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Prediction of individual COVID‑19 
diagnosis using baseline 
demographics and lab data
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The global surge in COVID-19 cases underscores the need for fast, scalable, and reliable testing. 
Current COVID-19 diagnostic tests are limited by turnaround time, limited availability, or occasional 
false findings. Here, we developed a machine learning-based framework for predicting individual 
COVID-19 positive diagnosis relying only on readily-available baseline data, including patient 
demographics, comorbidities, and common lab values. Leveraging a cohort of 31,739 adults within an 
academic health system, we trained and tested multiple types of machine learning models, achieving 
an area under the curve of 0.75. Feature importance analyses highlighted serum calcium levels, 
temperature, age, lymphocyte count, smoking, hemoglobin levels, aspartate aminotransferase levels, 
and oxygen saturation as key predictors. Additionally, we developed a single decision tree model that 
provided an operable method for stratifying sub-populations. Overall, this study provides a proof-of-
concept that COVID-19 diagnosis prediction models can be developed using only baseline data. The 
resulting prediction can complement existing tests to enhance screening and pandemic containment 
workflows.

As of late January, 2021, nearly 100 million cases of COVID-19 have been confirmed globally, with over two mil-
lion deaths1, placing tremendous strain on healthcare systems around the world. The COVID-19 pandemic has 
necessitated mass testing as a starting point for tracking and ultimately containing the spread of the disease2–4. 
Fast, widespread testing would help to identify infected individuals early on and slow disease transmission 
through early public health interventions, such as quarantine and contact tracing5.

However, current COVID-19 diagnostic tests are imperfect. RT-PCR based assays are widely regarded as the 
gold standard6,7 but could occasionally yield false findings and the return of results often take multiple days7–9. 
Further, recent evaluations by the UK National COVID-19 Scientific Advisory Panel revealed that the sensitiv-
ity of ELISA and lateral flow immunoassay (LFIA) devices were 85% and less than 70% compared to RT-PCR, 
depending on the assayed time points10. Based on the Bayes’ theorem, medical tests that are not perfectly sensitive 
and specific can yield undesired ratios of true to false findings, especially when widespread testing of the general 
population is performed11. In such circumstances, combining tests with other prioritization metrics can improve 
accuracy and help allocate testing for high-risk individuals.

Multiple pandemic scenarios need to be addressed with enhanced capacity to quickly or repeatedly screen 
large populations and deploy containment strategies, including (1) high-exposure-risk populations needing 
repeated testing and monitoring12, (2) under-resourced regions lacking personnel, testing kits, and biosafety 
facilities13,14, and (3) the monitoring hotspots for local outbreaks2,15. Predictive models for the risk of testing 
COVID positive could facilitate testing resource allocation and contact tracing procedures.

Until other measures to counteract COVID-19 become widely available (ex. effective and mass-distributed 
vaccines)16,17, effective screening methods are pivotal in containing the pandemic. Establishing a machine learn-
ing-based tool that relies only on baseline data will help in prioritizing sub-populations for COVID-19 testing, 
and is urgently needed to relieve the burden of large-scale screening when testing capacity may be limited.
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Methods
Study setting and data sources.  The study was conducted based on patient cohorts from the Mount 
Sinai Health System, which comprises 8 hospitals and more than 410 ambulatory practice locations in the New 
York metropolitan area. Data were derived from clinical records from Mount Sinai facilities using the Epic elec-
tronic health record (Epic Systems, Verona, WI). Data were directly extracted from Epic’s Clarity and Caboodle 
servers.

The curation of EHR data is as previously described18,19. Briefly, in the setting of the COVID-19 pandemic, 
the Mount Sinai Data Warehouse (MSDW) developed and released a de-identified data set encompassing all 
COVID-19 related patient encounters within the Mount Sinai system, accompanied by selected demographics, 
comorbidities, vital signs, medications, and lab values. De-identification was performed in accordance with the 
Safe Harbor subsection of the HIPAA Privacy Rule20. The MSDW dataset captured any patient encounters at a 
Mount Sinai facility with any of the following: a COVID-19 related encounter diagnosis, a COVID-19 related 
visit type, a SARS-CoV-2 lab order, a SARS-CoV-2 lab result, or a SARS-CoV-2 lab test result from the New 
York State Department of Health’s Wadsworth laboratory. As part of de-identification, all patients over the age of 
89 had their age set to 90. Initial vital signs were the first vital signs documented for the encounter. We defined 
initial labs as the first lab value within 24 h of the start of the encounter.

For this study, we included all adult patients (18 or older) who had a COVID-19 test up to June 2nd, 2020. 
We split the cohort into a training set (encounters up to April 13th, 2020) and a test set (encounters from April 
14th to June 2nd, 2020).

This study utilized de-identified data extracted from the electronic health. The Institutional Review Board 
(IRB) of the Mount Sinai School of Medicine (MSSM), in accordance with Mount Sinai’s Federal Wide Assur-
ances (FWA#00005656, FWA#00005651) to the Department of Health and Human Services approved this human 
subject research. The IRB has determined that this research involves no greater than minimal risk and approved 
the waiver for informed consent. The MSSM IRB approved the request for Waiver of Authorization for use and 
disclosure of PHI for this project under expedited review procedure category 5. All analyses were carried out in 
accordance with relevant guidelines and regulations.

Machine learning models.  We implemented a machine learning framework to build a COVID-19 diag-
nosis predictor using three different classification algorithms: logistic regression, random forest, and eXtreme 
Gradient Boosting (XGBoost). The goal of this predictor was to predict whether or not a patient would test posi-
tive for SARS-CoV-2 from an RT-PCR test. Tests reported as “presumptive positive” were classified as positive 
results for the purposes of training and validation.

Feature selection.  A total of 38 features were used in the final models. Since the models would be applied 
as screening tools in populations not receiving specialized medical attention, we chose features that would be 
readily available or easily obtained such as patient demographics, comorbidities, and common lab values. Clini-
cal features were selected by a clinician involved in the care of COVID-19 patients (TJ). In order to maximize 
feature inclusion while removing any features unlikely to be predictive, we omitted any features containing over 
70% missing values. The values of categorical features were label encoded and converted into numerical form (0, 
1, 2, 3, …). Ordinal categorical features, e.g. smoking, were encoded based on the sequential relation between 
discrete values, e.g. ‘NEVER’ < ‘FORMER’ < ‘CURRENT’. Nominal categorical features, e.g. race, were encoded 
based on the order in which discrete values appeared in the data.

Model training, cross‑validation, and hyperparameter optimization.  We stratified the patient 
population in the MSDW dataset into a training set to train the prediction models and a test set to test each 
model’s performance. We used the patients tested through April 13, 2020 (N = 12,476) as the training set and the 
patients tested from April 13, 2020 through June 2, 2020 (N = 19,263) as the test set.

Since random forest models and logistic regression models are incompatible with missing values, we created 
a separate training set and test set without missing values. Missing values for each feature were imputed by the 
median value (for continuous variables) or the most frequently occurring value (for categorical variables) for 
that feature in its respective dataset.

We trained the XGBoost model on the unimputed training set, and we trained the random forest and logistic 
regression models on the imputed training set. We applied a randomized search with sixty rounds of five-fold 
cross validation to identify the optimal hyperparameters for each of the three models. For the XGBoost model, 
we optimized ‘n_estimators’, ‘learning_rate’, ‘subsample’, ‘max_depth’, ‘colsample_bytree’, ‘min_child_weight’, and 
‘gamma.’ For the random forest model, we optimized ‘max_features’, ‘min_samples_split’, ‘min_samples_leaf ’, ‘n_
estimators’, ‘max_depth’, and ‘bootstrap.’ For the logistic regression model, we optimized ‘C’, ‘penalty’, ‘solver’, and 
‘max_iter.’ The full list of final hyperparameters for these three models is available in Supplementary Table S1A–C.

To determine whether changing the number of folds (k) during the randomized search cross validation would 
affect predictive performance, we retrained the same four models using ten-fold cross validation instead of five-
fold cross validation. However, due to similar predictive performance and hyperparameter selection between 
the five-fold and ten-fold cross validated models, we conducted our final analyses on the five-fold cross validated 
models. The performance of the ten-fold cross validated models is shown in the AUC-ROC curves available in 
Supplementary Fig. S1.

Model testing.  We then evaluated the performance of each model on their respective test sets. We tested the 
XGBoost model on the unimputed test set, and we tested the random forest and logistic regression models on 
the imputed test set. Each model derived and utilized class probabilities to predict COVID-19 diagnosis with a 
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threshold of ≥ 0.5, in which predicted probabilities greater than the threshold corresponded to predicted positive 
diagnosis.

The performance of each model was evaluated in terms of classification accuracy, negative predictive value, 
precision, recall/sensitivity, and area under the receiver operating characteristic curve (AUC-ROC). Feature 
importance within each model was determined using SHAP (SHapley Additive exPlanations)21. SHAP is a uni-
fied, model-agnostic, and game-theoretic approach of computing Shapley values to explain the contribution of 
each feature to a given prediction. SHAP values are calculated by using additive feature attribution methods to 
approximate the Shapley values of the model’s conditional expectation function21. We used the LinearExplainer 
to calculate the SHAP values of the logistic regression model, and we used the TreeExplainer to calculate the 
SHAP values of the XGBoost and random forest models.

Development of an interpretable, single‑tree XGBoost model.  XGBoost is widely regarded as a 
high-performance algorithm due to its reliance on gradient tree boosting, an ensemble technique that enables 
XGBoost to add new trees to correct errors made by existing trees22. However, since XGBoost combines results 
across multiple trees when making predictions, the decision algorithm utilized by XGBoost models is often dif-
ficult to interpret.

Therefore, we also developed a more interpretable XGBoost model to predict COVID-19 diagnosis by limiting 
the number of trees to 1, which reduces the complexity of the model to yield a single decision tree that can be 
visualized as a simple binary flowchart. Although a single-tree XGBoost model can suffer slightly in predictive 
power as compared to a multi-tree model, a single decision tree can reveal a much simpler and more clinically 
applicable decision algorithm23.

This single-tree XGBoost model was trained on the unimputed training set and five-fold cross validated over 
sixty rounds in a randomized search to determine optimal hyperparameters. The hyperparameter search space 
used during the randomized search for the single-tree XGBoost model was the same as that of the multi-tree 
XGBoost model, with the exception of the n_estimators and max_depth parameters, which were manually set 
to 1 and 4, respectively. The full list of hyperparameters for the single-tree XGBoost model is available in Sup-
plementary Table S1D. Subsequently, the single-tree XGBoost model was tested on the unimputed test set and 
evaluated alongside the other three models.

Results
Predictive models of COVID‑19 diagnosis.  The full MSHS study cohort used to train and test our mod-
els contained a total of 31,739 adult patients who had a COVID-19 test up to June 2nd, 2020 (Supplementary 
Fig. S2 and Table S2). To demonstrate the utility of training a model based on past data that have prospective 
predictive values, this cohort was split based on encounter dates into a training set (N = 12,476, patients tested 
through April 13, 2020; of whom 6884 tested positive and 5592 tested negative) and a test set (N = 19,263, patients 
tested from April 13, 2020 through June 2, 2020; of whom 2940 tested positive and 16,323 tested negative).

We conducted predictive modeling of COVID-19 diagnosis using the described data. Five-fold cross-validated 
XGBoost, random forest, and logistic regression models predicting COVID-19 diagnosis were trained on the 
training set and tested on the test set (Methods). We evaluated and compared the performance of the multi-tree 
XGBoost model, the random forest model, and the logistic regression model in correctly predicting COVID-
19 diagnosis of patients within their respective test sets: the XGBoost model was tested on the unimputed test 
set while the random forest and logistic regression models were tested on the imputed test set (Methods). The 
predictive performance of each of the three models is provided in Table 1, and the AUC-ROC curves of the 
prediction models are shown in Fig. 1A–C. The multi-tree XGBoost model (AUC score = 0.75) and the random 
forest model (AUC score = 0.75) achieved similar performance, while the logistic regression model performed 
slightly worse (AUC score = 0.73).

Feature importance using SHAP.  To evaluate the key features predictive of COVID-19 diagnosis, we 
assessed the contribution of each input variable to the performance of each machine learning model as deter-
mined by SHAP (SHapley Additive exPlanations). The SHAP beeswarm plots for all four models are shown in 
Fig. 2, and features were ranked in order of decreasing average importance (mean absolute SHAP value). The 
SHAP values on the x-axis of the tree-based models have log-odds units, while the SHAP values on the x-axis of 
the logistic regression model have probability units. Notably, the features that had high SHAP values across mul-

Table 1.   Predictive performance of each COVID-19 diagnosis prediction model in the test set.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
Negative predictive 
value (%) AUC-ROC (%)

Multi-tree XGBoost 
classifier 77.66 35.54 57.04 81.37 91.32 74.67

Random forest classifier 79.10 37.21 53.71 83.67 90.94 74.53

Logistic regression 
classifier 79.05 36.66 51.19 84.07 90.53 71.75

Single-tree XGBoost 
classifier 79.37 36.11 45.68 85.44 89.73 69.64
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tiple models were calcium, temperature, age, lymphocyte count, smoking, hemoglobin, aspartate aminotrans-
ferase, and oxygen saturation.

Important features in the multi‑tree XGBoost model.  Since the multi-tree XGBoost model tied for 
the highest AUC score in the test set and outperformed the random forest model during cross-validation, we also 
assessed the feature importance of the multi-tree XGBoost model using XGBoost’s built-in feature importance 
metrics. Features were ranked according to their relative contribution, also known as gain: the average training 
loss reduction gained by using a particular feature to split the data, as calculated by the log loss function24. The 
relative gain of a feature (the gain provided by that feature divided by total gain across all features) demonstrates 
the relative importance of that feature compared to other features in the model. The relative gain of each feature 
in the multi-tree XGBoost model is summarized in Supplementary Fig. S3.

Identifying an optimal probability threshold for patient screening.  In the multi-tree XGBoost 
model, the predicted class probabilities of COVID-19 diagnosis across all patients in the test set revealed a dis-
tribution close to actual outcome for patients that tested negative (median = 0.33, SD = 0.19), while the distribu-
tion of patients that tested positive showed a wider range of probabilities (median = 0.58, SD = 0.28), as shown in 
Fig. 3. Such a probability score can prioritize individuals for testing. For example, above the probability threshold 
of 0.85, we identified 854 patients that tested positive and 331 patients that tested negative in the test set. The 
positive-test rate of 72% for this prioritized sub-population is notably higher than the 15% overall positive rate 
in the entire test set patient population.

Single‑tree XGBoost model performance.  Compared to the multi-tree XGBoost model, the single-
tree XGBoost model performed slightly worse with an AUC score of 0.69 in the test set. The performance of the 
single-tree XGBoost model in predicting COVID-19 diagnosis in the test set is also provided in Table 1, and 

A

C

B

D

Figure 1.   Receiver operating characteristic curves. Receiver operating characteristic curves of (A) the multi-
tree XGBoost model, (B) the random forest model, (C) the logistic regression model, and (D) the single-tree 
XGBoost model in their respective train and test sets.
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its corresponding AUC-ROC curve is provided in Fig. 1D. Despite suffering slightly in predictive strength, the 
single-tree XGBoost model relies only on a single decision tree, which can be easily interpreted and adapted into 
a simple, clinically applicable decision rule, as shown in Fig. 4.

Discussion
In this study, our machine learning framework provides a proof-of-concept for predicting COVID-19 diagnosis 
(RT-PCR test result) relying only on baseline demographics, comorbidities, vitals, and lab values. The predictive 
models could prioritize sub-populations for COVID-19 diagnosis in situations where testing capacity may be 
limited, or they could also be used in conjunction with clinical judgment or other predictive models (ex. based on 
mobile phone data) to verify RT-PCR test results. Our predictive models also identified key clinical features that 
correlate with a positive diagnosis, providing insights on efficient patient stratification and population screen-
ing. Moreover, the decision algorithm derived from the single-tree XGBoost model provides a simple, clinically 
operable method of stratifying sub-populations that can be replicated in other settings.

Each of our four models revealed several key clinical variables predictive of positive RT-PCR test result. One 
key finding was that serum calcium levels was the most predictive feature of COVID-19 diagnosis across all four 
models; concurrently, previous studies identified serum calcium as a biomarker of clinical severity and poor 
prognosis in COVID-19 patients25,26. Our single-tree XGBoost model even uses serum calcium level < 9.05 mg/
dL as the first split in the decision tree (Fig. 4), which also correlates with previous findings confirming the 
prevalence of hypocalcemia in severe COVID-19 patients25. Notably, a serum calcium test typically has a rapid 
turnaround time within a day and thus may be valuable in complementing existing tests.

The development of acute respiratory distress syndrome (ARDS) and/or sepsis, along with their associ-
ated symptoms, have also been shown to be a key indicator of positive COVID-19 diagnosis2,27. While the 
datasets used to train and test the machine learning models did not directly include symptoms of COVID-19, 
the trained models prioritized features that may contribute to COVID-19 positivity in both symptomatic and 
asymptomatic individuals. Our four models identified features such as age, lab values (calcium levels, aspartate 
aminotransferase levels), comorbidities (smoking), vitals (oxygen saturation, temperature), and hematologic 
features (lymphocyte count, hemoglobin levels) to be predictive of positive diagnosis. Many of these identified 
features have been previously reported as markers of COVID-19 severity. For instance, abnormal liver function 

A B

C D

Figure 2.   Feature importance across all four models. SHapley Additive exPlanations (SHAP) beeswarm plots 
of (A) the multi-tree XGBoost model, (B) the random forest model, (C) the logistic regression model, and (D) 
the single-tree XGBoost model. Features are ranked in order of decreasing mean absolute SHAP value. The 
SHAP value distribution of the top ten most predictive features in each model is displayed. The SHAP values 
on the x-axis of the tree-based models have log-odds units, while the SHAP values on the x-axis of the logistic 
regression model have probability units. For each feature, each patient is represented by a single point, and 
the x-position of each point represents the impact of that feature on a given patient. The color of each point 
corresponds to the patient’s value for that feature, ranging from low to high.
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tests, which includes elevated levels of AST, have previously been found to be a marker of poor clinical outcome 
in COVID-19 patients26–28. Decreased white blood cell count (lymphopenia) and hemoglobin levels (anemia) 
have been confirmed to be correlated with low serum calcium levels (hypocalcemia) and severe COVID-19 
disease progression6,25,26,29.

We highlight multiple conscious design choices in constructing the machine-learning models for practical 
reasons. First, a split of train vs. test sets based on date mimics real-world situations, in which predictive models 
can only be trained on past data to facilitate prospective predictions. The samplings for tested individuals likely 
differ across the two time periods in New York City, and the ability of our model to predict a prospective cohort 
based on past data provide confidence to this approach. Second, our models rely solely on baseline features that 
can be easily obtained at initial patient encounter, which will have significant practical implications in prioritiz-
ing sub-populations for testing in areas with limited test kits or testing capacity. Indeed, the resulting models 
remain a proof-of-principal; given the different sampling populations and available lab tests, best performance 
of COVID-19 diagnosis prediction can likely be achieved if each testing site derive its own predictive model. 
Our codes are made openly available for future implementations.

Our machine learning models had several limitations. First, the variable predicted by the models was RT-PCR 
test result, which, despite being widely regarded as the gold standard6,7 for the diagnosis of COVID-19, is still 
prone to error and limits the peak performance of the model. We note that if data from a new test outperform-
ing the RT-PCR test become available, our predictive models can be adapted to leverage the results of the new 
test. Second, the data contained high proportion of missing values in certain variables, especially in lab tests, 
which may have contributed to the low precision in our models. Although XGBoost models are compatible with 
missing values, the inclusion of more complete patient records may improve the performance of subsequent 
model versions. Finally, as more data becomes available, our machine learning models could be retrained and 
validated in other settings (e.g., health systems, testing sites, schools) to evaluate model performance and utility 
across populations.

Overall, this study provided a proof-of-concept that predictive models of COVID-19 diagnosis can be devel-
oped to help prioritize sub-populations for more efficient screening or complement existing tests. Given that 
the COVID-19 pandemic continues to affect large fractions of populations2,15, efficient screening of COVID-19 
diagnosis, identification of high risk factors of COVID-19 positivity, and stratification of patient populations 
will play a crucial role in the allocation of limited testing resources for efficient testing and facilitation of patient 
management.

Figure 3.   Distribution of predicted class probabilities derived from the multi-tree XGBoost model. Blue bars 
represent patients who tested RT-PCR negative, and red bars represent patients who tested RT-PCR positive.
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Data and code availability
The summarized data are available in Supplementary Tables. The implemented code is available at https://​github.​
com/​Huang-​lab/​covid​19-​diagn​osis-​predi​ction.
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