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Abstract: Air pollution is one of the major problems of the modern world. The popularization and
powerful functions of smartphone applications enable people to participate in urban sensing to
better know about the air problems surrounding them. Data sampling is one of the most important
problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling
Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find
the pattern rules of air quality according to the historical data contributed by participants based on
Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning
process to choose and adapt the sampling parameter based on Q-learning. The evaluation results
show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied
outside air environment with good sampling efficiency.
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1. Introduction

The Urban Air Quality pollution issue becomes the main prominent social problem all over the
world nowadays with the high-speed development of economy. When considering the fast growth of
urbanization and fossil fuel consumptions, our country is facing the greatest challenge that has never
been encountered before. According to the Environmental Performance Index Report 2016, published
by Yale University [1], China is still the most serious district of PM2.5 pollution. The government is
now strengthening the policy of air quality pollution prevention. For the expensive building cost of
air monitoring stations and limited coverage of stations, the air quality pollution prevention is still a
big challenge. Beyond this, urban air quality is also affected by many factors, including meteorology
and human factors leading to more difficulties. On the other hand, the public pays more attention to
the environment problems surrounded. Other than to achieve the air quality information through the
government channel, they prefer fine-grained ambient air quality information related with their health
issues in an active and timely way. According to the data from the biggest on-line shopping website in
China, there was shopping records with millions of PM2.5 prevention masks being sold in only one
day. More and more people are also willing to pay money for portable PM2.5 detection devices that
can be carried around. The above shows that people have the willingness to participate in urban air
quality sensing and make contributions to the urban environment.

The popularization of the smartphone enables people to participate in urban sensing with kinds
of build-in sensors for the smartphone or through the sensor resources connected to the phone plug-in
or wirelessly. To some degree, people can be viewed as human sensors that join in the urban sensing
to provide their feelings toward the urban air. Our work is different from the official air quality
monitoring. More than to provide general PM2.5 measurement, participatory urban air sensing aims at
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human-aware and fine-grained air environment monitoring, especially for a destined location area and
time duration. In urban air participatory sensing, we encourage people join in sensing tasks and be
aware of the ambient air environment. It may not be the exactly accurate measurement, but can provide
human-centric air quality information that can be used as a guide for air environment protection.
Participatory sensing can integrate urban sensing and human activity together, and then helps to
improve the sensing coverage and efficiency. The sensing process will also be merged with social
resources that help with information processing and sharing.

In urban air quality participatory sensing, data sampling is one of the key problems to sensing
performance. The sampling strategy needs to match the air quality situations effectively with modest
energy consumptions of the smartphone. According to the census data, air pollution is tightly connected
with human activities [2]. For example, the air pollution data in Baolian station, Haidian District of
Beijing, from 2009 to 2012 [3] shows PM2.5 and CO air pollutant is with lower density in weekend than
weekday. It is so called “weekend effect”. Beyond this, air quality also shows “holiday effect”. PM2.5,
CO and SO2 pollutant shows an unusual higher level than non-holiday days in specific holidays.
For example, during Spring Festivals, air quality was worse than the usual days. It may be related
with the festival fireworks burning in Spring Festival. Fixed data sampling cannot satisfy the various
sensing environment. Intuitionally, a high sampling frequency may be wasteful if lacks interesting air
quality events, such as in good air situations. Low sampling frequency may not guarantee efficient
measurement toward the air quality event, such as in serious air pollution. Beyond this, participants try
to save energy to ensure the necessary daily communications of smartphone. One of the solutions is to
adapt the data sampling strategy as needed. In this paper, we propose an Adaptive Sampling Scheme
for Urban Air Quality (AS-air) through participatory sensing, which aims to choose an energy-efficient
data sampling parameter that is adaptive to the varied air environment.

The main research contribution of this paper includes:

1. It has been found that urban air shows some specific patterns such as the “weekend effect” and
the “holiday effect”. By knowing the pattern rules, it helps to decide the sampling parameter.
In AS-air, we firstly design the method to find the pattern rules between sensing data and urban
air quality by digging the correlations between them based on Apriori algorithm.

2. Based on it, we then propose an adaptive sampling scheme by using Q-learning to adapt sampling
parameter according to the outside sensing environment. According to the learned pattern rules,
we predict the on-line air quality during sensing and use it to accelerate the Q-learning process of
sampling strategy to convergence.

3. As-air provides an energy-efficient sampling scheme that is adaptive to the outside air
environment with good sampling performance, which is suitable for mobile and on-and-off
application scenarios for smartphone participatory sensing.

The following of the paper is organized as follows. Section 2 presents the related work. Section 3
presents the system overview. We present the details of AS-air in Section 4. Section 5 is performance
evaluation. Finally, Section 6 concludes this paper.

2. Related Work

In the past few decades, Wireless Sensor Networks (WSNs) got incredible attentions as one of
the effective solutions for environmental sensing. But wireless sensor networks are constrained by
deployment and devices. Nowadays, the human-centric smart system [4] arouses more interests that
can integrate ubiquitous sensing data from the physical and cyber space to discover a certain pattern
connected with our daily life. Estrin et al. [5] propose the concept of participatory sensing, which is
the process whereby individuals and communities use evermore-capable mobile phones and cloud
services to collect and analyze systematic data for use in revealing a certain pattern of the city. A series
of systems and frameworks are presented afterwards.
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2.1. System Frameworks for Participatory Sensing

Common Sensor [6] proposed by UC Berkley is a mobile sensing system that is based on
handheld devices, which allows for the public and community to join in the air quality measurement.
Rana et al. [7] propose Ear-phone, which is an open participant sensing platform implemented on
Nokia N95 and HP iPAQ for urban noise detection. Hasenfratz et al. [8] introduce a participatory
air quality mobile sensing system, GasMobile, which is based on small, low-cost, and off-the-shelf
hardware to monitor the ozone concentration. Sun et al. [9] propose a deployed and participatory
sensing system for urban air quality monitoring, which monitors the environmental parameters
through deployed sensor nodes or human-centric sensing that is provided by build-in sensors of
smartphone. Tse et al. [10] design and realize a certain personal pollution awareness system tiny
enough to be embedded into user accessories, which can be utilized for real-time air quality monitoring.

Another closely connected concept is crowdsensing. Crowdsensing is with a similar paradigm
as participatory sensing, while it includes not only participatory sensing way but also opportunistic
sensing. See et al. [11] propose that crowdsensing can be used for citizen sensing application scenario,
and they find that active contribution (emphasized in participatory sensing especially) is more
envisioned than passive contribution with citizens' motivation by the desire to aid a worthy cause
with little training. With the participatory governance features, the case study work in crowdsensing
for transportation and environmental related urban sensing has been proposed in [12–14].

2.2. Sampling Data Recruitment in Participatory Sensing

Sampling data acquisition is mostly based on data recruitment in participatory sensing.
Three main categories are included according to the metrics in data recruitment.

The first category is coverage-based data recruitment. D. Estrin et al. [15] propose the data
recruitment schemes according to the geographical position of participants and time-related task
coverage, as well as habits of participants. Hamid et al. [16] propose the data acquisition scheme
to recruit the smart vehicles for urban sensing according to the vehicle trajectory by analyzing the
tempo-spatial coverage.

The second category is reputation-based data recruitment. In Reference [15], they also
propose a reputation-based recruitment by computing the reputation based on Beta distribution.
Amintoosi et al. [17] propose reputation-based recruitment framework for social participatory sensing
according to the trust mechanism based on friend and friend's friend. In [18], they propose the
recruitment by considering both the quality of contribution and the trustworthiness level of participants
within the social networks. Alswailim et al. [19] propose a reputation system to evaluate participants
by grouping participants based on their contributions and then selecting the highest group value based
on their reputation values.

The third category is expertise-based data recruitment. Researchers have done some work on
this in social networks [20,21]. In which, expert finding models are proposed that aim at identifying
persons with relevant level of knowledge or experience for a given topic. Borges et al. [22] propose a
tier-2 participatory urban infrastructure monitoring platform that is based on the level of knowledge
and process capabilities of citizens and domain experts (such as municipal authorities).

Actually, most of the current sampling data recruitment design considers more than one factor
and combine them together [18,23–26].

The above recent research work focuses on how to select participants to contribute their data by
recruitment in participatory sensing. During the sensing process, the data recruitment method will
help to recruit participants that can provide qualified data in consideration of human mobility and
budget, etc. Data recruitment solves the problem of where and who to make data sampling. Our work
focus on adaptive data sampling strategy that is built based on the existing data recruitment schemes.

As far as we know, there has been no paper published about adaptive sampling especially for
participatory sensing yet. The adaptive sampling related algorithms are normally discussed in wireless
sensor networks.
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2.3. Adaptive Sampling in Wireless Sensor Networks

For wireless sensors that have limited power budget, energy-aware data sampling algorithms
are proposed in order to reduce the energy consumption of sensors and extend network lifetime.
The conventional methods with a fixed sampling rate incur extra activity of the sensor node.
Energy-aware adaptive sampling algorithms modify the sampling rate of the sensors according
to the needs of sensing tasks [27–29]. Srbinovski et al. [30] propose an energy-aware adaptive sampling
algorithm for energy harvesting WSN to adapt the sampling frequency according to the energy of
nodes. Since WSNs are often application-oriented, the design of adaptive sampling algorithms has to
consider these factors. Leonard et al. [31] propose adaptive ocean sampling for autonomous ocean
observing and prediction system. They propose a performance metric to derive optimal paths for
mobile sensors in order to minimize error in a model estimate of the sampled field. Graham et al. [32]
propose a distributed algorithm for adaptive sampling of spatiotemporal processes whose mean is
unknown and covariance is known up to a scaling parameter. The optimal sampling strategy aims to
minimize the average of the prediction error variance. Xu et al. [33] propose an adaptive sampling
strategy based on the learning Gaussian process in order to minimize the information-theoretic cost
function of the Fisher Information Matrix. Nguyen et al. [34] propose an information-driven adaptive
sampling strategy in mobile robotic wireless sensor networks, which aims to minimize the uncertainty
at all of the unobserved locations of interest. Salim et al. [35] propose an adaptive sampling approach
for wireless body sensor networks to estimate and adapt the sensing frequency based on previous
readings and patient criticality. The adaptive sampling approach aims to handle emergency detection
with energy saving. Silva et al. [36] propose adaptive sensing to adapt the sampling frequency in order
to capture the behavior of the physical parameters of interest and then reduce the overhead in terms of
sensing events.

From the above, we can see that data sampling is a critical problem for participatory sensing.
Current research mainly focus on data recruitment schemes, but are lacking efficient and intelligent
sampling strategy to support it. Although adaptive sampling has been studied and used in wireless
sensor networks, the available solutions are not well suited for participatory sensing. In participatory
sensing, the sensing devices are smart handheld devices such as smartphone, which is more capable
than general sensors. Beyond this, participatory sensing provides the human-centric sensing scenarios.
Human intervention makes the urban air quality demonstrating certain patterns of air quality. Making
full use of human-related pattern of urban air for data sampling helps to improve the sensing
performance. As far as we know, this is the first time adaptive sampling scheme by considering
air pattern in participatory sensing for urban air monitoring has been proposed.

3. System Overview

The general structure of a typical participatory sensing system is illustrated in Figure 1,
which consists of a platform usually on the cloud and smartphone participants. In the paper,
we involve this general system framework into urban air quality monitoring. It aims to provide
personal pollution awareness toward urban air quality. People with portable smart devices, such as
smartphones, are invited to participate in urban air quality sensing. With the smartphone built-in
sensors and plug-in air detection devices, data are sensed such as GPS, image, temperature, humidity,
and PM2.5 concentration, etc. Except that, people with smartphones can also be looked at as human
sensors. They can provide their feelings about the current air environment, such as comfortable
or uncomfortable. They contribute data sensed by smartphones to the platform with their daily
activities. The urban sensing platform will process the contributed data and will finally forman
application-specific profile, i.e., air quality profile. Different from the traditional air quality monitoring
by fixed locations and numbers of watching stations, participatory sensing based system provides
human-aware and fine-grained air quality information by encouraging people to join in the ambient air
sensing. During the sensing process, the data recruitment scheme will help to recruitment participants
that can provide qualified data with accuracy and timeliness, etc. The discrepancy brought by factors,
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such as measurement condition and human mobility, can be further processed by using the data fusion
algorithm to try to reduce discrepancies and outliers. Our AS-air is an adaptive data sampling strategy
that is built upon the recruitment scheme. So, we have the assumptions that qualified participants have
been recruited for the current sensing task and even with a valid incentive mechanism to encourage
them to contribute sensing data effectively.
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Figure 1. Participatory Sensing System for Urban Air Quality Monitoring.

We focus on adaptive sampling scheme AS-air in the paper. AS-air is committed on the
smartphone of participant side. We propose an adaptive sampling scheme AS-air to dynamically adapt
the sampling parameter according to varied outside environment. The varied air situation is analyzed
by the sensing platform according to the historical sensing data, and then forms air pattern rules.
Each participant acquires the pattern rules from the platform and makes prediction on the future air
quality. Based on the predicted air quality, they learn to adapt suitable sampling parameter accordingly.

4. Adaptive Sampling Scheme for Urban Air Quality Sensing (AS-Air)

4.1. Urban Air Pattern Rules

In this subsection, we explain how to make analysis on the historical sensing data and form air
pattern rules. The air pattern implies certain association rules that are related to many factors, such as
participant activity and meteorology condition, etc. To find out the pattern rules, we use association
rule learning [37] to make data mining based on historical data.

The historical sensing data stored in the sensing platform is formatted into a series of records,
including fields such as trajectory and meteorology, e.g., (participant_id, latitude, longitude, time, date,
temperature, humidity, weather, pollutant concentratin, ...).

To discover the pattern rules, the sensing platform makes some preliminaries upon the historical
data records. According to the location precision needs of sensing tasks, each location that is
represented by latitude and longitude is divided into grids as grid0, grid2 . . . gridn. The sensing time
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represented by time item is divided into hour slots within a day as slot1, slot2, . . . slotm, according to
sensing needs. According to date item, we know sensing happened in weekend or weekday, and the
specific season, i.e., spring, summer, autumn and winter. The temperature and humidity represented
by temperature, humidity item is divided into range levels such as: very high, high, average, low,
and very low. The weather represented by weather item belongs to one of the predefined weather types
such as windy, rainy and sunny, etc. The pollutant concentration data is with concentration of pollutant
that reflects air quality such as PM2.5, PM10, etc. They are used to calculate Individual Air Quality
Index (IAQI), and then the Air Quality Index (AQI) level. So, the sensing data record of participant
can be represented as: (participant_id, grid, slot, week, season, temp_level, hum_level, weather, AQI_level).

According to the AQI level ranking standard that is widely used in our country nowadays,
there are six levels of AQI: good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy,
and hazardous, respectively. In AS-air, we propose to use Apriori algorithm to process the historical
data records of participants and find the rules for a certain AQI level. The pattern rule can be shown as:
(grid, slot, week, season, temp_level, hum_level, weather→ AQI level). In which, the priori in the rule can be
only one item or combinations of them. For example, the pattern rules generated as: “frozenset({38, 9,
41, 44, 292340}) –> frozenset({0})” means the specific day of the week, season, temperature, humidity,
and location grid can deduce the specific air quality level. In which, the frozenset function is the
invariable set function in Python. The filed such as week, season, temp_level, and hum_level has been
represented by numbers within the individual specific range.

4.2. Adaptive Sampling Strategies

Data sampling is one of the main energy consumption sources of participants’ smartphone,
for they still need enough power to support the communication functions of their daily usage.
Obviously, fixed period of sampling incurs many disadvantages. Fixed periodic sampling ignores
the change of air quality events throughout the sensing process. High sampling rate can be wasteful
if there are no emergent air quality events. Low sampling rate may not satisfy the sensing needs
toward the specific air quality event. A solution to save energy is to use sampling duty cycle by
periodically turning on sampling module during sensing. We thus design AS-air that dynamically
adapts the sampling parameter according to the air environment. Participatory sensing provides the
human-centric sensing scenarios. Human intervention makes the urban air showing certain patterns
that affect sensing results. By using Q-learning, we try to learn the outside environment information
combining multiple factors, such as meteorology and human factors. Different from general Q-learning
procedure, we use the pattern rules for adaptive sampling by considering the predicted air quality
behind the rules that can guide the sampling strategy. It helps to choose and adapt the sampling
strategy to fasten the convergence to the optimal strategy, which is well suited for mobile scenarios of
smartphone participants.

AS-air suggests an intelligent control problem that adapts sampling parameter based on sensing
environment and smartphone energy resources. The problem is then formulated by distributed
independent reinforcement learning [38]. During the intelligent learning procedure, each participant
(corresponds to an agent) adapts its sampling strategy and then converges to the optimal strategy
according to the reward/cost with different actions toward the sensing environment. We use Q-learning,
a form of model-free reinforcement learning to circumvent the adaptive sampling for urban air quality
through participatory sensing. Q-learning is simple with modest computational resources that is
well suited for smartphone applications. By using Q-learning, we try to learn the outside sensing
environment information such as meteorology, human factors, et al, and use both those factors and
predicted air situation by pattern rules to choose and adapt sampling strategy. Figure 2 shows AS-air
scheme based on Q-learning. Each participant chooses sampling strategy locally according to both
the pattern rules and the state of the sensing environment information monitored. The execution of
the chosen sampling strategy is an action toward the environment. In reverse, the action will incur
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a reward/cost back to the participant. The participant will adapt the sampling strategy until the
reward/cost converges to the objective with an optimal strategy found.
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The participatory sensing system by using reinforcement learning is formulated by (S, A, R, Ť ),
where S is the discrete air quality sensing state space. A is the discrete action space that is dependent on
sampling strategies taken. R: S × A→R is the cost function, which implies the quality of a state-action
combination of the system. Ť: S × A→∆S is the state transition function, where ∆S is the probability
distribution over state space S. In our AS-air scheme, the actions include sets of sampling parameter
strategies of participants. The strategy of sampling parameter is taken by learning the outside sensing
environment scenarios. The strategy includes the adaptation of sampling period t toward sensing
environment accordingly. The sensing time is divided into a non-overlapping equal time period that is
called a frame. Each frame is then divided into non-overlapping equal time slots according to sensing
time precision. For example, a day is chosen as a frame in urban air quality participatory sensing. Each
day is divided into time slots by an hour. We define sampling energy consumption, E(t), as the amount
of sampling energy consumption in each frame, which is calculated in Equation (1). In which, es is the
energy consumed per sampling. T is the duration of a frame.

E(t) = es
T
t

(1)

According to Nyquist theorem, the minimum sampling frequency f = 1/t should be more than
double of the maximum frequency fs = 1/ts in the power spectrum of the signal to guarantee the
reconstruction of the sampled signal, i.e.,

0 < t <
1
2

ts (2)

The reward/cost function for each participant is defined as the amount of energy consumptions
for the ith frame, which is shown as in (3). Then, the energy consumption Q-value in the ith frame
with state s that takes action a by current strategy is evaluated as in (4). In which, α is the learning rate
and in the range of (0,1). γ is the discount factor and is also in the range of (0,1). We use a constant
learning factor, and the learning procedure can track the sensing environment.

R(i) =

{
Ei(t) = es

T
ti

i f satis f y (2)
∞ otherwise

(3)
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Q(s, a) = (1− α) ·Q(s, a) + α(Ri + γ min
a

Q(s′, a)) (4)

During the learning process, AS-Air has to explore all of the possible strategies based on air
quality situations, and then choose the “good” strategy. The strategy exploration probability is chosen
by Equation (5). In which, k is a constant that can be tuned to control the effect of unexplored strategies.
The minimum exploration εmin is required to deal with the dynamic sensing environment. With the
heuristic exploration policy, an initial exploration is with a higher rate when the participants join in
the air quality sensing. It then gradually decreases over time. tref is reference sampling time interval,
which is decided according to the predicted AQI level, as described in Section 4.1.

ε = εmin + max(0, k·
∣∣∣tre f − t

∣∣∣/tre f ) (5)

5. Performance Evaluation

In this Section, we make performance evaluation of AS-air. The adaptive sampling strategy in
AS-air is based on the pattern rules digging from the historical sensing data. Beyond this, AS-air needs
dataset to testify the performance. We built our own dataset with the sensing data that was collected
through the experimental system developed. In the following, we introduce the experimental system
and how we collect the data at first. Next, we make simulations on AS-air to testify to the efficiency
and effectiveness.

5.1. Experimental System and Dataset Built

Our experimental platform consists of two parts: the air sensing platform and android-based
client. The platform server is built based on Spring and Mybatis framework. The client supports
Android 4.4 OS and the version above that. The air sensing platform is responsible for sensing task
publication, data store, data process, and event result publication. The client includes user registration,
air sensing module, localization service, and data service. The air quality monitoring task such as
“monitoring air quality in Electronic Information School, Wuhan University” is published through the
platform. Participants that install the android-based client software will decide whether to join the task
according to their own interest. Participants acquire local air quality related data sensed by smartphone
built-in and plug-in sensors such as: GPS and USB plug-in PM2.5 detector, and then deliver the data to
the platform server. In the experiment system, we still use fixed sampling parameter in air sensing
module. Through the platform, we acquire the historical sensing data through participatory sensing as
the dataset and use it for further simulation-based evaluation in subsection B.

The dataset is built upon nine people, four months, five districts spread in Wuhan city area
through participatory sensing. Each data record in the dataset includes fields as: (participant_id,
time_slot_no,location_grid_no, day_of_the_week, temperature_level, humidity_level, AQI_level). Among the
data record, the location_grid_no field can be acquired through smartphone localization, such as GPS
and WiFi based method. The time_slot_no and day_of_the_week fields can be acquired from smartphone
by calculation. The temperature_level, humidity_level and AQI_level fields can be acquired through USB
plug-in PM2.5 detector with plantower PMS5003ST. For people have no USB plug-in PM2.5 detector
available, they provide their personal feelings about the urban air, i.e., people behave as sensors.
Since our system aims to provide peoples’ awareness about the ambient air environment, subjective
feeling rate ranking about urban air, but the accurate value is not allowed. In the experiment system,
we provide people to upload their feelings by six levels as (comfortable, acceptable, lightly allergic,
allergic uncomfortable, very uncomfortable) according to the six AQI levels from 0 to 5 of air quality.

The screenshot of server web and client APP is shown as in Figures 3 and 4. Figure 3 shows
the air sensing task publication at Electronic Information School, Wuhan University. Figure 4 shows
the android-based smartphone participant uploading the PM2.5 data sensed locally. Our system is
developed in Chinese version. The key text is translated into English in the screenshot. Figure 5 shows
the PM2.5 detector with plantower PMS5003ST we used in our experiment. According to PM2.5 data
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sensed, we can calculate the PM2.5 AQI (individual AQI) and corresponding AQI level. The detector
can be attached to smartphone through mini USB interface.
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Figure 5. The PM2.5 detector.

5.2. Simulations of AS-Air

We then evaluate the performance of AS-air by simulations. Our simulation-based evaluations
are based on the dataset formed through the experimental system. The adaptive sampling strategy
is based on the air pattern. We make evaluations on Apriori-based pattern rules learning at first.
The random 50% portion of the dataset is used for Apriori-based pattern rules learning. The others are
for adaptive sampling in AS-air.

5.2.1. Apriori-Based Pattern Rules Learning

There are two key parameters in Apriori algorithm: the minimal support ratio and minimal
confidence level. The selection of the two parameters affects the results of association rules. Figure 6
shows the accuracy of Apriori-based pattern rules learning with different minimal support and
confidence parameters. The results show that we achieve an acceptable prediction performance when
choosing suitable minimal support with considerable confidence. When minimal support ratio is set to
0.04, we have the accuracy around and more than 70% with good confidence level (more than 70%
confidence level).
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5.2.2. AS-Air Evaluations

We mainly consider the following performance metrics in the evaluation: sampling energy ratio,
sampling efficiency, and adaptiveness. Sampling energy ratio is defined as the ratio between the total
time of a frame and the active sampling time, which is proportional to the sampling energy efficiency.
Sampling efficiency is defined as the average qualified percentage of sampling period parameter chosen
that matches with the current sensing task. Adaptiveness is defined as the adaptiveness of AS-air
according to the varied sensing environment, i.e., to self-adapt the sampling parameter according to
the outside sensing environment. We initialize the parameter values as: α = 0.5, γ = 0.5. Set k = 0.25,
εmin = 0.1. The time frame T is set to 24 h. We then present the simulation results, respectively.

Figure 7 shows the average sampling energy ratio with different AQI level from 0 to 5. As shown
in Equation (1), sampling energy ratio is proportional to sampling energy consumptions. From the
results, we can see that: the sampling energy consumptions increase gradually as the air quality
becomes worse. It is reasonable because worse air quality implying severe air pollution events that
need more frequent sampling. In the results, we also make comparisons with reference sampling ratio
and Q-learning based average sampling ratio. The reference sampling ratio is the needed sampling
ratio that matches with the specific AQI level. The reference is decided according to a long-time
sensing process. The Q-learning based average sampling ratio is achieved through basic Q-learning
algorithm to optimize the sampling parameter. We can see that: AS-air has better sampling energy
efficiency when compared with the basic Q-learning based algorithm. AS-air can be well tuned to
and approaches the optimized sampling parameter quickly, but Q-learning based algorithm cannot.
AS-air has a slightly worse sampling energy efficiency when compared with reference. AS-air only
predicts the air quality pattern by Apriori algorithm, but cannot know the exact air quality situation.
So the efficiency of AS-air is dependent on the accuracy of air quality pattern learning. As shown in
Figure 6, the air pattern rules learning in AS-air can provide the acceptable accuracy and confidence
when choosing appropriate parameters.
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Figure 7. The average sampling energy ratio with different Air Quality Index (AQI) level.

Figure 8 shows the sampling efficiency with different AQI level from 0 to 5 when we make
comparisons between AS-air and basic Q-learning based algorithm. The results show that AS-air
has much better sampling efficiency within most of the AQI situations. In AS-air, we predict the
air quality situation and then adapt the sampling parameter with Q-learning based on it. The basic
Q-learning based method only tunes the sampling parameter by the reward function obtained during
each execution of the sampling task. So, AS-air has a better sampling performance (with more qualified
sampling strategy toward the sensing environment). It is easy to find the optimized parameter during
the learning procedure. The results also show that AS-air has a slightly worse sampling efficiency
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when the AQI level equals to 2 by comparing with the other AQI levels. This has something to do with
the dataset. Seldom data in the dataset focuses on the situations with AQI equals to 2. So, we learn
fewer rules from the dataset, and then poor prediction accuracy with it. This then leads to a poor
sampling efficiency.
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To evaluate the adaptiveness, we record the change of average sampling parameter within a
day and a week to see if it is adaptive toward the air quality situations. Figures 9 and 10 shows the
average sampling period with different hour of the day and different day of the week, respectively.
Figures 11 and 12 shows the change tendency of average AQI within a day and a week. The results
show that AS-air chooses the sampling parameter that is self-adaptive to the air quality situations.
When air quality becomes worse, the sampling period will be shortened. When air quality becomes
better, the sampling period will be extended. From Figures 9 and 10, we can find out that there are
two serious air quality hour zones (around 7 am–10 am, 5 pm–7 pm) in a day, and then the sampling
period in AS-air will be adaptive toward this air quality situation change. From Figure 12, we can see
that weekend is with much worse air quality when compared with a weekday. In Figure 11, AS-air
is with shortened sampling period in weekend, which implies that our scheme is adaptive to the air
quality of the day in a week.
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In this Section, the true dataset that is collected through the experimental system built is used for
simulation-based evaluations of AS-air. The evaluation results of Apriori-based pattern rules learning
are with acceptable prediction by choosing suitable algorithm parameters (i.e., minimal support ratio
and minimal confidence level). The efficiency of AS-air is dependent on the accuracy of air quality
pattern learning. AS-air has better sampling energy efficiency and sampling efficiency (with more
qualified sampling strategy) when compared with basic Q-learning based algorithm. AS-air can be
well tuned to and approaches the optimized sampling parameter quickly, which is suitable for mobile
and on-and-off application scenarios for smartphone participatory sensing. The performance AS-air is
also related with the accuracy of pattern rules learning. More accurate pattern rules help the learning
procedure of the optimized sampling strategy in AS-air. AS-air chooses the sampling parameter that
is adaptive to the air environment. When air quality becomes worse, the sampling period will be
shortened. When air quality becomes better, the sampling period will be extended.

6. Conclusions and Future Work

In this paper, we propose AS-air scheme for urban air quality through participatory sensing,
which provides an energy-efficient adaptive sampling scheme toward the varied air environment.
AS-air can predict the on-line air quality situation with acceptable accuracy based on the analysis
of historical dataset by air pattern rules learning through Apriori algorithm. Based on this, AS-air
proposes adaptive sampling strategies based on Q-learning. The predicted on-line air quality from
air pattern rules help to accelerate the convergence to the optimal sampling strategy. Our evaluation
is based on the true dataset that is collected through the experiment system built. The results show
that AS-air can choose and adapt suitable sampling parameter that is adaptive toward the urban air
environment. AS-air provides sampling strategy with good energy-efficiency, sampling performance,
and adaptiveness when compared with basic Q-learning based scheme. Our future work includes the
implementation and evaluation of AS-air in our experimental system and more people, and a longer
time-span data collection will be involved. Another concern is about the quality of sampling data and
the potential work on data quality analysis and evaluations [39,40]. We will do some work about this
in the future.
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