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Using antifibrinolytics to tackle neuroinflammation

Introduction
Fibrinogen (coagulation factor I) is a large complex glyco-
protein molecule found in the blood of vertebrates. Upon 
enzymatic cleavage to fibrin by thrombin, it forms the scaf-
fold of the blood clot, functioning primarily to limit bleeding 
(De Moerloose et al., 2013; Weisel, 2005) Fibrinogen is one 
of the acute phase proteins, which are upregulated in in-
flammation, injury, and other pathological settings (Davalos 
and Akassoglou, 2012). Fibrinogen, and its polymerization 
product, fibrin, are macromolecules, and are not found in 
the normal brain tissue due to impenetrability of the blood-
brain barrier (BBB) to proteins of this size (Petersen et al., 
2018). However, when the BBB is disrupted (in neurode-
generative disease this occurs even before neuronal damage; 
Zlokovic, 2008), fibrinogen readily extravasates into the 
brain parenchyma and converted into fibrin (Thomas et al., 
1993; Akassoglou and Strickland, 2002). 

The physiological process of fibrin clot degradation  is 
known as fibrinolysis. Fibrinolysis is initiated by the conver-
sion of plasminogen to plasmin, mainly through the action 
of the serine proteases tissue plasminogen actvator (tPA) 
and urokinase plasminogen activator (uPA). Plasminogen, 
secreted by the liver, binds to fibrin even in its inactivated 
state. Plasminogen activators act primarily on site of the clot 
(or, fibrin deposition), converting bound plasminogen to 
plasmin, which in turn slowly digest fibrin to fibrin-degrada-
tion products. Plasmin activity, as well as plasminogen acti-
vator activity, are inhibited by several endogenous inhibitors, 
if not bound to their substrate (Cesarman-Maus and Hajjar, 
2005). The fibrinolytic system also regulates the degradation 
of extracellular matrix in most tissues either directly or by 
activating matrix metalloproteinases (Mehra et al., 2016). 

Antifibrinolytics are a group of medications inhibiting fi-

brionolysis (MeSH ID: D000933); it includes, among others, 
tranexamic acid (TXA), and aminocaproic acid. The clinical 
indications usually include bleeding tendencies, such as 
menorrhagia, as well as hyperfibfinolytic disorders of the he-
mostatic system (Cai et al., 2019). They are also used in cases 
in which transfusion of blood products is not an option 
(Zeybek et al., 2016). The most commonly used antifibrino-
lytics and their properties are listed in Table 1.

TXA is one of the most widely used and studied antifibfi-
nolytics in the contemporaty medical practice, according to 
the WHO list of essential medicine (2019). TXA (along oth-
er antifibrinolytics) is an analogue of the amino acid lysine. 
Mechanism of action is by occupying lysine binding sites of 
plasminogen and inhibiting plasmin formation (Reed and 
Woolley, 2015). TXA is successfully used to treat excessive 
bleeding in surgery, intensive care, and obstetrics and gyne-
cology (Cai et al., 2019). Recently, the CRASH-3 study has 
demonstrated that TXA treatment reduces head-injury relat-
ed death rates, without significantly elevating the thrombotic 
risk, much concerning in traumatic patients (CRASH-3 trial 
collaborators, 2019). In another study, it was shown that 
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Table 1 Some clinically relevant antifibrinolytic agents

Substance
Type of 
molecule Main on-label indications

Tranexamic acid Lysine 
analogue

Excessive bleeding, hemorrhage 
prevention in hemophilia

ε-Aminocaproic acid Lysine 
analogue

Severe postoperative bleeding

4-Aminomethylbenzoic 
acid 

Lysine 
analogue

Antidote for fibrinolytics
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TXA treatment reduces mortality of subarachnoid hemor-
rhage (SAH) patients (Anker-Moller et al., 2017). Despite a 
second bleed from the same site is often the cause of death 
following SAH, it is debated, if TXA treatment acts by pre-
venting it, or by other mechanisms (Post et al., 2019). While 
the most feared complication of antifibrinolysis in general is 
thrombosis, a recent meta-analysis concluded that the risk 
of thrombotic complications is not increased by the use of 
TXA (Chornenki et al., 2019); therefore, TXA treatment is 
generally safe. TXA is proposed as means to improve clinical 
condition in patients with hereditary angioedema and to 
facilitate reduction of skin hyperpigmentation, relying on 
fibrinolysis-independent mechanisms (Cai et al., 2019). The 
good clinical results from the application of TXA in trau-
matic brain injury and SAH, conditions invariably involving 
neuroinflammation, draw the attention towards the potential 
of antifibrinolytics as anti-inflammatory drugs.

In January 2020, NCBI PubMed was searched for relevant 
documents using the following keyword combinations: neu-
roinflammation and antifibrinolytics, neuroinflammation 
and ‘tranexamic acid’, antifibrinolytics and brain. The list of 
results was manually screened for relevant entries. 

Fibrinogen and Fibrin Are Associated with 
Neuroinflammation
In the affected CNS, fibrinogen stands out among the mul-
tiple plasma proteins, which leak through the damaged 
BBB. Fibrinogen has a distinct molecular structure, which 
has multiple binding sites for other proteins and receptors, 
such as albumin, fibronectin, thrombospondin, von Wille-
brand factor, fibroblast growth factor-2, vascular endothelial 
growth factor, and interleukin-1 (Weisel, 2005). Fibrinogen 
can thus interweave multiple signaling pathways, involved in 
neurological disease (Petersen et al., 2018).

Fibrinogen is a conspicuous finding in lesion areas in 
neuroinflammation. Its presence in multiple sclerosis (MS) 
lesions, as well as in amyloid plaques in Alzheimer’s disease  
has been demonstrated on multiple occasions (Adams et 
al., 2007; Davalos and Akassouglu, 2012), and the amount 
of fibrinogen deposition and the degree of disruption of 
BBB usually correlates with disease severity. A neuroinflam-
matory reaction of the brain is needed to develop the full 
spectrum of detrimental effects of fibrin(ogen) deposition. 
Experiments show that in a mouse model of MS, eliminating 
the affinity of the microglial receptor towards fibrinogen 
inhibits perivascular clustering of microglia, and reduces 
axonal damage (Davalos et al., 2012). This demonstrates the 
role of early BBB leakage and fibrinogen-caused microglial 
activation in initiating neuroinflammatory disease. For a de-
tailed review of the role of fibrinogen in neurological disease 
the readers are referred to the work by Petersen et al. (2018), 
in which they postulate that fibrinogen is a “global mediator 
of neurodegeneration and activation of innate immunity in 
the CNS”. Data show that this is justified conclusion; how-
ever, a conclusion from a mechanistic point of view, that the 
endogenous fibrinolytic system might counteract fibrin(o-

gen) dependent neuroinflammation by removing fibrin from 
the CNS has not been substantiated by experiments, as we 
want to highlight hereafter.

Neuroinflammation Is Contingent on 
Plasminogen and Plasmin
In the CNS, plasminogen conversion to plasmin is carried 
out by both tPA and uPA. tPA is constutively produced by 
endothelium (Schreiber et al., 1998), but also by neurons 
(Tsirka et al., 1997; Docagne et al., 1999) and glia (Adhami et 
al., 2008; Tjärnlund-Wolf et al., 2011). In the same time, uPA 
has a low baseline expression, but is upregulated in patho-
logical (inflammatory) conditions (Gveric et al., 2001). Plas-
minogen itself reaches the brain via the systemic circulation, 
but is also produced by neurons (Basham and Seeds, 2001). 
Given that, neural tissue, even in its physiological state, pos-
sesses a significant plasminogen converting potential. The 
active plasmin, which could be produced upon plasminogen 
activation, can impact a number of processes, both physio-
logical and pathological.

Plasmin(ogen) activity in the CNS is physiologically up-
regulated in axonal growth (Krystosek and Seeds, 1981) 
and synaptic pruning (Hensch, 2005), and might be crucial 
in processes of brain development and neural plasticity, 
although its role in development and regeneration is not 
completely understood. In excitotoxin-challenged mice, de-
ficiency of tPA indices resistance to neuronal degeneration 
and toxin-induced seizures (Tsirka et al., 1995), probably by 
an interaction with the extracellular matrix. An interesting 
investigation on the role of plasmin(ogen) in neuroinflam-
mation by Shaw et al. (2017) demonstrated that plasmino-
gen deficiency could delay the onset of MS and also protect 
against demyelination. In the murine model of MS, exper-
imental autoimmune encephalomyelitis, contrary to initial 
expectations, plasminogen deficient mice had a later onset 
and attenuated severity of the disease, compared with wild 
type mice. Pharmacological inhibiton of plasmin by TXA 
also showed comparable effects. The decreased demyelin-
ation and microgliosis in plasmin deficiency/inhibition is an 
evidence that plasmin activity is a modifier of neuroinflam-
matory demyelination. 

Plasminogen deficiency is also linked to attenuated in-
flammation in another settings, such as LPS induced neu-
roinflammation. Plasminogen- and tPA-deficinent mice 
showed deficits in the neurovascular integrity, leading to 
intraparenchymal fibrin deposits in the brain. However, 
this was not associated with signs of neuroinflammation. 
Furthermore, upon stimulation with LPS, the neuroinflam-
matory response was significantly diminished (Hultman et 
al., 2014). In another mouse study, prolonged activity of the 
endogenous fibrinolysis system was suspected to be involved 
in perpetuating posttraumatic neuroinflammation (Hijazi et 
al., 2015). Additionally, in a mouse model of traumatic brain 
injury reaching an anti-fibrinolytic state (by application of 
antifibrinolityc agents or knockout of the plasminogen acti-
vator inhibitor) was shown to be neuroprotective (Griemert 
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et al., 2019). The data from these studies highlight the im-
portance of plasmin(ogen) activity for the propagation of 
the neuroinflammatory process in various pathological 
serttings. It is worth mentioning (albeit probably not directly 
plasmin-dependent) that the anti-neuroinflammatory action 
of antifibrionolytics in mouse models of spinal cord injury, 
mostly due to reduction of bleeding at lesion (Yoshizaki et 
al., 2019).

Plasmin-dependent neuroinflammation could be ex-
plained by various mechanisms (Figure 1). As a serine pro-
tease, plasmin does not have an absolute specificity towards 
fibrin. Other substrates beyond fibrin could be involved in 
the reported involvement of plasmin in neuroinflammation. 
Critical components of the architecture of the BBB are re-
ported to be degraded by plasmin, such as laminin, fibronec-
tin, collagen, and this is critical, since disruption of BBB is 
prerequisite for initiation and progression of the neuroin-
flammatory processs (Liotta et al., 1981; MacKay et al., 1990; 
Floris et al., 2004). Furthermore, plasmin is a direct activator 
of inflammatory cells (Syrovets et al., 2001; Li et al., 2007), 
and actively binds macrophage receptors that are crucial for 
their migration (Das el al., 2007; O’Connell et al., 2010; Ligh-
vani et al., 2011). Moreover, plasmin degrades extracellular 
matrix proteins, thus facilitating inflammatory cell migra-
tion across tissue (Rifkin, 1992). Inflammatory cytokines 
produced by macrophages are also positively correlated with 
plasmin enzymatic activity in vitro (Zalfa et al., 2019).

The fact that plasmin deficiency dampens inflammation 
even in the presence of significant stimuli (Hultman et al., 
2014), shows that plasmin itself is integrally involved in neu-
roinflammation. Targeting plasmin might be a promising 
immunomodulatory strategy (Draxler et al., 2019), not only 
for the nervous system diseases but also for other diseases 
and injuries.

Perspectives and Outlooks
Considering the growing amount of data elucidating plas-
min(ogen) involvement in neuroinflammation, its pharma-
cological inhibition is an unexplored approach for neuroin-
flammation suppression. Plasmin activity is unrelated to 
fibrionolysis, so we believe that the fibrinolytic cascade with 
its pleiotropic functions is a promising therapeutic target. 

When aiming at an antyfibrinolytic state, maintaining the 
fine balance between coagulation and fibrinolysis is of great 
importance. Antifibrinolysis might exacerbate BBB leakage 
and therefore aggravate neuroinflammation in some settings 
(Paul et al., 2007). 

It is clear that the enzymatic activities of the individual 
components of the fibrinolytic cascade are finely interweaved 
in a network of signaling pathways. For instance, tPA and 
uPA deficiency on their own do not produce the same results 
as plasmin(ogen) deficiency/inhibition (Shaw et al., 2017), 
and inactive tPA has immunomodulatory activity indepen-
dent on its enzymatic properties (Zalfa et al., 2019). A fine 
mechanistic dissection of their involvement in neuroinflam-
mation is yet to be done by molecular means.

Inhibition of plasmin(ogen) activity is a justified strategy to 
suppress neuroinflammation, which has yet to find its trans-
lation from animal models to clinical studies. Antifibrinolyt-
ics are approved to be safe and well studied, and are powerful 
tools in the design of future studies. The CRASH-3 study is 
a fine example of such a study, and its yet to be discussed if 
anti-inflammatory mechanisms are involved in its results. We 
believe that exploring their potential off-label use can open 
the door for novel therapies of neuroinflammatory disease.
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