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Nuclear Factor Erythroid 2-Related Factor 2
in Regulating Cancer Metabolism
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Abstract

Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor
predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of
redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including
metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We
review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks
previously listed.
Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway
are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer
progression were found to be redox- and NRF2 dependent.
Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2
are context dependent and essentially based on the specific molecular characteristics of the cancer in question.
Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The
biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes.
Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the
activity of the NRF2 system.
Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2
pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system
interferes with cytostatic drugs and their combinations. Antioxid. Redox Signal. 33, 966–997.
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Introduction

The redox balance in cells is tightly regulated to meet
physiological needs by balancing the abundance of pro-

oxidants and reductants. In cancer, the redox balance is
commonly dysregulated. However, whether the redox im-
balance induces or inhibits cancer formation and cell growth
is rather controversial, as the pro- or anticancer effects vary
between different cancers and may change as a function of the

cancer type (48, 49, 73–75, 80, 95, 180, 183, 218, 225, 227,
295). Nuclear factor erythroid 2 (NFE2)-related factor 2
(NFE2L2, commonly referred to as NRF2) is a transcription
factor that plays a crucial role in maintaining the expression of
antioxidant genes. Therefore, NRF2 is vital in maintaining the
cellular redox balance.

NRF2 is present in model organisms such as Caenor-
habditis elegans and Drosophila melanogaster, which have
an antioxidant system similar to mammals, suggesting that
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the NRF2 pathway represents an evolutionary conserved
cytoprotective program (71). However, NRF2 signaling
spans beyond redox signaling toward metabolic pathways
and the induction of collective cellular changes exemplified
by cancer metabolism. In this review, we set out to provide a
critical focus on NRF2 activity in cancer. We discuss the
aberrant activation of NRF2 and its critical cellular targets.

The Molecular Determinants of NRF2 Signaling

The molecular structure of NRF2

NRF2 is a basic leucine zipper domain (bZIP) transcription
factor and contains a Cap’N’Collar structure. NRF2 com-
prises 605 amino acids and has a calculated molecular weight
of 68 kDa. However, recent studies claim that NRF2 may
have a higher apparent molecular weight (up to *130 kDa)
(155, 292). In our hands, the actual molecular weight of NRF2
and the proportions between the different molecular weight
isoforms vary between experimental models. Thus, the use of
validated antibodies is crucial in investigating NRF2.

The NRF2 transcription factor contains seven conserved
NRF2-ECH homology (Neh) domains, known as Neh1-
Neh7 (Fig. 1A). The Neh1 domain allows the binding of
NRF2 to the antioxidant response sequences (electrophilic
responsive/antioxidant-response elements [EpRE/ARE]; 5¢-
RTGABNNNGCR-3¢). The Neh2 domain, the major regu-
latory domain located in the N-terminal region of NRF2,
is essential for the Kelch-like ECH-associated protein 1
(KEAP1)-dependent degradation of NRF2 (see later). The
Neh2 domain possesses ETGE and DLG motifs, which are
responsible for direct interaction with the negative regula-
tor, KEAP1 (191, 192, 287). The Neh3, Neh4, and Neh5
domains are transactivation domains. Neh3 is located in the
C-terminal region of NRF2 and binds to the chromo-AT-
Pase/helicase DNA binding protein family member CHD6,

which functions as an NRF2 transcriptional coactivator
(204). Neh4 and Neh5 are responsible for NRF2-mediated
ARE transactivation by binding to a transcriptional coacti-
vator CREB-binding protein (130). The Neh6 domain is a
serine-rich region that regulates NRF2 stability. The redox-
insensitive Neh6 domain consists of two motifs (DSGIS and
DSAPGS) that are responsible for the binding of b-
transducin repeat-containing protein (b-TrCP). Phosphor-
ylation of the DSGIS motif by glycogen synthase kinase 3
(GSK3) enhances the ability of b-TrCP to ubiquitinate
NRF2 (37, 223). The Neh7 domain was shown to interact
with the retinoic acid receptor X receptor a (RAR a), which
represses NRF2 target gene expression (297).

The repressor protein of NRF2, KEAP1; the canonical
activation of the KEAP1-NRF2 pathway

The main function of NRF2 is to protect the cells against
exogenous and endogenous insults elicited by oxidative
stress, which impairs cell function by damaging intracellular
lipids, proteins, nucleic acids, and carbohydrates (45).
KEAP1 is a repressor of NRF2 located mainly in the cyto-
plasm, which acts as a substrate adaptor for Cul3-containing
E3 ubiquitin ligase (108, 202, 280). E3 ubiquitin ligase is
responsible for the ubiquitination of NRF2 followed by its
degradation in the proteasomes, resulting in low cellular
NRF2 levels under unstressed conditions (41, 145, 332).

KEAP1 contains five domains, including the amino-
terminal N-terminal region, the Broad complex/Tramtrack/
Bric-a-brac (BTB) domain, the intervening region (IVR), the
six Kelch/double glycine repeats (DGR), and the carboxy-
terminal (CTR) domain (Fig. 1B). The BTB domain interacts
with Cul3 and is required for KEAP1 dimerization (347). The
IVR contains several cysteine residues and regulates the ac-
tivity of KEAP1 (207). The Kelch/DGR domain maintains
the interaction between NRF2 and KEAP1 (191). The DGR

FIG. 1. Schematic representation of the domain structure of NRF2 and KEAP1 proteins. (A) NRF2 comprises seven
domains (Neh1–7). The Neh1 is responsible for DNA binding and dimerization with small Maf proteins. The Neh2 domain
contains DLG and ETGE motifs that interact with KEAP1. The Neh3, Neh4, and Neh5 domains are transactivation
domains; the Neh6 domain regulates NRF2 stability, and the Neh7 domain is responsible for RXRa binding. (B) KEAP1
contains five domains: the amino terminal NTR, CTR, and three major domains, BTB, IVR, and Kelch/DGR domains. The
BTB domain associates with Cul3 and mediates KEAP1 dimerization. The IVR domain contains cysteine residues and
connects the BTB and Kelch/DGR domains. The Kelch/DGR domain maintains the interaction between KEAP1 and NRF2.
BTB, Broad complex/Tramtrack/bric-a-brac; CTR, carboxy-terminal; DGR, double glycine repeats; IVR, intervening re-
gion; KEAP1, Kelch-like ECH-associated protein 1; Neh, NRF2-ECH homology; NFE2, nuclear factor erythroid 2; NRF2,
NFE2-related factor 2; NTR, N-terminal region; RXRa, retinoid X receptor a. Color images are available online.
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region recognizes ETGE and DLG motifs in the Neh2 domain
of NRF2 protein.

Under normal conditions, NRF2 interacts with KEAP1
through the Neh2 domains (DLG and ETGE motifs), which
drive NRF2 to the Cul-3-RBx1-E3 (Cullin-3-ring box-1 E3)
ubiquitin ligase complex for degradation (108, 202, 280).
KEAP1 is a cysteine-rich protein; in humans, it contains 27
cysteine residues that can be modified by different oxidant and
electrophilic compounds (54, 190). The highly reactive cys-
teine residues, Cys151, Cys171, Cys273, and Cys288, are lo-
cated in the BTB-IVR domains of KEAP1 protein. Cysteines
are susceptible to oxidation and modification (e.g., alkylation
or Michael addition) of the cysteine thiols of KEAP1 and
NRF2 during oxidative stress is a key step in NRF2 activation
(184). Cys151 of KEAP1 was found to facilitate NRF2 activ-
ity, whereas Cys288 was shown to diminish NRF2 activity (94,
321). Modification of redox-sensitive cysteines (Cys119,
Cys235) of NRF2 prevents KEAP1 recognition and binding
(93). Modification of those residues alters the conformation of
KEAP1, causing detachment of the DLG motif (low-affinity
binding site) from the KEAP1-NRF2 complex. However,
NRF2 remains in association with KEAP1 through the ETGE
motif (high-affinity binding site), according to the hinge and
latch model by Tong et al. (287, 288). This steric change, when
the DLG motif of KEAP1 releases NRF2, prevents the deg-
radation of NRF2.

During cellular stress, Sekhar and co-workers (251) sug-
gested that the binding between KEAP1 and Cul3 can also be
disrupted, leading to NRF2 escape from proteasomal degra-
dation. NRF2 can also be degraded and eliminated by

KEAP1-independent mechanisms with the help of b-TrCP,
which can recognize and bind to phosphorylated NRF2 and
trigger its ubiquitination and degradation (37, 223, 224). A
third degradation procedure has been reported in cirrhotic
liver, where endoplasmic reticulum stress triggers E3 ubi-
quitin ligase (namely, HRD1) interaction with NRF2 do-
mains, promoting NRF2 elimination (313). Subsequently,
free NRF2 translocates to the nucleus where it dimerizes with
transactivation partners [for instance, Small Maf protein
family (293) or Jun (289, 328)] and binds to the promoter
region of EpRE/ARE-response genes, inducing their tran-
scription (101, 219). After NRF2 exerts its effect in the nu-
cleus, it is phosphorylated by tyrosine kinases that promote
NRF2 nuclear export and cytosolic degradation (110).

Role of NRF2 in antioxidant defense

There are more than 200 NRF2-dependent target genes
identified in humans (186, 346). A more recent study sug-
gests that there might be more than 1000 genes regulated by
NRF2 (186). The majority of NRF2-dependent target genes
encode for detoxifying enzymes to overcome oxidative
damage of DNA, proteins, and lipids, for example, genes
involved in the synthesis of glutathione, antioxidant pro-
teins, drug-metabolizing enzymes, transporters, and nu-
merous other stress response proteins [for review, see Hayes
and Dinkova-Kostova (92) and Suzuki et al. (277)] (Fig. 2).

Oxidative, nitrosative, and electrophilic stress promote
NRF2 stabilization and activity. NRF2 maintains the appro-
priate intracellular reduced glutathione (GSH)/oxidized

FIG. 2. The classical KEAP1/NRF2 signaling pathway. Under basal conditions, KEAP1 binds to NRF2 and links NRF2
to the KEAP1-Cul3-E3 ubiquitin ligase complex, resulting in ubiquitination and degradation of NRF2. In response to stress,
KEAP1-NRF2 binding is disrupted, NRF2 is stabilized, and free NRF2 translocates to the nucleus, where it heterodimerizes
with the small Maf proteins, binds to AREs, and induces the transcription of its target genes. ARE, antioxidant response
element; Cul3, cullin 3; Gclc, glutamate-cysteine ligase catalytic subunit; Gclm, glutamate-cysteine ligase modifier subunit;
Gsr1, glutathione reductase 1; GST, glutathione S-transferase; Gpx2, glutathione peroxidase 2; G6pd, glucose-6-phosphate
dehydrogenase; Hmox1, heme oxygenase 1; Idh1, isocitrate dehydrogenase 1; Me1, malic enzyme 1; Mrp1, multidrug
resistance-associated protein 1; NRF2 or Nfe2l2, nuclear factor E2-related factor 2; Nqo1, NAD(P)H quinone dehydro-
genase 1; Pgd, 6-phosphogluconate dehydrogenase; Srxn1, sulfiredoxin 1; Txn, thioredoxin; Txnrd1, thioredoxin reductase
1. Color images are available online.

968 SMOLKOVÁ ET AL.



glutathione (GSSG) ratio by maintaining glutathione syn-
thesis and glutathione reduction. This is achieved through
controlling the expression of glutamate-cysteine ligase cat-
alytic (GCLC) and modifier (GCLM) subunits of the
glutamate-cysteine ligase (GCL) complex, which collec-
tively catalyze the rate-limiting step in GSH synthesis (99).
NRF2 also regulates the expression of glutathione reductase 1
(Gsr1) (282). Further, NRF2 regulates the expression of the
SLC7A11 (subunit of the cystine/glutamate antiporter system
Xc-), which imports cystine into cells in exchange for glu-
tamate, and hence, regulates cysteine and glutamate avail-
ability in cells (163). Finally, NRF2 regulates the pentose-
phosphate shunt and through that NADPH availability that is
needed for reducing GSSG (4, 35, 92, 159, 334).

Besides the regulation of glutathione levels, NRF2 controls
the expression of a broad set of enzymes that play a role in the
detoxification of H2O2, peroxide radicals, and oxidized thiols,
including glutathione peroxidase 2 (Gpx2) (88), thioredoxin
1 (Txn1), thioredoxin reductase 1 (Txnrd1), sulfiredoxin
1 (Srxn1) (2, 90), and glutathione S-transferases (282). Pro-
duction of NADPH, which is used as a cofactor by many
antioxidant systems in redox reactions, is also under the
control of NRF2. The expression of glucose-6-phosphate de-
hydrogenase (G6pd), 6-phosphogluconate dehydrogenase
(Pgd), isocitrate dehydrogenase 1 (Idh1), and malic enzyme 1
(Me1) is NRF2 dependent. Another prominent cytoprotective
enzyme regulated by NRF2 is heme oxygenase 1 (HMOX1),
the enzyme catalyzing the breakdown of heme molecules (7)
and catalase, which reduces H2O2 to water and oxygen.

Natural and synthetic inductors and inhibitors
of NRF2 signaling

Other small-molecule inhibitors and activators are vital in
fine-tuning NRF2 activity (184). In cancer, certain interme-
diates of cell metabolism can modulate the NRF2-KEAP1
system by introducing post-translational modifications into
NRF2 or KEAP1 that impact NRF2 function or stability. For
instance, the mutation of fumarate hydratase in papillary
renal cell carcinoma leads to fumarate accumulation, which
induces KEAP1 succination and NRF2 stabilization (209).
The inhibition of glycolysis and concomitant build-up of
glycolytic intermediates in several cell lines promote NRF2
activity through methylglyoxal-induced (elimination product
of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate)
formation of a covalent bond between arginines and cysteines
(so-called MICA modification) that leads to the dimeriza-
tion of KEAP1 (23). In glucose-free conditions, a decrease in
KEAP1 O-glycosylation with b-N-acetylglucosamine leads
to NRF2 accumulation in breast cancer cells (30). Finally,
glycation destabilizes NRF2 via increased proteasomal deg-
radation in hepatocellular carcinoma (HCC) (245).

Several artificial NRF2 activators function by disrupting
KEAP1-NRF2 interaction, including tert-butylhydroquinone
(166) or RA839 (310). Removing KEAP1 from the KEAP1-
NRF2 complex leads to stabilization and activation of NRF2.
The inhibition of the proteasome (e.g., by MG132) can pre-
vent the degradation of NRF2 (149). A food additive and pro-
carcinogen, butylated hydroxyanisole, can induce NRF2
(179) and NAD(P)H quinone dehydrogenase 1 (NQO1),
which boosts the expression of 8-Oxoguanine glycosylase
(OGG1) (268). Increased OGG1 prevents the oxidative ca-

tabolism of 4-hydroxyestradiol (4-OHE2) to the catechol
estrogen quinone metabolites, which readily reacts with
DNA to produce depurinated adducts. Superphysiological
concentrations of vitamin C can also decrease the nuclear/
cytosolic NRF2 ratio, indicating NRF2 activation (200).

A nucleoside analog antimetabolite, Cordycepin, down-
regulates NRF2 signaling and, consequently, increases the
cytoplasmic levels of oxygen-centered reactive species (ROS).
Cordycepin was employed as a radiosensitizer in breast
cancer in a preclinical study (56). Although this study did not
elucidate a mechanism of action, Cordycepin may induce
caveolin-1 (Cav-1) expression (119). Cav-1 can suppress
the NRF2-elicited effects by reducing manganese-dependent
superoxide dismutase (MnSOD) expression, an important
downstream target of the NRF2 pathway (86). In agreement
with this theory, epidemiologic nested case–control studies
show that Cav-1 and NRF2/MnSOD are inversely expressed
in cases of invasive ductal carcinoma, where low Cav-1 and
high NRF2 and MnSOD expression are associated with lower
5-year survival rates and the poorest prognosis (86).

The n-6 and n-3 polyunsaturated fatty acids (PUFAs)
serve as substrates for cyclooxygenases that synthesize
PUFA-derived hormones. One of the final products of the
cyclooxygenase-2 (COX-2) pathway, 15-deoxy-prostaglandin
J2 (15d-PGJ2), is switched on by inflammatory stimuli (258).
In breast cancer cells, NRF2 translocation to the nucleus is
induced by 15d-PGJ2, resulting in enhanced interaction be-
tween NRF2 with ARE (161) to drive the expression of a
variety of phase 2 detoxifying and antioxidant enzymes (131).
Nuclear accumulation and the transactivation of NRF2 ap-
pears to be dependent on the presence of the characteristic
cyclopentenone moiety in 15d-PGJ2 (161). The electrophilic
a,b-unsaturated carbonyl group, constituting the cyclopente-
none ring of 15d-PGJ2, is anticipated to bind covalently to
specific cysteine residues of the KEAP1 molecule, resulting in
the liberation and nuclear translocation of NRF2 (59).

There is a firm link between the etiology of several cancers
and bacterial dysbiosis (65, 67, 76, 77, 98, 118, 150, 196). In
breast cancer, bacterial metabolites (estrogen metabolites,
short chain fatty acids, lithocholic acid [LCA], and cadav-
erine) were shown to play key roles in regulating the behavior
of cancer cells by influencing breast cancer stemness, anti-
cancer immunity, cancer cell migration, metastasis forma-
tion, epithelial-to-mesenchymal transitions, and cancer cell
metabolism (109, 149, 150, 194–196). Apparently, the ca-
pacity of the microbiome to synthesize these metabolites is
reduced in breast cancer as compared with controls (76, 150,
196). The secondary bile acid, LCA was shown to exert cy-
tostatic properties on breast cancer cells. Further, bacterial
LCA production is largely reduced in the early stages of
breast cancer (196). LCA reduces NRF2 expression, and the
consequent reduction in antioxidant defenses exerts cyto-
static properties in breast cancer. This mechanism is inef-
fective in nontransformed cells (149).

Hormones regulating NRF2 signaling

Hormones, such as gonadotropins and sex steroids
(follicle-stimulating hormone, luteinizing hormone, estro-
gen), can promote NRF2 signaling through the induction of
ROS [measured by dichlorofluorescein (DCF)—please note
that DCF autooxidation may produce reactive species and,
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hence, provide a false positive result (124, 236)] in ovarian
cancer (167). Follicle-stimulating hormone can further acti-
vate hypoxia-inducible factor 1 (HIF1) and vascular endo-
thelial growth factor (VEGF) to promote tumor angiogenesis
(339). Hormone regulation of NRF2 was found in ovarian
cancer and may also play a major role in the development of
other hormone-related cancers such as prostate and breast
cancer (122).

Noncanonical NRF2 activation

Noncanonical NRF2 activation is based on the presence of
proteins that activate NRF2 transcription by inducing the
disassembly of the NRF2-KEAP1 complex. Certain ETGE
motif-containing proteins can compete with KEAP1 for di-
merization with NRF2, to prevent NRF2 degradation. Pro-
teins that activate NRF2 include Wilms tumor gene on the X
chromosome (WTX, AMER1) (25), partner and localizer of
BRCA2 (PALB2) (181), dipeptidyl peptidase 3 (DPP3) (89),
Cyclin-dependent kinase 20 (CDK20) (300), sequestosome 1
(p62) (107), p21 (31), and additional proteins identified in
(89). The spectrum of competing proteins might represent a
divergence of oxidative stress-related and -unrelated cellular
signals, resulting in NRF2-induced cytoprotection.

Although several noncanonical activators of NRF2 were
described, only a few have been studied in the context of
cancer etiology, including kidney (25), breast (178), and lung
(89) cancers, and osteosarcoma (181). DPP3 contains an
ETGE motif, which binds to the Kelch domain of KEAP1 and
activates NRF2 (89) in breast cancer cells in response to ROS.
Overexpression of DPP3 in MCF7 cells causes accumulation
of NRF2 and promotes resistance to H2O2 and diquat (178).
Hast et al. (89) performed TCGA-based data mining analysis
in tumor gene expression datasets to assess DPP3 expression
in relation to NFE2L2 and KEAP1. DPP3 expression and copy
number were increased in NFE2L2 wild-type and KEAP1
mutant tumors as compared with NFE2L2 mutant or KEAP1
wild-type tumors. This implicates that DPP3 enhances NRF2
activity under conditions when KEAP1 activity is attenuated
by hypomorphic mutations. Consequently, the function of
NRF2 is amplified even though hypomorphic KEAP1 activity
is still able to suppress NRF2. On the other hand, NRF2 mu-
tations often lead to hyperactivation of NRF2 and eliminate
the need for additional amplifying factors. Further, this phe-
nomenon might apply to other ETGE-containing proteins, too.

More recent research (32) identified family with sequence
similarity 129, member B (FAM129B) as another positive
regulator of NRF2 signaling, active in several cancer cell
lines. FAM129B contains DLG and ETGE sequences, and
FAM129B expression correlates with poor clinical outcome
in breast and lung cancers (32). Similarly, PALB2 competes
effectively with KEAP1 for NRF2 binding and the over-
expression of PALB2 induces NRF2 levels and transcription
via interaction with the nuclear NRF2-KEAP1 complex (181).
The depletion of PALB2 in vitro impairs NRF2 function.

Another example of noncanonical activation of NRF2 is
p21, a cyclin-dependent kinase inhibitor. In the cell model of
colorectal cancer, p21 can recognize and directly bind to the
DLG/ETGE motif of NRF2 to prevent NRF2 degradation.
Hence, the expression of antioxidant genes, such as HMOX1
an NQO1 (31), in response to H2O2 treatment is enhanced.
NRF2, in turn, can elevate p21 expression by binding to the

promoter region of p21, as demonstrated in a study focused
on lung carcinoma with deficient p53 (111).

During the initiation of the autophagy cascade, p62 binds
to KEAP1 and initiates NRF2 transactivation of target genes.
As an autophagy substrate, p62 can also interfere with NRF2-
KEAP1 interaction through binding to the DLG/ETGE motif
and activating NRF2 (107). The role of p62 in NRF2 trans-
activation was confirmed in hepatic adenoma (107), HCC
(261), breast and ovarian cancers (233, 315), and in glioma
(340). In contrast, in normal hepatocytes, NRF2 is degraded
under the same conditions (317). The expression of p62 and
oligomerization in the cytosol is also a negative prognostic
factor in HCC recurrence (317). In breast cancer, p62-
dependent NRF2 activation induces the proportions of CD44-
positive cancer stem cells (CSCs) that are associated with an
aggressive phenotype with enhanced tumor growth and ele-
vated therapeutic resistance (239).

Role of NRF2 in Cancer

Cancers and cancer cell behavior can be characterized
by cancer hallmarks (85), which contribute to the ability to
sustain proliferation and to evade cell death. NRF2, as a stra-
tegic cytoprotective factor, positively regulates several cancer
hallmarks, including the promotion of metastasis, evasion of
cell death, and metabolic changes. In normal cells, activation
of NRF2 complies with the period of acute detoxification;
whereas in cancer cells, a newly described phenomenon called
‘‘NRF2 addiction’’ occurs (144). NRF2 addiction refers to
sustained NRF2 signaling due to genetic, epigenetic, or general
oncogenic signaling. There is growing experimental evidence
that NRF2 activation enhances cancer growth and increases
therapy resistance (14, 177) due to the expression of phase 1
and phase 2 drug-metabolizing enzymes (92) and multidrug-
resistance-associated transporters (Mrps) (185), which support
metastasis formation (100, 246), cancer growth (52, 232), and
poor survival (115, 178) (Fig. 3 and Table 1). It is interesting to
note that, despite the large number of examples where NRF2
activation is associated with negative outcomes, NRF2 over-
expression can support longer survival in certain cancers (58,
75, 80, 95, 128, 156, 172, 180, 277) (Fig. 4). In this article, we
will review the molecular prerequisites of aberrant NRF2
signaling in cancer.

Genetic mutations in KEAP1 and NRF2

The occurrence of somatic mutations in KEAP1, NRF2, or
Cul3 is the most well-known mechanism of sustained NRF2
activation in cancer (193). According to public genomic data-
bases, KEAP1 and NFE2L2 seem to be the most affected genes
in lung cancer, followed by esophageal and endometrial cancer,
as summarized (134). Studies assessing statistics of genetic
alterations in lung cancer (226) demonstrate frequent loss-of-
function (LOF) mutations in KEAP1 (213) and loss-of-
heterozygosity at the genetic locus of KEAP1 (266). KEAP1
missense or nonsense mutations have been also identified in
malignant melanoma (198), thyroid cancer (44), HCC (38),
endometrial carcinoma (311), and breast (203, 271) and ovarian
cancers (148). In summary, mutations of KEAP1 that confer
loss of function or hypomorphic function induce NRF2 activity.

Alleles of NRF2 that lead to its activation have been de-
scribed as well. The genetic mutation of NFE2L2 affecting
the DLG/ETGE motif of the Neh2 domain was shown in a
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lung cancer cell line (259), renal cell carcinoma (208), HCC
(81), skin cancer (142), and esophageal carcinoma (257). A
unique genetic mutation, deletion of the NFE2L2 exon 2, was
found to stabilize NRF2 and enhance its activity in nonsmall-
cell lung carcinoma (NSCLC) and head-neck cancer (78).
Moreover, copy number loss of Cul3 or inactivating mutation
of RBx1, which controls NRF2 degradation, was shown in
esophageal (170) and ovarian cancer (188), as well as in
thyroid (187) and renal cell carcinoma (208).

A recent study identified two single nucleotide polymor-
phisms of KEAP1 associated with shorter relapse-free sur-
vival in breast carcinoma (87). A study by Kovács et al. (149)
showed that NRF2 overexpression and the downregulation of
downstream pro-oxidant genes negatively correlates with
patient survival in nontriple negative breast cancer. Our
search in the TCGA-BRCA dataset revealed prominent am-
plification of DPP3 and p62 genes, which suggests amplifi-
cation of NRF2 activity in breast cancer by noncanonical
mechanisms (Fig. 5).

Epigenetic modifications of KEAP1 and NRF2

Epigenetic modification in KEAP1 or NFE2L2 promoter
regions can also contribute to NRF2 stabilization in many
cancers (122). Both hypo- and hypermethylation of the
NFE2L2 promoter have been reported. Hypomethylation, due
to the reduced expression of EZH2 methyltransferase, is as-
sociated with NRF2 overexpression in colon cancer (125).
Hypermethylation of the NFE2L2 promoter is associated with
prostate cancer (135) and leads to reduced NRF2 activity, a
rare example among malignant diseases. Bromodomain pro-
tein 4 (BRD4) was implicated in the transcriptional regulation
of KEAP1. Thus, BRD4 might represent a strong modulator of
the NRF2/KEAP1 pathway in prostate cancer (105).

Hypermethylation of the KEAP1 promoter (CpG islands)
is catalyzed by methyl-CpG-binding domain protein 1 and
ubiquitin-like, containing PHD and RING finger domains-1
(UHRF1), leading to reduced KEAP1 protein levels and

augmented expression of NRF2-dependent genes (3, 331).
KEAP1 hypermethylation is associated with lung (301), co-
lorectal (84), breast (16), prostate (337), thyroid (187), and
renal (61) cancers, as well as malignant glioma (201).

The regulatory role of microRNAs in NRF2 signaling

NRF2 and KEAP1 levels can be modulated at the post-
transcriptional level through altering mRNA splicing or
microRNA (miRNA) levels. In the breast cancer cell line,
MCF-7, miR-28 inhibits NRF2 action without the contribution
of KEAP1 (324). The miRNAs, miR-507, miR-634, miR450a,
miR129–5p miR-340, miR-146b, and miR144, were reported
to directly suppress NRF2 activation in different cancer types,
including acute myeloid leukemia (AML) (274), breast cancer
(104), and esophageal cancer (320). In HCC, miR-144 sup-
pressed NRF2 levels (344); whereas in neuroblastoma, the
same miRNA induced ROS-induced apoptosis (341). Recent
studies demonstrate that miRNAs promote migration and
support malignant transformation in different neoplasias. For
example, miR-155 promotes lung cancer (28) and miR93a and
miR153 drive the malignant transformation of the breast (269,
296). Last but not least, NRF2 can influence and modulate the
expression of numerous miRNAs in tumors, creating a com-
plex feedback-regulatory system in humans (253).

Several miRNAs were shown to modulate KEAP1, NRF2,
and target gene translation or transcription. The miRNAs,
miR-432-3p and miR-200a, impair KEAP1 translation in
esophageal and breast carcinoma (6, 58); whereas miR-7 and
miR-148b increase the expression of NRF2-dependent anti-
oxidant genes (HMOX1 and GCLM) in neuroblastoma (123)
or elevate ROS production due to the repression of HIF1 and
NRF2 expression (220), respectively.

Oncogenic signaling

Although NRF2 activity promotes cancer progression by
various mechanisms, as previously discussed, we should
emphasize that NRF2 accumulation can only contribute to

FIG. 3. Mechanisms in-
volved in the aberrant ac-
tivation of KEAP1/NRF2
pathway in cancer. Color
images are available online.
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Table 1. Aberrant Activation of NRF2 in Cancer and NRF2-Addicted Cancer Types

Tissue or organ Cancer/cell type Mechanism of action Reference

Nerve system Malignant glioma Hypermethylation of KEAP1 promoter (201)
Neuroblastoma miR-7 inhibits KEAP1 expression (123)

miR-144 inhibits NRF2 and antioxidant
gene expression

(341)

Glioma p62 disrupts KEAP1-NRF2 complex (340)
Endoplasmatic reticulum stress induces NRF2 (27)

Bone Osteosarcoma PALB2 disrupts KEAP1-NRF2 complex (181)
Breast Breast carcinoma NRF2 promotes cell survival (178)

LOF mutation of KEAP1 (203, 271)
Hypermethylation of KEAP1 promoter (16)
miR-28 inhibits NRF2 expression (324)
miR-93a supports malignant transformation (269)
miR153 supports malignant transformation (296)
PI3K/AKT influence NRF2 signaling (239)
AMPK induces NRF2 target gene expression

and modulate autophagy
(294)

miR-200a targets KEAP1 and induces NRF2 (58)
Hypermethylation of KEAP1 promoter (84)
Overexpression of p62 facilitate tumorigenesis (233)

Colon Colorectal carcinoma Hypomethylation of NRF2 promoter (125)
PI3K/AKT influence NRF2 signaling (175)
LOF mutation of KEAP1 (271)

Head and neck Head and neck cancer Cul3 copy number loss (187)
Esophageal carcinoma Cul3 copy number loss (170)

miR-144 directly suppresses NRF2 (320)
Deletion of NRF2 exon 2 (142)
Genetic mutation of NRF2 affect DLG/ETGE motif (142, 257)

Hematologic
malignancies

AML Stress signaling induces NF-jB signaling (238)
Endoplasmatic reticulum stress induces

NRF2 signaling
(8)

Deletion of NRF2 exon 2 (78)
miR-144-3p suppresses NRF2 activation (274)

Lung NSCLC Hypermethylation of KEAP1 promoter (301)
Lung cancer miR-155 promotes malignant transformation (28)

p21 disrupts KEAP1-NRF2 connection (111)
DPP3 disrupts KEAP1-NRF2 connection (89)
CDK20 disrupts KEAP1-NRF2 connection (300)
K-RAS promotes ERK/MEK pathway (279)
PI3K/AKT influences NRF2 signaling (197)

Liver Hepatocellular carcinoma Genetic mutation of NRF2 affects DLG/ETGE motif (81)
miR-144 directly suppresses NRF2 (344)
p62 disrupts KEAP1-NRF2 complex (261)
AICAR induces NRF2 activity (264)
p62 disrupts KEAP1-NRF2 complex (107)

Skin Squamous cell carcinoma Deletion of NRF2 exon 2 (142)
Pancreas Pancreas adenocarcinoma Hypermethylation of KEAP1 promoter

through URHF1
(3, 331, 337)

Prostate Prostate cancer Hypermethylation of NRF2 promoter (105, 135)
Kidney Papillary renal

cell carcinoma
Hypermethylation of KEAP1 promoter (61)
Genetic mutation of NRF2 affects DLG/ETGE motif
FH disrupts KEAP1-NRF2 connection

(208, 209)

Wilms tumor K-RAS promotes ERK/MEK pathway (13)
Cell model of renal

cell carcinoma
miR-148b represses NRF2 and enhances ROS (220)

Clear renal cell carcinoma WTX disrupts KEAP1-NRF2 connection (25)
Ovary Ovarian cancer Cul3 copy number loss (188)

Hormone-induced NRF2 overexpression (144, 339)
p62 disrupts KEAP1-NRF2 complex (315)
Endoplasmatic reticulum stress induce

FGFR4/GSK3b/NRF2 axis
(167)

AKT, protein kinase B; AML, acute myeloid leukemia; AMPK, AMP-activated protein kinase; BRCA2, breast cancer type 2
susceptibility protein; CDK20, cyclin-dependent kinase 20; DPP3, dipeptidyl peptidase 3; FH, fumarate hydratase; GSK3b, glycogen
synthase kinase 3b; LOF, loss-of-function; MEK, mitogen-activated protein kinase kinase; NSCLC, nonsmall-cell lung carcinoma; p62,
sequestosome 1; PALB2, partner and localizer of BRCA2; PI3K, phosphoinositide 3-kinases; ROS, oxygen-centered reactive species;
WTX, Wilms tumor gene on the X chromosome.
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FIG. 4. Tumor NRF2 expression affects survival. Patient survival data were retrieved from the pan-cancer RNAseq
segment of the kmplot.com database (154). (A) Tumors where high expression of NRF2 prolongs survival. (B) Tumors
where high expression of NRF2 shortens survival. The y axis represents the probability for survival, whereas the x axis
represents time in months. Numerical values for the Kaplan-Mayer survival curves can be found in Table 3. The red line
depicts the high expression quartile of the population, while the black line depicts the low expression quartile. Color images
are available online.
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malignant proliferation in the presence of active oncogenic
signaling and, therefore, we refer to its role as the onco-
genic driver. Keap1-deficient mice develop cancer only in the
presence of oncogenic mutations, such as those in Kras/Hras
or Tp53 (113, 234). The contribution of NRF2 to carcino-
genesis differs between cancer types. For example, the
Kras:Tp53:Keap1 triple mutation is associated with an ag-
gressive phenotype in lung carcinoma in *30% of cases,
whereas in the pancreas this combination of mutations does
not initiate cancer but leads to fibrosis (83).

Recent evidence suggests that cancer-associated signaling
pathways can influence the activity of NRF2 by increasing its

mRNA level rather than improving its stability. In this re-
spect, K-Ras and B-Raf signaling pathways can enhance
NRF2 mRNA levels to promote ROS elimination (52). K-Ras
promotes NRF2 transcription through the extracellular
signal–regulated kinase (ERK)/mitogen-activated protein
kinase kinase (MEK) pathway in NSCLC (279) and renal
carcinoma (13). The importance of Ras signaling is high-
lighted by the findings that H-Ras-activated HO-1 over-
expression is abolished by ERK inhibitors or NFE2L2
knockdown (13). In K-Ras-associated malignancies, the el-
evated expression of antioxidant genes (HMOX1 and NQO1)
is associated with an aggressive phenotype, whereas the

FIG. 5. Genetic aberrations of NRF2 signaling pathway members in breast carcinoma. (A) Chart depicting per-
centages of mutations and copy number variations (amplification and deletion, respectively) of NRF2, KEAP1, CUL3, and
several genes involved in noncanonical activation of NRF2 as discussed in the Strategic role of p62 in NRF2 signaling:
autophagy and metabolic rewiring section. The data are based on the TCGA portal search (data set TCGA BRCA, Ductal
and Lobular Neoplasms, containing 513 cases). (B) Mutation maps (lollipop plots) depicting positions of the mutations in
NRF2 (NFE2L2), KEAP1, and CUL3 proteins. The data are based on a cBIOPORTAL search, combining several studies
containing data on breast carcinoma samples. Color images are available online.
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elimination of NRF2 disrupts malignant progression and re-
stores sensitivity to cancer therapy (254). NRF2 signaling
also actively improves cancer survival by maintaining inde-
pendence of growth factors in K-Ras-associated malignan-
cies; in pancreatic ductal adenocarcinoma (PDAC), NRF2
signaling is upregulated, resulting in improved cancer sur-
vival via maintaining phosphorylated levels of EGFR and
ERBB2, and by maintaining intact mRNA translation effi-
ciency (33). Interestingly, NFE2L2 knockdown in normal
organoids was tolerated, whereas NRF2 knockdown was
detrimental in tumor-derived organoids.

The nuclear accumulation of NRF2 increases when dif-
ferent proliferative pathways are active (263, 278). Phos-
phoinositide 3-kinases (PI3K)/protein kinase B (AKT)
activation is associated with elevated NRF2 mRNA levels
and nuclear accumulation of NRF2, leading to increased cell
proliferation, survival, and metabolic reprogramming (197).
In breast cancer, PI3K/AKT activation, in response to es-
tradiol, is accompanied by elevated expression of NRF2 and,
consequently, increased expression of a large set of antioxi-
dant genes (79). As mentioned earlier, GSK3 can phosphor-
ylate NRF2 and induce its degradation by the Cult1-bTrCP
complex. When the PI3K-AKT pathway is active, AKT
phosphorylates and inactivates GSK3, leading to inactivation
of Cult1-bTrCP-driven NRF2 degradation in cancer cells
(37). Further, in Keap1-deficient mice, PI3K-AKT activation
leads to NRF2 nuclear accumulation and NRF2-driven cell
proliferation of hepatocytes (263).

NRF2 in unfolded protein response

Accumulation of unfolded proteins in the lumen of endo-
plasmic reticulum, termed endoplasmic reticulum stress,
activates the unfolded protein response (UPR) (235). En-
doplasmic reticulum stress and UPR are frequently found in
tumor cells due to nutrient deficiency, hypoxia, and exposure
to therapeutic agents. The association of UPR with the
KEAP1/NRF2 pathway has been investigated in both cancer
cells and normal cells. Starvation activates NRF2 through
AMP-activated protein kinase (AMPK) and through protein
kinase R-like endoplasmic reticulum kinase (PERK), which
is located in the endoplasmic reticulum membrane and in-
duced during UPR (40–42). NRF2 is phosphorylated by
PERK, which leads to the dissociation of the NRF2/KEAP1
complex and increased expression of ARE genes to promote
survival via reduced ROS levels (42).

In cancer, the PERK-NRF2 pathway drives endoplasmic
reticulum stress-resistance and multidrug resistance as dem-
onstrated in colorectal cancer (243), multiple myeloma (276),
and AML cells (8). Further, in oral (tongue) squamous car-
cinoma cells, heat shock 70 kDa protein 5 (GRP78) and
PERK-dependent activation of NRF2 induced Warburg-type
metabolism and maintained cancer-initiating cells indepen-
dently of ROS production (27). Moreover, fibroblast growth
factor 19, which is overexpressed in HCC, can promote the
cytoprotective FGFR4/GSK3b/NRF2 axis to protect against
endoplasmic reticulum stress (281).

NRF2 regulating specific aspects of cancer
metabolism

Cancer metabolism is usually perceived in the context of
maintaining high energy standards for growing cells and in-

cludes enhanced catabolic pathways, enhanced biosynthetic
pathways, and maintenance of redox homeostasis associated
with high substrate turnover. The primary function of NRF2
is still the regulation of oxidative damage. However, since a
number of NRF2 targets are rate-limiting enzymes in the
respective pathways, the function of NRF2 logically en-
compasses metabolic rewiring also. Indeed, several meta-
bolic pathways in NRF2-overexpressing cancer cells have
been described as elevated, including the pentose-phosphate
pathway (PPP), and nucleotide-, glutathione- (234), and
serine synthesis in a lung cancer (51) model. In this section,
we draw attention to certain metabolic pathways that tend to
be affected by NRF2 signaling as a primary or secondary
function, and we evaluate the role of NRF2 in cell survival
based on metabolic rewiring (Fig. 6).

Strategic role of p62 in NRF2 signaling: autophagy and
metabolic rewiring. A considerable body of evidence points
toward a link between NRF2 and autophagy, which represents
a conserved strategy to overcome starvation and nutrient
deprivation (162, 329) by recycling cellular macromolecules
and organelles for essential metabolic substrates (222). Dur-
ing autophagy, p62 functions as a marker of proteins and
organelles that are targeted for degradation by the autopha-
gosome. The NRF2 signaling pathway is activated by p62
through the noncanonical mechanism connecting NRF2 to a
spectrum of conditions related to starvation.

In HCC, Parkin-induced autophagy promotes p62 phos-
phorylation on Ser349 by a mechanistic (or mammalian)
target of rapamycin complex 1 (mTORC1), leading to a
concomitant rise in NRF2 protein expression (106). In fact,
p62 binds to the STGE motif of KEAP1 with low affinity,
which increases when p62 is phosphorylated. Hence, phos-
phorylation of p62 effectively induces NRF2 expression
during autophagy (146). The p62-dependent NRF2 activation
also occurs in a carfilzomib- (proteasome inhibitor) resistant
model of multiple myeloma (228).

Other reports contradict the induction of NRF2 in autop-
hagy by p62. A Crispr-based screen focused on finding novel
negative regulators of NRF2 signaling (133) also identified
a number of autophagy-related genes in human kidney HK2
cells. However, subsequent functional analyses demon-
strated that changes in the phosphorylation of p-p62 do not
necessarily induce NRF2 in HK2 cells, indicating that the
autophagy-NRF2 loop can proceed in a p62-independent
manner. In addition, the p62-NRF2 axis is not activated in a
TCS2-deficient kidney cancer model, where upregulated
levels of p62 do not activate NRF2 (153). Thus, NRF2
function in autophagy requires tissue- and context-specific
evaluation. On the other hand, in Atg7-deficient mice, NRF2
activation remains p62 dependent and enhances cellular
growth of HCC in 3D cultures (107).

The p62-NRF2 axis also interacts with signaling pathways
through other pathways besides mTORC1. In HCC, H2O2 and
hypoxia-induced ROS accumulation and NRF2 activation are
p62 dependent (317). In this case, p62 is activated by phos-
phorylation at S28 by ketohexokinase-A (KHK-A), a splice
isoform of phosphofructokinase that possesses protein kinase
activity and KHK-A activation depends on AMPK activation
(317). These changes collectively lead to NRF2-mediated
gene expression and contribute to the development of HCC in
xenograft animals (317). AMPK, a well-known energy
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sensor, can also influence NRF2 activity in breast cancer
directly, as AMPK phosphorylates NRF2 and facilitates its
nuclear accumulation (120). In MCF-7 and T47D breast
cancer cells, AMPK activity, induced by glucose deprivation
during nutrient starvation, is necessary for the expression of
NRF2-driven genes (294). In addition, in breast cancer, a
positive feedback loop between p62 and NRF2 has been
demonstrated. The S349 residue of p62 can be phosphory-
lated by class III PtdIns3 lipid kinase (VPS34), whereas
VPS34 induces NRF2-dependent expression of p62 and in-
duces the noncanonical activation of NRF2 (117). Moreover,
VPS34 promotes PKCd-dependent phosphorylation of p62,
also on S349, that not only strengthens the interaction be-
tween NRF2 and p62 in response to caspase inhibitor treat-
ment but also activates downstream signaling pathways
leading to tumor formation, including the MEK/ERK path-
way (117).

In terms of generic carbon rewiring for energy metabolism,
HCC expressing pS349–p62, reprogram both glucose and
glutamine metabolism, marked by the induction of the glu-
curonate pathway and glutamine-derived glutathione syn-
thesis in an NRF2-dependent manner (242). The resulting
increase in glutathione levels is vital to support cancer growth
and chemoresistance. Activation of NRF2 is also critical for
the survival of breast cancer cells in glucose-deprived con-
ditions, as NRF2 induction protected cells from autophagy
and oxidative stress (294). Under glucose-free conditions,
NRF2 enhances cellular survival in a p62-independent fash-
ion (248). The authors suggest that the mechanism is initiated
by ATP deficiency followed by increases in the levels of

NQO1 (248). In accordance with this suggestion, reduced
ATP induces NRF2 activity, causing an alteration in redox
balance, as recently described in lung carcinoma cells (248).

To summarize, a substantial body of evidence supports the
notion that NRF2 can be upregulated by p62, which connects
NRF2 signaling to various means of signal transduction, such
as AMPK and mTORC1. Consequently, NRF2 induction
supports growth in a spectrum of cancer types.

NRF2 regulated ferroptosis and metabolic rewiring through
SLC7A11 expression. Ferroptosis is a form of programmed
cell death that is dependent on iron and independent of
caspases, which is induced specifically by oxidative stress
(55). In principle, inhibition of SLC7A11, depletion of in-
tracellular cysteine and glutathione, and lipid peroxidation
suppress GPX4 activity and initiate ferroptosis. NRF2 reg-
ulates the expression of genes involved in the prevention of
ferroptosis, including iron metabolism, NADPH synthesis,
glutathione reduction, and nonessential amino acid inter-
conversion. The SLC7A11 gene codes for xCT protein, a
subunit of a membrane-localized cystine-glutamate anti-
porter (Xc-), which imports a cysteine dimer (cystine) in
exchange for glutamate. SLC7A11 is a direct target of NRF2,
activating transcription factor 4 (ATF4) (286), and ATF3
(298) and is also a prominent target of NRF2 signaling and
ferroptosis in a number of malignancies.

Consistent evidence demonstrates that the NRF2 tran-
scriptional response, involving the expression of SLC7A11
and xCT, is protective against ferroptosis. This implies that
NRF2-dependent transcription programs lead to escape from

FIG. 6. The role of NRF2 in regulation of cancer cell metabolism. NRF2, activated through canonical or noncanonical
pathways, regulates carbon utilization. Glycolytic flux at the level of G6P is driven toward UDP-Glc and glucoronate
synthesis, as well as toward the PPP cycle, to support the synthesis of ribose and NADPH. Glycolytic flux supports Ser and
Gly synthesis by upregulating PHGDH. Glutathione synthesis is supported by cystine import and glycine synthesis. Cystine
import is connected to glutamate export by Xc- transporter. Fatty acid synthesis and fatty acid oxidation (b-ox) are both
regulated by NRF2. NRF2 also regulates synthesis of polyamines by regulation of MAT2A expression. Pathways upre-
gulated by NRF2 signaling are designated by red arrows. G6P, glucose-6-phosphate; Gly, glycine; PPP, pentose-phosphate
pathway; Ser, serine; UDP-Glc, UDP-glucose. Color images are available online.
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ferroptosis and, in turn, support cell growth. xCT is induced
by H2O2 and NRF2 activation in MCF7 breast cancer cells,
with a concomitant increase in GSH synthesis (82). Also, in
KrasG12D, TP53-/- lung adenocarcinoma cells, the expression
of the KEAP1 LOF mutant induces SLC7A11, which boosts
GSH and reduces ROS levels (247). Moreover, the repression
of xCT impairs colony formation in Ras-transformed cell
models (169). As a result, xCT induction due to NRF2 sig-
naling confers a refractory phenotype in response to the
ferroptosis-inducing agents, erastin or RSL3, in glioma cell
models (62). Further, NRF2 expression coincides with worse
clinical outcome in glioma patients. Recent evidence also
indicates that depletion of ovarian tumor family member
deubiquitinase (OTUB1) (174) or the inactivation of breast
cancer type 1 susceptibility protein (BRCA1) associated
protein 1 (BAP1) tumor suppressor in breast cancer (338)
leads to induction of xCT in an NRF2/hypoxia-inducible
factor 1a (HIF1a)-dependent fashion, which protects cancer
cells from ferroptosis.

It should be noted that a high level of NRF2 accumulation,
which is achieved by the functional impairment of KEAP1 or
NRF2 hyperactivation, combined with sustained oncogenic

signaling, allows NRF2 to modulate metabolism under
pathological conditions. NRF2 redirects glucose and gluta-
mine into anabolic pathways in metabolic reprogramming
(197). In addition, xCT alters cellular glucose and glutamine
utilization to promote cell survival (Fig. 7). The tendency of
cells to prefer glucose and glycolysis in response to xCT
expression level was demonstrated in several cell models
(114). The knockdown of SLC7A11 rescues viability in
glucose-free conditions. Inhibition of xCT in nonsmall lung
cancer cells improves survival in glucose-free medium, when
bioenergetics rely primarily on mitochondrial OXPHOS
through glutamine oxidation (114). Increased xCT expression
sensitizes breast cancer cells to glucose, but not glutamine
withdrawal (262). Thus, the export glutamate via the Xc-

system due to the expression of SLC7A11 maintains glucose
addiction for survival.

Comparing low- and high-expressing SLC7A11 cell lines
revealed that OXPHOS-related gene expression negatively
correlates with the expression level of SLC7A11 in breast
cancer. In turn, xCT expression improved GSH levels and
ROS homeostasis, while diminishing the ability of breast
cancer cells to utilize glutamine instead of glucose (262).

FIG. 7. NRF2 regulates metabolism by
expression of SLC7A11. SLC7A11 is a
prominent target of NRF2 signaling in can-
cer cells. Upregulation of NRF2 results in
expression of Xc

-, an antiporter importing
cystine, which results in enhanced antioxi-
dant defense by GSH synthesis. Glutamate is
exported in exchange for cystine, which
compromises glutaminolytic flux. A subset
of cancer cells are able to support the TCA
cycle (A), whereas another subset of cancer
cells are dependent on glutaminolysis and
2OG anaplerosis, because they are unable to
supply the TCA cycle from glycolysis (B).
Glutamine auxotrophs are, therefore, sus-
ceptible to glutaminolysis inhibitors, such as
CB839, when NRF2 signaling is upregu-
lated. GSH, reduced glutathione; TCA, tri-
carboxylic acid cycle. Color images are
available online.
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A study that grouped breast cancer cell lines based on the
ability to proliferate in glutamine-free conditions revealed
that cells overexpressing SLC7A11 are sensitive to glutamine
withdrawal, as glutamate is excessively exported (284). This
offers the possibility to target both Xc- and glutamine import
in glutamine auxotrophs (284). Another subset of malignan-
cies is unable to upregulate glycolysis to compensate for loss
of glutamine as a carbon source (Fig. 7). In accordance with
these data, studies using KRASG12V, TP53-/- cell models of
lung adenocarcinoma expressing an LOF form of KEAP1,
demonstrate the vulnerability of xCT overexpressing cells to
glutamine withdrawal. These cell models also have an in-
creased sensitivity to glutaminase 1 inhibitor CB-839 (247),
which can be overcome by pretreatment with erastin or
knockdown of SLC7A11. In this case, active export of gluta-
mate limits mitochondrial anaplerosis, which, in turn, sensi-
tizes the cells to CB-839 treatment. Thus, a combination of
KI696, a compound inhibiting KEAP1-NRF2 interaction, with
CB-839 is another plausible strategy to target NRF2 over-
expressing cancers. In support of this therapeutic approach,
another line of evidence also documents enhanced glutamine
dependence due to KEAP1-NRF2 in the KRAS/LKB1/
KEAP1 transformed lung cancer (72). Further, a recent study
(157) also demonstrated that the NRF2-mediated induction of
the Xc- system limits intracellular glutamate content that,
consequently, leads to an external dependency on nonessential
amino acids (serine, glycine, and asparagine) in cancer cells,
rendering cells metabolically inflexible. The antioxidant ca-
pacity of cancer cells, indeed, shows an inverse correlation
with nonessential amino acids synthesizing capacity. As cells
are reliant on nonessential amino acids, a diet that avoids these
amino acids can limit cancer cell proliferation.

A recent publication (126) suggested that the NRF2-
mediated accumulation of cysteine in nonsmall cell lung
cancer may induce metabolic liability. The mechanism
of metabolic liability is that cystein in superphysiological
concentrations becomes a substrate for cysteine dioxygen-
ase 1 (CDO1), creating cysteine sulfinic acid that apparently
hampers cellular proliferation. From a broader perspective,
this metabolic inflexibility can be exploited in combating
nonsmall cell lung cancer.

NRF2 interference with hypoxia signaling and neovascu-
larization. Hypoxia, a common feature of the tumor mi-
croenvironment, leads to the stabilization of HIF1a, which
modulates cellular metabolism as an adaptive response (252).
HIF1a expression initiates transcriptional programs that lead
to survival and overcome hypoxia by inducing angiogenesis,
glycolysis, and a decrease in pyruvate oxidation in mito-
chondria. NRF2 activation supports glycolysis by promoting
the stabilization of transcription factor BTB and CNC ho-
mology 1 (Bach1) that supports the activity of hexokinase
(168, 309). This effect of NRF2 is mediated by induction of
HMOX1, which catabolizes heme, the main inhibitor of
Bach1. Both NRF2 and HIF1a are critical factors for sensing
O2 and are dependent on each other when responding to ox-
ygen tension changes or ROS production. Of note, HIF1a is
probably a target of NRF2; an ARE was identified in the
HIF1a promoter (152). Strikingly, NRF2 silencing sup-
presses HIF1a accumulation in breast cancer cells under
hypoxic conditions. Thus, HIF1a-mediated metabolic adap-
tations, including the activation of glycolysis and PPP, are

inhibited. Inhibition of metabolic adaptations eventually
impairs the viability of NRF2-silenced cancer cells in a
hypoxic environment (159). Further evidence suggests that
NRF2 is induced in hypoxia due to elevated ROS (250) and
the subsequent induction of GCLC and GSH synthesis.
Hence, chemoresistance is promoted (11). A recent in vitro
study showed that both NRF2 and HIF1a are upregulated in
MCF-7 and MDA-MB-231 breast cancer cells, compared
with MCF-10A cells (a benign breast epithelial cell line).
These results suggest that NRF2 and HIF1a simultaneously
contribute to cell proliferation and tumor formation in breast
cancer (333). Further, NRF2 can promote glycolysis in breast
cancer cells in cooperation with HIF1a (333).

In addition to the well-known angiogenic role of HIF1a to
overcome hypoxia, the NRF2 pathway also contributes to
neovascularization in cancer models. The induction of NRF2
in endothelial cells promotes cell motility and angiogenesis
(102). In addition, the expression of platelet derived growth
factor and VEGF, strategic angiogenesis inductors, are reg-
ulated by HIF1a and NRF2, as demonstrated in a prostate
cancer model (323). Moreover, loss of NRF2 inhibited HIF1a
accumulation and VEGF induction, resulting in reduced an-
giogenesis in colorectal carcinoma cells (140); this effect was
mediated by the induction of HIF1a hydroxylation in hypoxia.

NRF2 in the regulation of PPP flux. PPP is upregulated in
many types of tumors, including breast cancer where PPP
promotes proliferation, differentiation, and survival. Breast
cancer cells either overexpress NRF2 or cells, in which
KEAP1 is silenced, or upregulate G6pd (318, 334). This ob-
servation appears to be generalizable; the activities of G6pd
and transketolase (TKT), key PPP enzymes, are commonly
increased in cancer cells (318). Oxidative PPP converts G6P,
a glycolytic intermediate, into ribulose-5-phosphate and
generates NADPH, which is used for GSH regeneration, de-
toxification, and biosynthesis of lipids. NRF2 directly acti-
vates five genes involved in PPP and NADPH production
pathways, including G6pd, PGD, TKT, transaldolase 1, and
ME1, through binding to AREs (306). The G6pd target for
NRF2 is a critical enzyme in the PPP, catalyzing the rate-
limiting step that produces NADPH (24).

A recent report showed that NRF2 contributes to the meta-
static ability of basal type breast cancer cells through the G6pd/
HIF-1a/Notch1 signaling axis. NRF2-dependent G6pd/HIF-1a
activation elicits Notch1 signaling by upregulating Jagged1
and Hes1, and, thereby, promoting epithelial-mesenchymal
transition (EMT) in breast cancer cells (334). In addition, a
clinical study showed that PPP-related proteins are differen-
tially expressed according to the molecular subtype of breast
cancer; in particular, G6pd and 6-phosphogluconolactone are
highly expressed in HER2-type breast cancer (35). Thus, un-
derstanding the role of this pathway in breast cancers, includ-
ing the effects of targeting this pathway, is needed to clarify the
clinical implications of PPP in breast cancers. Benito et al. (19)
demonstrated critical rewiring of glucose flux due to the NRF2-
induced G6pd and TKT expression; the changes in glucose flux
included increased ribose and NADPH synthesis, which are
associated with poor outcomes in breast cancer patients.
However, in contradiction to previous studies, the NRF2 level
was downregulated in all types of breast cancers in the TCGA
dataset, suggesting a possible role of NRF2 as a tumor sup-
pressor in breast cancer (35). It is also possible that the result of
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the RNA sequencing may not reflect the actual activity of
NRF2 in cells due to post-translational regulation by ubiqui-
tination and degradation (35).

Methionine adenosyltransferase 2A. Polyamines, such
as putrescine, spermine, and spermidine, have unknown bi-
ological function and accumulate in cancer cells, resulting in
increased proliferation. Upregulated enzymes of polyamine
pathways have been implicated in several cancer types (26).
Methionine adenosyltransferase (MAT) is an essential cel-
lular enzyme that is ubiquitously expressed in mammalian
cells; MAT catalyzes the formation of S-adenosylmethionine,
the principal biological methyl donor and the ultimate source
of the propylamine moiety used in polyamine biosynthesis
(189). Altered expression of methionine adenosyltransferase
2A (MAT2A), an isoform of MAT, in tamoxifen-resistant
(TAMR) breast cancer and the role of MAT2A in tumor
growth and chemoresistance have been described in the
context of NRF2 regulation. MAT2A expression is upregu-
lated in TAMR-MCF-7 cells compared with control MCF-7
cells. Moreover, MAT2A expression, associated with altered
NRF2 expression levels, is more frequent in TAM-resistant
human breast cancer tissues than in TAM-responsive cases
(216). This genetic correlation between MAT and NRF2 has
been partially clarified; the promoter of MAT2A contains
several potential binding sites for transcription factors, in-
cluding c-Myb, NRF2, NF-jB, and AP-1 (322), suggesting
that NRF2 could be vital in regulating the expression of
MAT2A. MAT2A immunoreactivity is significantly higher in
TAMR cases of human breast cancer compared with TAM-
sensitive cases, and it is associated with the overexpression of
NRF2 (215). However, whether this association is direct or
acts via another intermediate pathway that links MAT2A and
NRF2 is unclear. NF-jB also regulates MAT2A gene tran-
scription, suggesting an underlying mechanism of enhanced
NF-jB activity related to miR-146b downregulation, which is
associated with NRF2 expression, in TAMR breast cancer
(104). Therefore, decreased miR-146b and MAT2A induction
could be a new phenotype contributing to the growth of breast
cancer cells and tamoxifen resistance in breast cancer cells.

NRF2 in the regulation of stemness,
EMT, and metastasis

EMT is a trans-differentiation process that enables cell
migration. EMT constitutes the initial step of metastatic
progression. During EMT, typical markers of the mesen-
chymal phenotype, such as Vimentin, N-cadherin, Snail,
Slug, Twist, and ZEB1, are increased, whereas epithelial
markers, such as cell adhesion markers (E-cadherin, MUC-1,
and laminin) are lost. Mesenchymal cells also merge phe-
notypically with circulating tumor cells (CTCs), which are
considered a negative prognostic marker of cancer (326).
Isolated CTCs usually form clusters, which is a feature of the
mesenchymal phenotype (327). In addition, CTCs express
the stem cell marker, CD133 (9). On the other hand, mes-
enchymal–epithelial transition (MET) is the reverse process
of EMT by which cells initiate in situ metastases.

Although research in EMT advanced in recent years, there
is persistent controversy regarding the existence of EMT/
MET phenotype in CSCs, which are also implicated in tumor
maintenance and metastasis. EMT mediators can lead to

increments of the CSC phenotype (249). CSC are defined
by specific expression of cell surface markers (CD24low,
CD44high), the expression of aldehyde-dehydrogenase
1 (ALDH1), and low proliferation rate (50). The typical
experimental in vitro models, leading to CSCs enrichment,
are ‘‘spheroids’’ cultivated from cell cultures. These spher-
oids are also used for xenograft studies, due to the improved
engraftment compared with conventional 2D cell cultures
(129). The overlap of CSC issues with the EMT phenomenon
is further underlined by the existence of defined epithelial-
like and mesenchymal-like CSCs classes (273). Moreover, a
hybrid epithelial/mesenchymal (E/M) state of cells has been
described recently as the mixed phenotype preceding full
mesenchymal state (151). Nevertheless, studying EMT and
CSCs in vivo is rather challenging, given that the phenome-
non is typically difficult to capture in real-time, due to the
rapid exchange of the markers associated with EMT/MET
once the transition is completed.

Information regarding the involvement of NRF2 in EMT,
MET, and CSC phenotypes is rather ambiguous, due to the
variety of experimental models. NRF2 induction most likely
promotes spheroid formation and the CSC phenotype. A study
by Luo et al. (180) demonstrated that transition from CD24low

CD44high CSCs (mesenchymal-like stem cells) into ALDH+

breast cancer CSCs (epithelial-like stem cells) is accompanied
by the NRF2-dependent gene expression signature in response
to metabolic perturbation such as 2-deoxyglucose treatment
(180). Inhibition of NRF2 and the antioxidant system (Txns
and GSH) inhibits sphere formation and cancer growth in vivo
(180). In breast cancer cells, the expression of CD44 coincides
with higher NRF2 expression and markers of CSC-like cancer
cells (239, 240). The induction of NRF2 in CD44+ cells is de-
pendent on the noncanonical activation of NRF2 through p62,
and NRF2 induction facilitates spheroid formation and induces
chemoresistance to 5-fluorouracil and doxorubicin (239, 240).

Formation of spheroids and xenografts is suppressed af-
ter NRF2 silencing in CD44high cells in the same studies
(239, 240). Moreover, Kipp et al. (143) used a remarkable
fluorescence-based in vitro model of monitoring NRF2 ex-
pression to demonstrate that NRF2 is clearly induced during
spheroid formation. NRF2 induction by the Txnrd1 inhibitor,
auranofin, promotes spheroid growth, evidenced by prolif-
eration and differentiation markers, rather than the quiescent
(CSC-like) phenotype. In line with this, Kovács et al. (149)
showed that the 4-hydroxynonenal content in breast cancer
tissue negatively correlated with the proliferation of cancer
cells. On the contrary, another point of view was provided in
a study by Bocci (21) showing that the knockdown of NRF2
induces mesenchymal markers and the transition from hybrid
E/M to the mesenchymal phenotype. NRF2 expression in
TCGA datasets also corresponds with the expression of E/M
markers (high ZEB1, high miR-200) and elevated NRF2 ex-
pression correlates with a worse prognosis of breast cancer (21).

Another aspect of CSCs is cell migration and invasion,
which can also be supported by NRF2 signaling. In cell
models of breast cancer, NRF2 overexpression or KEAP1
knockdown promotes cell migration (assessed by wound
healing assay) and invasion (transwell invasion assay)
through G6pd and possibly Notch1 induction (334). More-
over, the CD24-CD44+ mesenchymal subpopulation of sev-
eral human breast cancer cell lines is characterized by
upregulated TrkB-AKT signaling that suppresses KEAP1
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Table 2. Interactions Between the NRF2-KEAP1 System and Cytostatic Drugs

Drug Effect Cancer Reference

Platinium compounds
Cysplatin NRF2 overexpression confers resistance to cisplatin Cervix cancer (303)

Lung cancer (20, 137, 265,
283, 299)

Ovarian cancer (15, 34, 275)
Laryngeal cancer (345)
Bladder cancer (43, 91)
Head and neck tumors (230)

NRF2 overexpression protects against Cysplatin
nephrotoxicity

N/A (302)

NRF2 overexpression protects against Cysplatin
ototoxicity

N/A (64)

Oxaliplatin High NRF2 expression leads to resistance to Cysplatin Colon cancer (217, 305)
NRF2 knockout protects against Oxaliplatin-induced

peripheral neuropathy
N/A (325)

Carboplatin NRF2 upregulation protects against Carboplatin
treatment

Epithelial ovarian cancer (147)

Nucleotide analogs
Cordycepin Cordycepin induces NRF2 that protects against

radiation ulcer
N/A (307)

Cordycepin induces NRF2 Breast cancer (56)
Cytarabine NRF2 overexpression confers Cytarabine resistance Myelosdysplasy (171)
5-fluorouracil Vitamin D in combination with 5-fluorouracil protects

against hepatocellular carcinoma
Hepatocellular carcinoma (1, 255)

NRF2 overexpression leads to 5-fluorouracil resistance Colorectal cancer (125, 173)
NRF2 downregulation or Keap1 loss-of-function

enhances the effect of 5-fluorouracil
Cholangiocarcinoma (244, 256)

NRF2 overexpression leads to 5-fluorouracil resistance Gastric cancer (103)
NRF2 activation supports cell proliferation under

5-fluorouracil treatment
Pancreatic cancer (172)

NRF2 induction protects against 5-fluorouracil-induced
myelosuppression

N/A (206)

Gemcitabine Reduction of NRF2 sensitizes pancreatic cancer cells to
gemcitabine

Pancreatic cancer (57, 121, 316)

Gemcitabine effects are enhanced by the downregula-
tion of NRF2

Cholangiocarcinoma (244)

Monoclonal antibodies
Bevacizumab NRF2 overexpression confers resistance to VEGF

inhibition
Glioblastoma (319)

Vincalkaloids
Vinorelbine NRF2 overexpression confers Vinorelbine resistance Lung cancer (314)
Vincristine NRF2 protects against Vincristine-induced neuropathic

pain
N/A (342)

Anthracycline drugs
Doxorubicin Doxorubicine decreases NRF2 expression N/A (205)

NRF2 activation confers doxorubicin resistance Ovarian cancer (260)
Tyrosine kinase inhibitors

Lapatinib NRF2 overexpression leads to resistance against
lapatinib

Ovarian cancer (127)

Lapatinib inhibits NRF2 expression N/A (210)
Erlotinib NRF2 overexpression leads to resistance against

erlotinib
Ovarian cancer (127)

Vorinostat in combination with Gefitinib or Erlotinib
suppresses NRF2 expression

Nonsmall-cell lung cancer (160)

Gefitinib Vorinostat in combination with Gefitinib or Erlotinib
suppresses NRF2 expression

Nonsmall-cell lung cancer (160)

Topoisomerase inhibitors
Camptotechin Camptotechin suppresses NRF2 expression Hepatocellular carcinoma (29)

(continued)
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expression (138). In agreement with that, NRF2 accumula-
tion in the nucleus can be prevented by the presence of
E-cadherin, which is present in epithelial cells, but not in
mesenchymal cells (141). The mechanism of this process
requires sequestration of the NRF2/KEAP1 complex in the
proximity of the plasma membrane and involves the inter-
action of NRF2 with b-catenin (141).

Of note, NRF2 is involved in the crosstalk between asso-
ciated cell species and tumor bulk cells in HCC and PDAC
(63). Lactate produced and secreted by cancer cells into the
environment and elevated ROS levels induce NRF2 in tumor-
associated macrophages, converting them to the M2 (CD163+)
polarized phenotype. NRF2 in M2 macrophages was essential

for the induction of migration and expression of EMT markers
in tumor bulk cells via VEGF signaling, which also induces
NRF2 levels.

The role of NRF2 in DNA repair

As previously mentioned, the induction of NQO1 by NRF2
prevents DNA damage (267, 270). NRF2 is responsible for
DNA protection at multiple levels and for different kinds of
DNA damage inducers, such as irradiation or chemical ex-
posure. Reduction of NRF2 levels sensitizes cells to irradi-
ation, a process involving the decreased ability to repair DNA
via homologous recombination, by inhibiting RAD51 levels

Table 2. (Continued)

Drug Effect Cancer Reference

Alkylating agents
Cyclophosphamide NRF2 activation counteracts Cyclophosphamide-

induced myelosuppression
N/A (221)

Themozolomide NRF2 overexpression confers resistance to Themozo-
lomide

Glioma (229)

Themozolomide and radiation therapy induces NRF2
expression

Glioblastoma (39)

Proteasome inhibitors
Bortezomib NRF2 overexpression confers protection against

Bortezomib treatment
Neuroblastoma (69, 70)

Bortezomib induces NRF2 expression Multiple myeloma (17)
NRF2 overexpression protects against Bortezomib

treatment
Mantle cell lymphoma (308)

Nuclear receptor modulators
Tamoxifen NRF2 overexpression contributes to Tamoxifen resis-

tance
Breast cancer (18, 215)

Retinoic acid Retinoic acid suppresses NRF2 Breast cancer (304)

Other cytostatic drugs
Vorinostat Vorinostat in combination with Gefitinib or Erlotinib

suppresses NRF2 expression
Nonsmall-cell lung cancer (160)

Arsenic trioxide Arsenic trioxide induces NRF2 Acute promyelocytic
leukemia

(199)

Radiotherapy
NRF2 overexpression protects against radiotherapy Ovarian cancer (291)
NRF2 overexpression protects against radiotherapy Esophageal squamous

cancer
(132)

Gain-of-function NRF2 mutation confers malignant
potential

Esophageal squamous
cancer

(257)

NRF2 activation supports cell proliferation under
radiotherapy

Pancreatic cancer (172)

Studies with no drug defined
Not defined NRF2 overexpression confers resistance to chemother-

apy
Hepatobiliary cancer (136)

NRF2 overexpression confers resistance to chemora-
diotherapy

Esophageal squamous
cell cancer

(336)

NRF2 inhibition confers sensitivity to chemotherapy Cholangiocarcinoma (272)
NRF2 expression shows negative correlation with

neoadjuvant chemotherapy success
Breast cancer (231)

NRF2 activation protects against chemotherapy Colorectal cancer (241)
NRF2 downregulation increases the efficacy of che-

motherapy
Cervical cancer (182)

NRF2 protects against chemotherapy Leukemia (237)
High NRF2 expression confers chemoresistance Endometrial cancer (116)
NRF2 downregulation is vital for chemotherapy success Chronic lymphocytic

leukemia
(312)

NRF2 expression is associated with chemotherapy
resistance

Ovarian cancer (97)

N/A, not applicable; VEGF, vascular endothelial growth factor.
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(112). The study by Jayakumar (112) also indicates addi-
tional targets containing ARE sequences that are active in
DNA repair, including possible targets of NRF2. NRF2 also
regulates expression of ATM and ATR after cysplatin ex-
posure in an ovarian cancer model via stress-induced kinases
specific to the DNA damage response (267). In addition,
synthetic tripertenoids activate NRF2 and protect cells from
radiation damage (60, 139). In this case, the role of NRF is
controversial (285) in terms of cancer progression, since
NRF2 might prevent DNA damage and cancer progression.

The role of NRF2 in aging and lifespan regulation

In Drosophila, NRF2 expression extends the lifespan and
induces tolerance to paraquat treatment (285). A straightforward
study (164) investigated NRF2 signaling on naked mole rats
and stratified NRF2 expression according to the maximum
species lifespan potential (MSLP). The study revealed that
NRF2 activity and downstream targets exhibit positive cor-
relation with MSLP, due to the diminished activity or ex-
pression of canonical and noncanonical negative regulators.
In addition, a spectrum of NRF2 target genes and proteins
were recently identified in a high-throughput study; these
NRF targets were differentially regulated in the long-lived
naked mole rat and the short-lived guinea pig, its close rela-
tive (96). Nevertheless, there are contradicting reports con-
cerning the role of NRF2 in longevity. For example, in Nqo1-
deficient mice, the lifespan is improved under caloric re-
striction, but not under ad libitum conditions (53). Taken
together, the lifespan-prolonging effect of NRF2 has not been
conclusively demonstrated.

Future Prospects

NRF2 is a vital component of the cellular machinery that
conserves cellular redox balance through the expression of
antioxidant proteins. Reactive oxygen and nitrogen species
have a dual nature in carcinogenesis. On one hand, enhanced
reactive species production increases the risk for neoplastic
diseases by increasing the mutation rate and, hence, in-
creasing the chance of transformation (158). On the other
hand, in cancer cells, reactive species negatively regulate
cancer cell survival (149, 158). It is also of note that although
low NRF2 expression is associated with senescence, the in-
duction of NRF2 expression is apparently associated with

Table 3. Values for the Survival Curve on Figure 4

Number at risk (months)

Bladder carcinoma
HR = 0.69
p = 0.021

0 50 100 150
Low expression 115 16 3 2
High expression 289 50 9 1
Cervical

Cervical squamous cell carcinoma
HR = 0.53
p = 0.25

0 50 100 150 200
Low expression 214 37 9 4 1
High expression 90 24 11 3 1

Stomach adenocarcinoma
HR = 0.66
p = 0.05

0 20 40 60 80
Low expression 277 96 27 10 3
High expression 94 38 8 5 1

Kidney renal clear cell carcinoma
HR = 0.48
p = 1.6 · 10–6

0 50 100 150
Low expression 159 46 6 0
High expression 371 160 34 1

Lung squamous cell carcinoma
HR = 0.68
p = 0.0087

0 50 100 150
Low expression 309 52 16 2
High expression 186 53 11 3

Sarcoma
HR = 0.52
p = 0.0021

0 50 100 150
Low expression 64 14 4 2
High expression 195 59 12 3

Kidney renal papillary cell carcinoma
HR = 1.73
p = 0.07

0 50 100 150 200
Low expression 155 38 9 1 0
High expression 132 35 3 0 0

Liver hepatocellular carcinoma
HR = 1.48
p = 0.053

0 20 40 60 80
Low expression 114 54 27 17 8
High expression 256 128 57 25 11

Pancreatic ductal adenocarcinoma
HR = 1.56
p = 0.45

0 20 40 60 80
Low expression 127 46 15 8 1
High expression 50 12 2 0 0

Thymoma
HR = 4.27
p = 0.032

0 50 100 150
Low expression 87 40 11 2
High expression 31 10 0 0

(continued)

Table 3. (Continued)

Number at risk (months)

Thyroid carcinoma
HR = 1.93
p = 0.19

0 50 100 150
Low expression 365 90 22 3
High expression 137 38 12 4

Uterine corpus endometrial carcinoma
HR = 1.37
p = 0.16

0 50 100 150 200
Low expression 377 115 17 3 1
High expression 165 32 3 0 0

HR, hazard ratio.
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cancer cell survival (5, 46, 68, 149, 158, 290, 343). This dual
nature of free radicals confers an interesting, ambiguous
nature to NRF2 in cancer biology. The pro- or antineoplastic
effects of NRF2 are context dependent; thus, the effects of
NRF2 depend on the nature and molecular characteristics of
the cancer in question. Large-scale studies to carefully
evaluate cancer subtypes, where NRF2 signaling can be tar-
geted, should be a focus for the future.

NRF2 promotes several enabling cancer hallmarks, such as
metabolism, CSC characteristics, tumor aggressiveness, in-
vasion, and metastasis formation. The role of NRF2 in reg-
ulating cancer cell stemness and EMT seems to be a central
feature in defining the role of NRF2 in regulating metastasis
and progression among the neoplastic processes. The level of
NRF2 activity is apparently a switch in metabolism and
ferroptosis that enables cancer cells to mobilize nutrients to
support growth, enable metabolic flexibility, and avoid cell
death. The bulk of cancer cells are sensitive to chemotherapy
and are rather reliant on Warburg metabolism, whereas stem
cells are metabolically flexible and resistant to chemotherapy
(66, 214). Therefore, from a translational point of view, fine-
tuning NRF2 activity may help in reprogramming CSCs to
become more sensitive to chemotherapy (126). Under-
standing the complex metabolic rearrangements behind
NRF2 activation will be crucial in understanding the poten-
tial interference of ROS signaling and metabolic rewiring in
cancer and other pathologies.

Immune destruction is a major pathway to eliminate cancer
cells, involving the production of reactive species. It remains
an open question of whether NRF2 is involved in protecting
against immune destruction. Logically, the NRF2-driven
antioxidant response is probably protective against immune
cell-derived free radicals and, therefore, may be pro-
neoplastic. Further, NRF2 activity modulates the function of
antigen-presenting dendritic cells and T cells (165, 330),
implying a modality to improve anticancer immune response.

There are only a few papers on the interactions between the
NRF2 pathway and chemotherapy regimens (12) (Table 2);
understanding these interactions can help identify the best
therapeutic window for NRF2 activators or inhibitors. Most
likely, the picture will be very complex, as some chemother-
apeutic agents produce superoxide [e.g., doxorubicin (10, 211,
212)], which interferes with the NRF2 system. Further, the
scavenging of free radicals produced by chemotherapeutic
drugs is controversial (176). The modulation of NRF2 tone
will likely impact the sensitivity of tumors to chemotherapy.

The exploitation of the NRF2 pathway clearly holds
promise in the clinical setting. Nevertheless, substantial
studies are needed to sharply pinpoint the diseases, patient
subgroups, and therapeutic schemes where NR2-directed
therapies will be beneficial.
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E. Lithocholic acid, a metabolite of the microbiome, in-

988 SMOLKOVÁ ET AL.
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Abbreviations Used

b-TrCP¼b-transducin repeat-containing protein
4-OHE2¼ 4-Hydroxyestradiol

15d-PGJ2¼ 15-deoxy-prostaglandin J2
AKT¼ protein kinase B

ALDH1¼ aldehyde-dehydrogenase 1
AMER1¼Wilms tumor gene on the X chromosome

AML¼ acute myeloid leukemia
AMPK¼AMP-activated protein kinase

ARE¼ antioxidant response element
ATF4¼ activating transcription factor 4

Bach1¼BTB and CNC homology 1
BAP1¼BRCA1 associated protein 1

BRCA1¼ breast cancer type 1 susceptibility protein
BRCA2¼ breast cancer type 2 susceptibility protein

BRD4¼ bromodomain protein 4
BTB¼Broad complex/Tramtrack/Bric-a-brac
bZIP¼ basic leucine zipper domain

Cav-1¼ caveolin-1
CDK20¼ cyclin-dependent kinase 20

CDO1¼ cysteine dioxygenase 1
CHD6¼ chromodomain helicase DNA binding protein 6

COX-2¼ cyclooxygenase-2
CSC¼ cancer stem cell

CTCs¼ circulating tumor cells
CTR¼ carboxy-terminal
Cul3¼ cullin 3
DGR¼ double glycine repeats
DPP3¼ dipeptidyl peptidase 3

E/M¼ epithelial/mesenchymal
EMT¼ epithelial-mesenchymal transition

EpRE¼ electrophilic response element
ERK¼ extracellular signal–regulated kinase

FAM129B¼ family with sequence similarity 129, member B
FH¼ fumarate hydratase

G6pd¼ glucose-6-phosphate dehydrogenase
GCL¼ glutamate-cysteine ligase

GCLC¼ glutamate-cysteine ligase catalytic
GCLM¼ glutamate-cysteine ligase modifier

Gpx2¼ glutathione peroxidase 2
GRP78¼ heat shock 70kDa protein 5

GSH¼ reduced glutathione
GSK3¼ glycogen synthase kinase 3

GSK3b¼ glycogen synthase kinase 3b
Gsr1¼ glutathione reductase 1

GSSG¼ oxidized glutathione
GST¼ glutathione S-transferase
HCC¼ hepatocellular carcinoma

HER2¼ human epidermal growth receptor 2, HER2/
neu, cErbb2

HIF1a¼ hypoxia-inducible factor 1a
HMOX1¼ heme oxygenase (decycling) 1

Idh1¼ isocitrate dehydrogenase 1
IVR¼ intervening region

KEAP1¼Kelch-like ECH-associated protein 1
KHK-A¼ ketohexokinase-A

LCA¼ lithocholic acid
LOF¼ loss-of-function

MAT¼methionine adenosyltransferase
MAT2A¼methionine adenosyltransferase 2A

Me1¼malic enzyme 1
MEK¼mitogen activated protein kinase kinase
MET¼mesenchymal–epithelial transition

MICA¼ not defined as abbreviation
miRNA¼microRNA
MnSOD¼manganese-dependent superoxide dismutase

Mrps¼multidrug-resistance-associated transporters
Mrp1¼multidrug resistance-associated protein 1

MSLP¼maximum species lifespan potential
mTORC1¼mechanistic (or mammalian) target

of rapamycin complex 1
N/A¼ not applicable

NFE2¼ nuclear factor erythroid 2
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Abbreviations Used (Cont.)

Neh¼NRF2-ECH homology
NQO1¼NAD(P)H quinone dehydrogenase 1
NRF2¼NFE2-related factor 2 (Nfe2l2, commonly

called NRF2)
NSCLC¼ nonsmall-cell lung carcinoma

OGG1¼ 8-Oxoguanine glycosylase
OTUB1¼ ovarian tumor family member deubiquitinase

p62¼ sequestosome 1
PALB2¼ partner and localizer of BRCA2
PDAC¼ pancreatic ductal adenocarcinoma
PERK¼ protein kinase R-like endoplasmic reticulum

kinase
Pgd¼ 6-phosphogluconate dehydrogenase

PI3K¼ phosphoinositide 3-kinases
PPP¼ pentose-phosphate pathway

PUFA¼ polyunsaturated fatty acid

RARa¼ retinoic acid receptor X receptor a
ROS¼ oxygen-centered reactive species

RXRa¼ retinoid X receptor a
SLC7A11¼ solute carrier family 7 member 11

Srxn1¼ sulfiredoxin 1
TAMR¼ tamoxifen-resistant

TCA¼ tricarboxylic acid cycle
TKT¼ transketolase
TP53¼ gene encoding for tumor protein P53
Txn1¼ thioredoxin 1

Txnrd1¼ thioredoxin reductase 1
UHRF1¼ ubiquitin-like, containing PHD and RING

finger domains-1
UPR¼ unfolded protein response

VEGF¼ vascular endothelial growth factor
WTX¼Wilms tumor gene on the X chromosome

xCT¼ protein encoded by SLC7A11
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