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Abstract: Misfolded amyloid beta (A[3) peptides aggregate and form neurotoxic oligomers. Mem-
brane and mitochondrial damages, calcium dysregulation, oxidative stress, and fibril deposits are
among the possible mechanisms of A} cytotoxicity. Galantamine (GAL) prevents apoptosis induced
by A mainly through the ability to stimulate allosterically the «7 nAChRs and to regulate the calcium
cytosolic concentration. Here, we examined the cytoprotective effects of two GAL derivatives, namely
compounds 4b and 8, against A} cytotoxicity on the human neuroblastoma cell line SH-SY5Y. The
protective effects were tested at simultaneous administration, pre-incubation and post-incubation,
with AB. GAL and curcumin (CU) were used in the study as reference compounds. It was found that
4b protects cells in a similar mode as GAL, while compound 8 and CU potentiate the toxic effects of
Ap. Allosteric stimulation of a7 nAChRs is suggested as a possible mechanism of the cytoprotectivity
of 4b. These and previous findings characterize 4b as a prospective non-toxic multi-target agent
against neurodegenerative disorders with inhibitory activity on acetylcholinesterase, antioxidant,
and cytoprotective properties.

Keywords: amyloid beta peptide; galantamine; curcumin; galantamine—curcumin hybrid; cytotoxic-
ity; cytoprotection; SH-SY5Y cell line

1. Introduction

In recent years, cases of neurodegenerative diseases have increased significantly
worldwide and in the next decades it will become the second leading cause of death,
displacing cancer [1]. Among them, Alzheimer’s disease (AD) is the most common cause
of dementia, affecting 17% of the population over the age of 75 [2]. The main symptoms
of the disease range from memory deficiency with names and events, communication
problems and disorientation, to total inability to perform basic activities of daily living [3].
The disease begins slowly, many years before the clinical manifestations, making it difficult
for early diagnosis and prompt treatment of mild and moderate forms.

One of the main hallmarks of AD is the insoluble misfolded amyloid fibrils. They
are formed gradually by aggregation of single monomers into nuclei with a hydrophobic
core. The nuclei elongate to protofibrils and fibrils with cross-p conformation by attaching
novel monomers [4]. The fibrils are arranged into amyloid plaques that cause cerebral
angiopathy and neuronal loss. Inhibiting early amyloid aggregation via small molecules is
one of the strategies for developing of anti-amyloid drugs [5].

The main drugs currently used for symptomatic treatment of mild and moderate
forms of AD are inhibitors of the enzyme acetylcholinesterase (AChE) [6]. The enzyme
AChE catalyses the hydrolysis of acetylcholine (ACh) to choline and acetic acid in the
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cholinergic synapses. AChE inhibition leads to ACh accumulation and a temporary delay
in cognitive decline.

Galantamine (GAL) is one of the most widely used AChE inhibitors for the treatment
of AD. Over the years it has been widely studied and has proven to be a drug with
a multi-targeted action [7,8]. In addition to moderate AChE inhibitory activity, GAL
binds allosterically to «7 nAChR and prevents apoptosis induced by (-amyloid and
thapsigargin—a specific «7 nAChR antagonist—through increasing the density of o7
nAChRs and expression of the antiapoptotic protein Bcl-2 in human neuroblastoma cell line
SH-SY5Y [9]. GAL blocks the A 3-enhanced glutamate toxicity by inducing phosphorylation
of the kinase effector Akt also mediated by o7 nAChRs [10]. Allosteric activation of
a7 nAChRs is associated with GAL's ability to restore the cholinergic cells in anti-NGF
transgenic mice and to reduce the perivascular APP deposits [11].

GAL directly inhibits the aggregation of A peptides and dramatically reduces the
apoptosis of SH-SY5Y cells caused by AB1_49 and AR1_4» [12]. GAL binds to AP dimer and
causes a significant conformational change at the turn region (Asp23-Gly29), leading to
disruption between [3-strands and prevention of neurotoxic oligomer formation [13]. GAL
significantly decreases A3 secretion by inhibiting BACE1 expression (at low concentrations)
or by decreasing the amount of APP (at higher concentrations) [14]. Takata et al. [15] found
that GAL facilitates A clearance by sensitizing microglial «7 nAChRs to choline and induc-
ing Ca®* influx into microglial cells, followed by actin reorganization and AB phagocytosis.

Recently, we designed two series of GAL derivatives. One of the series contains cur-
cumin aromatic fragments [16], while the other one incorporates non-curcumin aromatic
fragments [17]. Curcumin (CU) is a natural polyphenol with powerful antioxidant proper-
ties [18] and an ability to inhibit A3 aggregation [19] and to reduce amyloid plaques [20].
The GAL derivatives were screened virtually via molecular docking and the most promis-
ing compounds were synthesized and tested for anti-AChE activity [16]. Five compounds
from the GAL-CU series and one compound from GAL-non-CU series showed less toxicity
than GAL and CU and higher activity than GAL. Here, we examined the most active
compounds from both series, namely 4b and 8 (Figure 1), for their ability to prevent the
cytotoxic effects of A peptides. GAL and CU were used in the study as controls. The ICsg
values of the tested AChE inhibitors measured previously using Ellman’s method were:
0.020 uM for 4b [16], 0.028 uM for 8 [17], 3.52 uM for GAL [16], and 67.69 uM for CU [16].
As GAL derivatives, compounds 4b and 8 were expected also to reduce the toxic effects of
Af. As the present study was a continuation of our previous research [16,21], we preferred
to keep the original compound IDs.

Figure 1. Structures of galantamine (GAL), curcumin (CU), their hybrid 4b, and compound 8.
The IC5( values of the tested AChE inhibitors measured previously using Ellman’s method were:
0.020 uM for 4b [16], 0.028 uM for 8 [17], 3.52 uM for GAL [16], and 67.69 uM for CU [16].
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2. Results

In order to examine the effects of the newly designed and synthesized AChE inhibitors
on the toxicity caused by Af3 on SH-SY5Y cells, three experimental scenarios were tested.
In the first scenario, the tested compounds were administered simultaneously with A3
peptides. This test showed the immediate protection of the compounds against Af3 toxicity.
In the second scenario, the cells were preincubated with the tested compounds for 24 h,
followed by the addition of AB. The aim of this test was to examine the ability of the
compounds to prevent A cytotoxicity. In the third scenario, the cells were preincubated
with A peptides for 24 h and then the tested compounds were added. The results here
were indicative for the ability of compounds to repair the damage caused by A and to
restore cell viability. In all tests, GAL and CU were used as reference compounds. Before
applying the three scenarios, the effect on the cell viability of each studied compound
was tested.

2.1. Cytotoxicity of Amyloid B Peptide

The AP peptide administered in concentrations of 5-50 uM for 48 h at 37 °C showed
dose-dependent cytotoxicity on SH-SY5Y cells (Figure 2). Even at the lowest concentration
of 5 uM, AP decreased the cell viability by 21%. At concentrations of 25 uM and 30 uM,
the cell viability decreased to 65%, and at 50 uM to 48%. Further, in the three experimental
scenarios A3 peptide was used at a concentration of 25 uM.
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Figure 2. Cell viability (percentage) of SH-SY5Y cells treated for 48 h at 37 °C with different concentrations of Af3, 4b, 8,
GAL, and CU. Values are expressed as a mean + SE, n = 3, p-values are presented as: * for p < 0.01, ** for p < 0.05, and f for

p <0.1.

The cytotoxic effect of A3 on SH-SY5Y cells is visualized 24 h after being exposed
to Af3 in Figure 3. The cells grown in the presence of Af3 showed separation from the
neighbouring cells due to membrane retraction and fragmentation of cell monolayers,
which caused a decrease in cell viability.
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Figure 3. Images of SH-SY5Y cells taken 24 h after being exposed to single 4b, 8, GAL, and CU in 100 uM, A in 25 uM, and
by 4b, 8, GAL, and CU in 100 uM administered simultaneously with A, before introduction of A{3, and after introduction

of AB.

2.2. Cytotoxicity of the Tested AChE Inhibitors

The cytotoxicity values of the AChE inhibitors tested in the present study are given
in Figure 2. Compound 4b was non-toxic at concentrations of 5-500 uM. Even more, in
the presence of 4b the cell viability increased to 108-116% compared with control cells.
Compound 8 was non-toxic at concentrations up to 50 uM. At higher concentrations, the
toxicity increased dose-dependently, reaching 3% cell viability at 250 uM. GAL was non-
toxic up to 250 uM. At 500 and 1000 uM, the cell viability decreased only by 3—4%. CU
showed dose-dependent cytotoxicity in the range of 25-1000 pM. At 1000 uM, only 45%
of the SH-SY5Y cells survived. Based on these observed single cytotoxicity levels, the
inhibitors were further tested in the range of 100-500 uM in three concentrations: 100,
250, and 500 pM. Being more toxic, compound 8 was tested in a lower range—from 50 to
150 uM: 50, 100, and 150 uM.

The morphology of SH-SY5Y cells in the presence of 100 uM of each inhibitor is shown
in Figure 3. In the presence of 4b and GAL, the cells proliferated, while in the presence of 8
and CU the number of cells decreased and they lost confluence.
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2.3. Cytotoxicity of Amyloid B Peptides Given with the Tested AChE Inhibitors

According to the first scenario, designed in the present study, AP peptides were given
at a concentration of 25 pM simultaneously with the tested AChE inhibitors at different
concentrations and incubated for 48 h at 37 °C. The results for the cell viability and the
complementary cell death after 48 h are given in Figure 4.
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Figure 4. Cell viability (percentage) (up) and complementary cell death (percentage) (down) of SH-SY5Y cells treated
for 48 h at 37 °C with 25 uM A peptides and different concentrations of 4b, 8, GAL, and CU. Values are expressed as a
mean + SE, n = 3, p-values are presented as: * for p < 0.01, ** for p < 0.05, and  for p <0.1.

Compound 4b provided the highest cell protection at 100 uM, where the cell viability
decreased only by 6%. For compound 8, the highest protection was achieved at 50 uM, but
only 43% of the cells survived. GAL protected 84% of the cells at a concentration of 250 uM.
CU achieved the highest cell viability of 33% at a concentration of 100 uM.

Immediate cell protection from A toxicity was observed by 4b and GAL. Compound
8 and CU potentiated the A(} toxicity at the tested concentrations. The protection by 4b
and GAL can be observed morphologically in Figure 3. The cells treated with 4b and
GAL displayed better confluence than those treated by compound 8 and CU, where shape
rounding and detachment from the surface was observed.

2.4. Cytotoxicity of Amyloid B Peptides Given after the Tested AChE Inhibitors

In order to assess the ability of the tested AChE inhibitors to prevent or diminish A3
cytotoxicity, the cells were pre-incubated with the tested compounds for 24 h, followed by
incubation with AP at 37 °C for 48 h. The results in this scenario are given in Figure 5.
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Figure 5. Cell viability (percentage) (up) and complementary cell death (percentage) (down) of SH-SY5Y cells treated for
24 h at 37 °C with different concentrations of 4b, 8, GAL, and CU, followed by incubation for 48 h at 37 °C with 25 uM A
peptides. Values are expressed as a mean =+ SE, n = 3, p-values are presented as: * for p < 0.01, and ** for p < 0.05.

Compound 4b and GAL decreased the cytotoxicity caused by Af3 peptides applied
after the tested compounds. For 4b, the protection was the highest at 100 uM and reached
77% cell viability, 17% less than that of 4b given simultaneously with A. For GAL, the
three tested concentrations provided the same protection of 74% viable cells, 3% to 10%
less compared with simultaneous treatment. Here, again, compound 8 and CU failed to
protect the cells from the toxic effect of A3 peptides. In the second scenario, cells treated
with 4b and GAL demonstrated better confluence than those treated with compound 8 and
CU, which corresponds well to the cytotoxicity test (Figure 3).

2.5. Cytotoxicity of Amyloid B Peptides Given before the Tested AChE Inhibitors

The third scenario was scheduled to test the ability of the AChE inhibitors to restore
cell viability after the damage caused by A(3. For this purpose, the cells were pre-incubated
with AP for 24 h at 37 °C and then treated with the tested inhibitors for 48 h. The cell
revival is illustrated in Figure 6.

Here, again, GAL and 4b performed better than compound 8 and CU. Compound 4b
at a concentration of 100 pM restored 76% of the cells, while GAL reached 86% viability
at the same concentration. More pronounced changes in cell morphology (rounding) and
separation of the monolayer from the surface were observed for compound 8 and CU
(Figure 3).
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Figure 6. Cell viability (percentage) (up) and complementary cell death (percentage) (down) of SH-SY5Y cells treated for
24 h at 37 °C with 25 uM A peptides followed by incubation for 48 h at 37 °C with different concentrations of 4b, 8, GAL,
and CU. Values are expressed as a mean + SE, n = 3, p-values are presented as: * for p < 0.01.

3. Discussion

ABq140 and AP4p peptides are water soluble components of human plasma and
cerebrospinal fluid, and under normal circumstances undergo regular clearance by phago-
cytosis in microglia [15]. For unknown reasons, these peptides form an unusual 3-turn
conformation in the central residues and convert into insoluble misfolded monomers
that aggregate into neurotoxic oligomers [4]. One of the possible mechanisms of amy-
loid cytotoxicity is the formation of transmembrane channels leading to excessive Ca®*
influx, mitochondrial damage, and cell apoptosis [22]. Free radical damage caused by
Ap through increased HyO; accumulation in cells is another possible mechanism of A3
cytotoxicity [23].

It was found that GAL protects against A} cytotoxicity at concentrations of 25 uM
to 1000 uM [10]. In the present study, this protective effect was confirmed—in the range
100-500 uM, GAL reduced the cell death caused by A from 35% to 16-23% when adminis-
tered simultaneously with the peptide (Figure 4). When the cells were pre-incubated with
GAL, the effect was similar (Figure 5). More profound was the effect of GAL when it was
administered after a pre-incubation with A3—the cells revived from 65% to 86% (Figure 6).

The cytoprotective effect of GAL is due to its ability to allosterically stimulate o7
nAChRs [9,24]. Alpha-7 nAChRs are associated with a higher Ca?* permeability compared
with other nAChRs [25]. The stimulation of nAChRs enhances and improves cognition [10].
In the presence of x-bungarotoxin, an o7-specific nAChR antagonist, the protective effect
of GAL disappears [9].
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CU inhibits the aggregation of A peptides [26-28] by intercalation between them and
3-sheet breaking [29-35]. In the present study, it was observed that CU does not protect
against A3 toxicity. Even more, CU potentiated the toxic effects of A3 in all three scenarios—
treatment simultaneously with A(3, before introduction of A3, and after introduction of A3
(Figures 4-6). Obviously, the anti-aggregation activity of CU is not important for the cell
survival. Similarly, the free radical damage caused by A3 peptides also could be rejected
as a putative reason for SH-SY5Y cell death as the antioxidant properties of CU do not help
for cell protection.

The newly designed and tested AChE inhibitors 4b and 8 are both GAL derivatives.
The compound 4b is a hybrid of GAL and CU. One could expect that these GAL derivatives
would have cytoprotective effects similar to those of GAL. The experiments in the present
study showed that only 4b behaved as GAL. Compound 8, like CU, potentiated the
cytotoxic effects of A in all three scenarios. The comparison between 4b and GAL revealed
that 4b protects better than GAL when administered simultaneously with A (Figure 7).
In the before-A scenario, 4b was slightly better than GAL, while in the after-Af test, GAL
restored the damaged cells to a higher extent. The similar effects suggest a similar mode
of action—4b might act as an allosteric modulator of 7 nAChRs. Recently, we found
that 4b is a low-toxic compound (LDsj in mice was 49 mg/kg), inhibits AChE in vivo and
in vitro better than GAL, and demonstrates high antioxidant activity in vitro and ex vivo
outperforming the activities of both GAL and CU [21]. Together with the findings in the
present study, 4b has emerged as a promising multi-target agent for a complex treatment
of neurodegenerative disorders.
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4. Materials and Methods
4.1. Materials

In the present study, the following materials were used: galantamine HBr (Galen-N
Ltd., Sofia, Bulgaria, Mw = 368.3 g/mol, purity > 98%), curcumin (BioXtract, Belgium,
Mw = 368.4 g/mol, purity > 98%), bovine serum albumin (Sigma-Aldrich, Taufkirchen,
Germany, Mw =~ 66 kD, purity > 96%), thiobarbituric acid (Sigma-Aldrich, Germany,
Mw = 144.15 g/mol, purity > 98%), trichloroacetic acid (Sigma-Aldrich, Germany,
Mw = 163.39 g/mol, purity > 99%), acetylthiocholine iodide (Sigma-Aldrich, Germany,
Mw = 289.18, purity > 98%), 2,2-dinitro-5,5 dithiodibenzoic acid (DTNB) (Sigma-Aldrich,
Germany, Mw = 396.35, purity > 98%), ethylenediaminetetraacetic acid (EDTA) (Sigma-
Aldrich, Germany, Mw = 292.24, purity > 99%). 2,2’-Diphenyl-1-picrylhydrazyl (DPPH),
2,2'-azinobis-(3-ethylbenzothia- zine-6-sulfonic acid) (ABTS), 6-hydroxy-2,5,7,8-tetramethyl
chroman-2-carboxylic acid (Trolox), 2,4,6-tripyridyl-s-triazine (TPTZ), FeCl3-6H,0O, sodium
acetate, potassium persulphate, and butylhydroxy toluol (BHT) were purchased from
Sigma-Aldrich. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFP) was purchased from Sigma-
Aldrich. Amyloid beta peptide (1-42) (human, A{31_42) was purchased from Abcam (UK).
All other chemicals, including the solvents, were of analytical grade.

The synthesis of compounds 4b and 8 along with detailed analytical data has already
been reported in the context of the synthesis of a series of new GAL derivatives [16,17].

The synthesis of 4b involved the construction of a bromo-containing linker and its
substitution with norgalantamine (Scheme 1). Thus, monobromination and mild oxida-
tion of 1,5-pentandiol afforded 5-bromopentanal, which was subsequently attacked by
Grignard reagent and oxidized to 6-bromohexan-2-one. This ketone was subjected to mild
Aldol condensation with p-methoxybenzaldehyde to give the desired bromo-linker. The
nucleophilic substitution with norgalantamine proceeded in the presence of K,COs as a
base to give compound 4b in moderate yield (Scheme 1). The analytical data of compound
4b are given in Supplementary Materials.

O&\@\
1. CH3MgCl o~

(0]
THF, 0 °C: 87% A/\)J\ L-proline, NEt3
/\/\/\ —_—
Br =0 Br

2.PCC CH30H, r.t.
5-bromopentanal CH,Cl, rt.; 83% 6-bromohexan-2-one 59%
o) Norgalantamine

K,COs
— Br = 4b
_ CH4CN, 60 °C
(6) 67 %

(E)-7-bromo-1-(4-methoxyphenyl)hept-1-en-3-one
Scheme 1. Synthesis of compound 4b.

The synthesis of compound 8 involved the construction of two building blocks, 3-
(biphenyl-2-yl)propanoic acid 3 and an amino-derivative of GAL 7, and their subsequent
amide coupling (Scheme 2). The desired acid 3 was prepared via Knoevenagel condensation
of biphenyl-2-carbaldehyde with malonic acid to (E)-3-(biphenyl-2-yl)acrylic acid 2, which
was quantitatively reduced. The second building block 7 was synthesized via nucleophilic
substitution of tert-butyl N-(2-bromoethyl)carbamate with norgalantamine 5 to give GAL-
derivative 6, which was subjected to Boc-deprotection. The amide coupling was performed
with the reagents for peptide synthesis N-ethyl-N’-(3-dimethylaminopropyl)-carbodiimide
hydrochloride (EDCI) and 1-hydroxy-benzotriazole hydrate (HOBT) to give compound 8 in
moderate yield. The analytical data of compound 8 are given in Supplementary Materials.
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malonic acid O O
piperidine 0 H, Pd/C 1)

_— =

pyridine X OH MeOH,r.t. OH
A 99%
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CF3CO,H

“Boc  CH,Cl,

83% 86%

EDC/HOBT
NH
N2 Gl
54%

Scheme 2. Synthesis of compound 8.

4.2. Preparation of A Peptide

Amyloid-p peptide (Af31-42) was dissolved in HFIP incubated for 1h at room tempera-
ture and aliquoted for storage at —80 °C until usage. For cytotoxicity experiments, AB1_4
aliquots were evaporated and dissolved in DMSO and a PBS buffer, pH 7.4 [36,37].

4.3. Cytotoxicity Test

SH-SY5Y cells (human neuroblastoma cell line, ATCC CRL-2266) were seeded onto a
96-well plate at a density of 3 x 10* cells per well in DMEM F12 medium, supplemented
with 15% FCS (fetal calf serum), 100 U/mL penicillin, 100 mg/mL streptomycin, and 1%
amino acids. After 24 h preincubation at 37 °C in a humidified atmosphere of 5% CO,,
the culture media was replaced with fresh DMEM medium without FCS, supplemented
with different concentrations of: compound 4b (25, 50, 100, 250, and 500 uM); compound 8
(25, 50, 100, 250, and 500 uM); curcumin (25, 50, 100, 250, 500, and 1000 uM); galantamine
hydrobromide (25, 50, 100, 250, 500, and 1000 uM); and Af{31_47 in concentrations of 5, 10,
25, and 50 uM, respectively. After 48 h at 37 °C, SH-SY5Y cells, treated with different
concentrations of the individual compounds, were washed with PBS and incubated with
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reagent (0.5 g/mL) in
serum-free DMEM medium for 3 h at 37 °C. The MTT formazan product was dissolved
in DMSO and the absorbance was detected immediately with an Epoch™ Microplate
Spectrophotometer (BioTek) at 570 nm [38]. Cell viability was presented as the ratio:
(absorbance of the treated wells)/(absorbance of the control wells) x 100%.

Each experiment was performed three times. Values were expressed as a mean + SE.
The p-value was calculated using the Student’s t-test. Data with p < 0.01 were considered
as highly significant, with p < 0.05 considered as statistically significant and with p < 0.1 as
marginally significant.

In order to study the combined effects of A peptides (used in all combined treatments
at a constant concentration of 25 uM) and various concentrations of tested compounds
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(GAL, CU, 4b, or 8) on the viability of SH-SY5Y cells (3 x 10*/well), we applied the
following experimental scenarios:

— Simultaneous administration of A3 (25 uM) and each of the tested compounds in
different concentrations and incubation at 37 °C for 48 h

—  Preincubation of SH-SY5Y cells with each of the tested compounds in different con-
centrations for 24 h, followed by the addition of Af (25 uM) and incubation at 37 °C
for 48 h (the before A scenario)

— Initial preincubation of SH-SY5Y cells with A3 (25 uM) for 24 h, then with each of the
tested compounds in different concentrations and incubation at 37 °C for 48 h (the
after AP scenario).

Morphological changes were visualized at regular time intervals (24 h) via microscopy
observations (Nikon Eclipse microscope—objective lens 25 x).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/1jms22147592/s1. 1. Analytical data of compound 4b. 2. Analytical data of compound 8.
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