cairo, Egypt, cultured on Dulbecco’s Modified Eagle Medium and Roswell
Park Memorial Institute Medium (RPMI-1640/DMEM) supplemented with L-glutamine
(Lonza Verviers SPRL, Belgium, cat#12-604F). The cells were cultured in 10% fetal bovine
serum (FBS, Sigma-Aldrich, City of Saint Louis, MO, USA) and 1% penicillin-streptomycin
(Lonza, Belgium). All cells were incubated at 37 ◦C in a 5% carbon dioxide atmosphere
(NuAire). In a 96-well plate, cells were plated in triplicate at a density of 5× 104 cells. Then,
they were treated with different total phenolic portions (TP/Flower, TP/Bract, TP/Stem)
and their nano forms (Nano-TP/Flower, Nano-TP/Bract, Nano-TP/Stem) at concentrations
of (0.1, 1, 10, and 100 µg/mL) on the second day. Cell viability was assessed using an
MTT solution (Promega, Madison, WI, USA) [76]. Three hours were spent incubating the
plate. The absorbance was then measured with an ELISA microplate reader (BIO-RAD,
model iMark, Japan). The viability was calculated compared with control, and the IC50
values were computed using the GraphPad prism 7 (Dotmatics, San Diego, CA, USA) as
previously reported [76,77].

4.9.2. Investigation of Apoptosis

• Annexin V/PI staining and cell cycle analysis

Both PC-3 and A549 cells were incubated into 6-well culture plates (3–5× 105 cells/well)
overnight, and they were then treated with a total phenolic portion of flower part (Nano-
TP/Flower) at a dose equal to its IC50 of each cell line (IC50 = 0.85µM, 48 h) and (IC50 = 0.94 µM,
48 h), respectively. Then, media supernatants and cells were collected. The cells were sus-
pended in 100 µL of Annexin binding buffer solution “25 mM CaCl2, 1.4 M NaCl, and 0.1 M
Hepes/NaOH, pH 7.4” and incubation with “Annexin V-FITC solution (Sigma Aldrich,
City of Saint Louis, MO, USA) (1:100) and propidium iodide (PI) (Sigma Aldrich, USA)
at a concentration equals 10 µg/mL in the dark for 30 min.” The stained cells were then
harvested using the Cytoflex FACS machine, and cytExpert software (Beckman Coulter,
Brea, CA, USA) was used to analyze the data [78,79].

• Gene expression analysis (RT-PCR) for the selected genes

To further investigate the apoptotic pathway, we followed the gene expression of P53,
Bax, Caspapses-3, 8, 9 as pro-apoptotic genes and Bcl-2 as the anti-apoptotic gene using
the RT-PCR system (MiniOpticon™, Cycler, Singapore); their sequences in forward and
reverse direction are expressed in Table 5.

Table 5. Sequences of forward and reverse primers.

Gene Forward Reverse

P53 5′-CCCCTCCTGGCCCCTGTCATCTTC-3′ 5′-GCAGCGCCTCACAACCTCCGTCAT-3′

Bax 5′-GTTTCATCCAGGATCGAGCAG-3′ 5′-CATCTTCTTCCAGATGGTGA-3′

CASP-3 5′-TGGCCCTGAAATACGAAGTC-3′ 5′-GGCAGTAGTCGACTCTGAAG-3′

CASP-8 5′-AATGTTGGAGGAAAGCAAT-3′ 5′-CATAGTCGTTGATTATCTTCAGC-3′

CASP-9 5′-CGAACTAACAGGCAAGCAGC-3′ 5′-ACCTCACCAAATCCTCCAGAAC-3′

Bcl-2 5′-CCTGTGGATGACTGAGTACC-3′ 5′-GAGACAGCCAGGAGAAATCA-3′

β-actin 5′-GTGACATCCACACCCAGAGG-3′ 5′-ACAGGATGTCAAAACTGCCC-3′



Molecules 2022, 27, 6304 16 of 19

PC-3 cells were treated with a sample of Nano-TP/Flowers (IC50 = 0.85 µM, 48 h).
Then, an RT-PCR reaction was performed following routine work, and the results were
given in cycle thresholds (Ct) and ∆∆ Ct for calculating the relative quantities of each gene
to the housekeeping gene (β-actin) as previously described [80–82].

5. Conclusions

In conclusion, the flower part of C. scolymus L. is a rich source of polyphenolic com-
pounds and antioxidant compounds compared with other edible leaf and stem parts.
The polyphenolic compounds of these edible parts were compared with each other using
HPLC-DAD. Silver nanoparticles of polyphenolic fractions of flower, leaf, and stem parts
were developed and characterized. Finally, AgNPs of the phenolic fraction of the flower
part exhibited potent cytotoxic activity against the prostate PC-3 cancer cell line. Herein,
the AgNPs forms of the total phenolic fraction of C. scolymus L. are introduced as adjuvant
therapy in the treatment of prostate cancer.
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