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Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma

from another lung cancer histological type.

Methods: This was a historical cohort study, three independent lung cancer cohorts

included. One cohort was used to evaluate the stability of radiomics features, one

cohort was used to feature selection, and the last was used to construct and

evaluate classification models. The research is divided into four steps: region of

interest segmentation, feature extraction, feature selection, and model building and

validation. The feature selection methods included the intraclass correlation coefficient,

ReliefF coefficient, and Partition-Membership filter. The performance metrics of the

classification model included accuracy (Acc), precision (Pre), area under curve (AUC),

and kappa statistics.

Results: The 10 features (First order shape features: Sphericity and Compacity,

Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis,

and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity,

Energy, Contrast, Correlation, and Dissimilarity) showed themost stable and classification

capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum

Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee,

have great performance both on the train and the test sets, and especially LR has the

best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa

= 0.974).

Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features.

We can diagnose lung adenocarcinoma with CT non-invasively.

Keywords: radiomics, texture analysis, lung adenocarcinoma, multi-instance learning, lung cancer histological

types

INTRODUCTION

Medical imaging can assess the characteristics of human tissues non-invasively and is often used
in the diagnosis, treatment guidance and monitoring of tumors in clinical practice. And radiomics
can extract and quantify the differences in tumor tissues (1–4).

The radiomics workflow is usually divided into four steps (1, 5, 6): The first step is image
collection and segmentation. All kinds of medical image formats are supported by radiomics, but
in terms of the number of studies, CT radiomics has the largest number of studies, followed by PET,
MR, and ultrasound. The segmentationmethods includemanual segmentation and semi-automatic
segmentation. The second step is feature extraction. This part of the work is easy to standardize.
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FIGURE 1 | The pipeline of our proposed radiomics analysis. (1) Original images of lung cancer patients. (2) Tumor area of interest (ROI) segmentation of each slice of

CT. (3) Extraction of shape, first-order features and higher-order features from the ROI. (4) Prediction model building based on machine learning classifiers, ROC

curves used to assess the model performance. Adc is lung Adenocarcinoma, and Oth are other lung cancer histological subtypes.

And the third step is feature selection. Feature selection methods
are divided into supervised learning and unsupervised learning.
No matter which type of feature selection, stability evaluation
and performance evaluation should be carried out. The influence
of feature redundancy varies with the algorithms. The final step
is model building. The algorithms of model building can be
roughly divided intomachine learning and deep learning, and the
selection index is data quantity. Besides, basic medical statistical
methods, such as hypothesis testing, can also be used for
radiomics analysis. Figure 1 shows the pipeline of our proposed
radiomics analysis.

The histological type diagnosis of lung cancer is fundamental
in guiding patient management. Lung biopsy is a well-established
method for the differential diagnosis of lung lesions (7), but
it is expensive and invasive. Lung Adenocarcinoma (Adc) is
the most common subtype of lung cancer (8), and diagnosing
Adc by biopsy is not beneficial to the patients unfit for the
invasive diagnostic procedure. So it is important to diagnose
Adc from others (binary classification) by radiomics so that
the patients will get accurate treatment earlier without invasive.
In addition, it could be the basis to develop a multiple class
classification model to reduce or avoid the use of invasive
diagnostic methods.

This paper tests the hypothesis that Adc can be predicted
from another lung cancer histological type (Oth) by radiomics.
To invest the evidence of that, we analyzed three independent
lung cancer cohorts, built some lung Adc classifiers that
can differentiate Adc from Oth without considering the
clinical parameters. To our knowledge, this work is the first
radiomics-based study to predict Adc from Oth (including
squamous cell carcinoma, other primary lung cancer and
metastases), and the proposed models are non-invasive
and cost-effectiveness.

RESULT

The Most Stable Features With High
Classification Capability
Table 1.1 lists the 30 most stable features ranked by intraclass
correlation coefficient (the threshold value is 0.85, p < 0.01) in
RIDER (9) data set. Most of the extracted radiomics features have
good stability. Based on the 30 most stable radiomics features,
the ReleifF (KenjiKira et al. presented at the 1992 Machine
Learning Proceedings) algorithm (10 times cross-validation)
shows 10 features with classification ability (threshold value is
0.01) in Table 1.2. The features based on shape, Gray Level Co-
occurrence Matrix (GLCM), and Gray-Level Run Length Matrix
(GLRLM) had better classification ability, where Sphericity and
Compacity based on shape describe the tumor shape such as
spherical, round or elongated, Contrast_GLCM describes the
local differences and higher value stands for greater difference
between neighboring voxels, SRE_GLRLM is a measure of
short run length distribution, and larger values represent better
texture structure.

Partition-Membership filter (PMF) used the random
Committee algorithm as the partition generator to divide the
10 features into 1940 partitions (Supplementary Material).
The minimum feature subset contained 122 partitions with the
highest classification capability selected by correlation-based
feature subset selection (CFS).

Model Performance
Table 1.3 shows the accuracy ratios in 6 machine learning
classifiers on the test set, including Logistic regression classifier
(LR), Sequence Minimum Optimization algorithm (SMO),
Random Forest (SF), KStar, Naive Bayes (NB) and Random
Committee (RC). All of them have a great performance on the
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TABLE 1 | The analysis results of three independent data sets.

Class Features

1.1 The 30 most stable features on RIDER data set

aFH Skewness, kurtosis, energy

bFS Sphericity, compacity, volume

cGLZLM Short-zone emphasis, high gray-level zone emphasis,

short-zone low gray-level emphasis, short-zone high

gray-level emphasis, long-zone low gray-level emphasis,

zone length non-uniformity, low gray-level run emphasis,

high gray-level run emphasis

dGLRLM Short-run emphasis, long-run emphasis, low gray-level

run emphasis, high gray-level run emphasis, short-run

high gray-level emphasis

eNGLDM Coarseness, contrast

fGLCM Homogeneity, energy, contrast, correlation, dissimilarity

Conventional Indices minValue, maxValue, meanValue, stdValue

1.2 The 10 most stable features with classification capability on Lung 1

data set

bFS Sphericity, compacity

dGLRLM Short-run emphasis, low gray-level run emphasis, high

gray-level run emphasis

fGLCM Homogeneity, energy, contrast, correlation, dissimilarity

Classifiers Accuracy(%)

1.3 Accuracy ratio of 6 machine learning classifiers on Lung 2 test set

gLR 98.72

hRC 98.72

iSMO 97.44

jRF 97.44

kNB 98.72

Ksrar 96.15

a First-order features-histogram.
b First order features-shape.
c Gray-Level Zone Length Matrix, provides information on the size of homogeneous zones

for each gray-level in 3 dimensions.
d Gray-Level Run Length Matrix, gives the size of homogeneous runs for each gray level.

This matrix is computed for the 13 different directions in 3D (4 in 2D) and each of the 11

texture indices derived from this matrix, the 3D value is the average over the 13 directions

in 3D (4 in 2D).
e Neighborhood Gray-Level Different Matrix, corresponds to the difference of gray-level

between one voxel and its 26 neighbors in 3 dimensions (8 in 2D).
f Gray Level Co-occurrence Matrix, takes into account the arrangements of pairs of voxels

to calculate textural indices.
g logistic regression.
h Random Committee.
i Sequential minimal optimization.
j Random Forest.
k Naive Bayes.

The best accuracy ratios are highlighted in bold.

test set, and especially LR, RF, and NB get the highest accuracy
of 98.72%. It also stands for the great classification capability of
those 10 features in diagnosing Adc.

Table 2 and Figure 2 show 6 classifiers with great performance
on the train and the test sets. The best performance metrics for
each set are highlighted in bold. As a whole, the 6 classifiers have
excellent classification performance both on the train and the
test sets, which shows that they can not only diagnose Adc but
also rule out Oth with high accuracy. There is no significance
between prediction models (P > 0.05), which can be inferred

that the selected 10 features have great ability to diagnose Adc.
On the test set, the Kappa statistics are approximately equal to 1
for all models shows that the models have great stability, and the
minimum value is 0.923 (Kstar). Meanwhile, the mean absolute
errors (MAE) are approximately equal to 0, and the maximum
value is 0.09 (Kstar).

LR classifier has the best performance on the test set, it also has
the highest accuracy, true positive rate (TPR), true negative rate
(TNR), precision, and lowest MAE on train set. Followed by RC
and NB, which have the highest TNR, precision, and area under
curve (AUC) on the test set. It is important to diagnose Adc from
Adcs so that patients will get accurate treatment earlier. Table 2
shows LR has great ability to diagnose Adc from Adcs with over
98% accuracy on the test set. And LR, RC, and NB have perfect
accuracy in diagnosing Oth from Oths.

DISCUSSION

Radiomics provides a non-invasive and fast method to predict
clinical outcomes. It could not only support precision medicine
but also be a household diagnostic tool. It is an effective
way to use radiomics to support therapy decision-making,
which will advance personalized medicine. Radiomics has been
applied to a variety of organs and systems such as brain,
breast, lung, heart, liver, kidney, adrenal gland, cervix, limbs,
and prostate (6, 10, 11). For example, Chaddad et al. (6, 12)
proposed a multiscale texture features to predict progression
free and overall survival in patients newly diagnosed with
glioblastoma, they also reviewed the clinical implementation of
radiomic in the current management of glioblastoma, which
is important for advancing the personalized treatment of
glioblastoma patients.

It has been proved the correlation between radiomics features
and tumor phenotype (12–22). Many studies have found Adc can
be predicted by radiomics (22–28). Tang et al. (27) developed
a radiomics model to discriminate Adc from squamous cell
carcinoma (Sqc) with an AUC of 0.82, Yang et al. (24) developed
an LR model to predict lymph node metastasis in solid Adc
with an AUC of 0.86. Remeo et al. (23) studied ground-glass
nodules diagnosis by radiomics, and found radiomics classifier
may be a reliable tool for clinical decision. Ferreira-Junior et
al. (28) found some radiomics features associated with Adc and
squamous cell carcinoma, and got an AUC of 0.88 with amachine
learning model.

However, from the data set point of view, the data sets
of these studies only contain Adc and Sqc, and in clinical
we can’t rule out the existence of other subtypes before
lung biopsy. So from the perspective of clinical diagnosis,
the study of predicting Adc should include all subtypes
of lung cancer as many as possible. Besides, among these
studies, the performance of CT radiomics models still needs to
be improved.

The proposed radiomics models showed great performance in
diagnosing Adc both on the train and the test sets. The models
are available and can be applied in Weka.

In this study, lung cancer patients with various histological
subtypes were included in the patient cohorts. We used stratified
random sampling to balance the covariates. In feature selection,

Frontiers in Oncology | www.frontiersin.org 3 April 2020 | Volume 10 | Article 602

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yan and Wang To Diagnose Lung Adenocarcinoma From CT

TABLE 2 | Performance metrics of 6 classifiers on the train set and test set.

Performance Accuracy (%) lTPR mTNR Precision nAUC Kappa ◦MAE

gLR

Train set 98.70 0.980 0.993 0.987 0.996 0.973 0.02

Test set 98.72 0.987 1.000 0.988 1.000 0.974 0.01

hRC

Train set 96.40 0.967 0.961 0.964 0.997 0.928 0.07

Test set 98.72 0.974 1.000 0.988 1.000 1.000 0.05

iSMO

Train set 97.72 0.961 0.993 0.978 0.977 0.954 0.02

Test set 97.44 0.974 0.974 0.974 0.974 0.949 0.03

jRF

Train set 97.72 0.974 0.980 0.977 0.997 0.954 0.10

Test set 97.44 0.974 0.974 0.974 0.999 0.949 0.08

kNB

Train set 97.01 0.948 0.993 0.972 0.994 0.942 0.06

Test set 98.72 0.974 1.000 0.988 1.000 0.974 0.05

Kstar

Train set 96.08 0.922 1.000 0.964 0.997 0.921 0.10

Test set 96.15 0.949 0.949 0.974 0.997 0.923 0.10

g logistic regression.
h Random Committee.
i Sequential minimal optimization.
j Random Forest.
k Naive Bayes.
lTrue Positive Rate.
mTrue Negative Rate.
nArea under curve.
◦Mean absolute error.

The best performance metrics for each set are highlighted in bold.

we first test the stability of the feature using the public RIDER
data set. Then pick up the features with classification capability.
The selected 10 features show excellent classification ability
after PMF and CFS. PMF was used for transforming features
and CFS is good at picking the most representative minimum
feature subset. It has been proved that PMF can not only
solve the problem of binary classification but also improve the
accuracy of classification (29, 30). Meanwhile, in order to avoid
over-fitting as much as possible, the train and the test sets
were divided with stratified random sampling to keep them
balanced. For model development, independent data sets were
used for feature selection and model construction, and cross
validation method was used for resampling. In model selection,
we used many classifiers to show the classification ability of
selected features, including three frequently used classifiers LR,
RF, and NB. RF contains multiple trees, even if some trees have
over-fitting, it can reduce over-fitting by voting or averaging.
Many radiomics studies used RF for classification. RC is an
ensemble method, it will build an ensemble of randomizable
base classifiers. Each base classifier is built using a different
random number seed. The final prediction is a straight average
of the predictions generated by the individual base classifiers.
Kstar is an instance-based learner using an entropic distance
measure to solve the smoothness problem. SMO is used for

training a support vector classifier, which has good robustness
and generalization ability.

A few issues regarding the stability and reproducibility
of the radiomics features have been raised in recent years
(31–33). Multiple parameter changes (e.g., slice thickness)
in general produce greater measurement errors. Therefore,
some parameters such as slice thickness, dose, kernel, and
segmentation methods should not be altered to assess the
features of a radiomics model. In this case, we selected the most
stable features across test-retest. To find the most representative
feature subset and reduce the running time of the classifiers,
we used CFS to pick the most representative minimum feature
subset. CFS uses heuristic and best-first search methods to
evaluate feature subsets and filters out features that are highly
correlated with classes but have the lowest correlation with
each other.

Although we try our best to reduce random errors and ensure
the correctness of statistical analysis in this study, there are
several limitations. Two cohorts in our study are from public data
sets, so we cannot accurately estimate the size and direction of
systematic bias. The area of interest of the Lung 1 data set and the
Lung 2 data set are delineated in different ways, which will lead
to measurement errors. Besides, we need more cases to improve
the classification model.
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FIGURE 2 | Mean ROC curves obtained by six machine learning models for predicting lung adenocarcinoma. The black diagonal line in the diagram is the random line

which is the worst possible performance a model can achieve. (A) Logistic regression (LR), naive bayes (NB), and random committee (RC) classifiers all have the same

AUC. (B) Random forest (RF) classifier. (C) Kstar classifier. (D) Sequential minimal optimization (SMO) classifier.

In conclusion, CT based radiomics can identify Adc.
Therefore, we can distinguish Adc only from CT images. We will
include multicenter data to improve the classifier and make it a
clinical diagnostic tool.

MATERIALS AND METHODS

Our work was approved by the institutional Ethics Committee.
The tools used for statistical analysis were IBM SPSS Statistics

25.0 (USA), and Weka (Frank et al. presented at the 2009
Data mining and knowledge discovery handbook) (Weka v3.8.3,
Hamilton, New Zealand).

Data Sets
We analyzed three independent data sets including a public
RIDER data set (9), a lung cancer cohort from our institute
(Lung 1), and a public radiomics features data set (Lung
2) (4), Table 3 shows Patient characteristics of Lung 1 and
Lung 2. Patients characteristics in detail, criteria for patient
selection, and CT scan protocol of Lung 2 have been already
published (4).

The RIDER data set consists of 31 non-small cell lung cancer
patients with two CT scans obtained in an interval of about

15min. We use this data set to evaluate the stability of features
for test-retest.

Lung 1 data set consists of 180 lung cancer patients
(adenocarcinoma: squamous cell carcinoma: other types of lung
cancer: metastasis = 3:1:1:1) from our institutional database in
2010–2018. For these patients, CT images, manual delineations,
and clinical data were available. The criteria for patient
selection are the same as Lung 2. We use this data set for
feature selection.

Lung 2 data set consists of 535 lung cancer patients.
For these patients, texture features were available. We used
this data set for model building and validation. In order
to keep the data class balanced on the train and the test
sets(adenocarcinoma: squamous cell carcinoma: other types
of lung cancer: metastasis = 3:1:1:1) and include as many
patients as possible, we randomly divided it into train set (n =

306) and test set (n = 78). Specific patients were selected by
pseudorandom numbers.

According to the lung histological diagnosis, the data
class was divided into Adc and Oth (including squamous
cell carcinoma, other primary histological subtypes, and
metastatic lung cancer). The research of the data set can
be divided into two stages: training phase and validation
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TABLE 3 | Patient characteristics.

Characteristics Lung 1 Lung 2

Size, N 180 535

Mean Age 66 69

Gender (%)

Female

Male

30.6

69.4

33.3

66.7

Histological type, N

Adenocarcinoma

Squamous cell carcinoma

Other primary lung cancer

Metastases

90

30

30

30

193

132

79

131

aThe significance of radiomics features, N

P ≤ 0.05

P > 0.05

b8

33

a Paired t-test with 95% Confidence Interval, two-tailed.
b They are Volume_Shape, Long-Run Emphasis_Gray-Level Run Length Matrix,

Coarseness_Neighborhood Gray-Level Different Matrix, Contrast_Neighborhood Gray-

Level Different Matrix, Long-Zone Low Gray-level Emphasis_Gray-Level Zone Length

Matrix, Zone Length Non-Uniformity_Gray-Level Zone Length Matrix, Low Gray-level Run

Emphasis_Gray-Level Zone Length Matrix, High Gray-level Run Emphasis_Gray-Level

Zone Length Matrix.

phases. The training phase included CT image acquisition,
texture feature extraction, feature selection, and model
building. The validation phase included model testing and
performance evaluation.

CT Image Acquisition and Texture Feature
Extraction
The acquisition and processing of Lung 1 and Lung 2
CT images were carried out following Image Biomarker
Standardization Initiative (IBSI) (34). The volume of
interest (VOI) of the lung 1 data set is made by two
experienced radiologists independently. Before the work,
the physiologists did not know the histological subtype
(blindness) of the target patient. For the inconsistent segments,
they will be segmented again after comparison until the
outcomes are consistent. The VOI of the Lung 2 data set is
segmented (semi)automatically.

LIFEx package (35) used to extract texture features. It
can efficiently perform textural analysis and radiomics feature
measurements from CT images. 41 features were extracted from
CT images.

Feature Selection
The stability of the radiomics features was evaluated
by using the RIDER data set. For each patient, we
extracted image features from two scans. The stability
of each feature was calculated using the intraclass
correlation coefficient, where the higher the intraclass
correlation coefficient corresponds to the more stable
feature (1).

Based on the results of feature stability, The ReliefF algorithm
(ReliefF Attribute Eval with Ranker in WEKA) was used to
remove the irrelevant features from the lung 1 data set.

TABLE 4 | The calculation formulas of performance metrics.

Metric *Formula

TPR TP
TP+FN

TNR TN
TN+FP

Accuracy TP+TN
TP+FP+TN+FN

Precision TP
TP+FP

AUC
∫ 1
x=0 TPR(FPR

−1(x))dx, where x1 is the score for a positive

instance and x0 is the score for a negative instance.

Kappa Kappa =
Po−Pe
1−Pe

, Pe =
P(TP+FP)+N(TN+FN)

(T+N)2
where Po

= Accuracy,

MAE 1
n

n∑

i=1

|p(i)− a(i)|, where p(i) is the prediction case, and a(i) is

real case, n is the total cases.

* TP is true positive, it means that the outcome from a prediction is lung adenocarcinoma

(Adc) and the actual value is also Adc. FN is false negative, it means that the prediction

outcome is another lung cancer histological type(Oth) while the actual value is Adc. TN is

true negative, it means that both the prediction outcome and the actual value are Oth. FP

is false positive, it means that the outcome from a prediction is Adc while the actual value

is Oth. P is condition positive, N is condition negative, and MAE is the mean absolute

errors. TPR is true positive rate, it measures the proportion of actual patients with Adc

that are correctly identified. A negative result in a test with high TPR is useful for ruling in

disease, it signifies a high probability of the presence of Oth. TNR is true negative rate,

it measures the proportion of actual patients with Oth that are correctly identified. A test

with 100% TNR will recognize all patients with Oth by testing negative, and a positive test

result would definitively rule out the presence of Oth in a patient.

The selected features were filtered by propositionalization
and partition using the Partition-Membership filter (Partition
Membership Filter with option Random Committee in Weka)
on Lung 2 train and test sets. It can apply any partition
generator to a given feature vector to get these filtered vectors
for all instances, and the filtered instances are composed
of these values plus class attribute and make as sparse
instances (29).

Then we used CFS to filter the results. The CFS
can select the minimum feature set that is highly
related to the classes. In this feature set, there is a low
correlation between features, so feature redundancy
can be reduced. That is to say, the final result is the
feature set with the highest prediction ability, and
there is a low correlation between the features in this
feature set.

Model Building and Performance
Evaluation
We used 6 machine learning classifiers, including LR(logistic
with options -R 1.0E-8 -M−1 in Weka), ensemble learning
classifier RF (Random Forest with options -K 0 -M 1.0 -V
0.001 -S 1 in Weka), Sequential minimal optimization(SMO
with options -C 1.0 -L 0.001 -P 1.0E-12 -N 1 -V−1 -W
1 -K in Weka), NB (naïve Bayes in Weka), RC (Random
Committee with options -S 1 -num-slots 1 -I 10 -W in
Weka), and KStar (Kstar in Weka) with 10-folds cross
validation. The performance metrics of the classification
model included TPR, TNR, accuracy, precision, AUC, kappa
statistics, and MAE. Table 4 shows the calculation formulas of
these metrics.
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