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Estimating the course 
of the COVID‑19 pandemic 
in Germany via spline‑based 
hierarchical modelling of death 
counts
Tobias Wistuba, Andreas Mayr & Christian Staerk*

We consider a retrospective modelling approach for estimating effective reproduction numbers based 
on death counts during the first year of the COVID-19 pandemic in Germany. The proposed Bayesian 
hierarchical model incorporates splines to estimate reproduction numbers flexibly over time while 
adjusting for varying effective infection fatality rates. The approach also provides estimates of dark 
figures regarding undetected infections. Results for Germany illustrate that our estimates based on 
death counts are often similar to classical estimates based on confirmed cases; however, considering 
death counts allows to disentangle effects of adapted testing policies from transmission dynamics. 
In particular, during the second wave of infections, classical estimates suggest a flattening infection 
curve following the “lockdown light” in November 2020, while our results indicate that infections 
continued to rise until the “second lockdown” in December 2020. This observation is associated with 
more stringent testing criteria introduced concurrently with the “lockdown light”, which is reflected 
in subsequently increasing dark figures of infections estimated by our model. In light of progressive 
vaccinations, shifting the focus from modelling confirmed cases to reported deaths with the possibility 
to incorporate effective infection fatality rates might be of increasing relevance for the future 
surveillance of the pandemic.

The COVID-19 pandemic continues to have severe impacts on public health in many parts of the world. Dur-
ing the course of the pandemic, different non-pharmaceutical interventions (NPIs) have been implemented 
to mitigate the spread of the virus, including closures of schools and nurseries, cancellation of public events, 
regulations regarding social distancing, closures of non-essential shops and further measures1. Since many of 
these interventions impose a large burden on society and economy, it is crucial to understand which measures 
are effective in reducing the spread of the virus.

An important figure in the context of the pandemic is the basic reproduction number R0 , which is defined as 
the expected number of secondary infected individuals by an infectious individual in a completely susceptible 
population. The basic reproduction number R0 is a population-specific measure of the contagiousness of the 
virus, which can be expressed as the product of the duration of infectiousness, the probability of infection for 
a contact between infected and susceptible individuals and the average rate of contacts between infected and 
susceptible individuals2. A systematic review and meta-analysis estimated R̂0 = 3.3 (95% confidence interval: 
2.8 to 3.8) for the initial spread of SARS-CoV-2 in China, 20203, while Ahmad et al.4 estimated R̂0 = 2.3 for 
Pakistan and Locatelli et al.5 estimated R̂0 = 2.2 (95% CI 1.9 to 2.6) for Western Europe (all estimates based on 
early variants of SARS-CoV-2 in 2020).

In contrast to the basic reproduction number R0 , the effective reproduction number Rt is the time-dependent 
counterpart, defined as the average number of secondary infections resulting from an infectious individual in 
a specific region at a certain time t. In particular, the effective reproduction number Rt accounts for changes in 
the rate of contacts over time, which can be affected by multiple factors including the number of susceptible 
individuals, the implemented mitigation measures and the adaptive behaviour of the population. Therefore, the 
effective reproduction number Rt will typically be lower than the basic reproduction number R0 . In practice, the 
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effective reproduction number Rt is usually estimated based on currently available surveillance data, particularly 
based on daily numbers of newly confirmed cases6,7. While numbers of confirmed cases are crucial for nowcasting 
the current development of the effective reproduction number8,9, they are largely influenced by the implemented 
testing policies. In particular, short-term changes in numbers of conducted SARS-CoV-2 tests complicate the 
accurate estimation of the effective reproduction number, as such changes can lead to time-varying numbers of 
undetected infections (so-called “dark figures” of infections10) in relation to numbers of actually confirmed cases.

Data on COVID-19 related deaths can provide an additional, retrospective viewpoint on the course of the 
pandemic and the assessment of NPIs. Important and influential approaches hence also focused on modelling 
the spread of SARS-CoV-2 based on numbers of reported deaths11,12. In particular, the Imperial College COVID-
19 Response Team11 developed a Bayesian hierarchical model to estimate the impact of NPIs on the effective 
reproduction number in different European countries during the first wave of infections in spring 2020. In the 
further course of the pandemic, several interventions (e.g., closures of schools and non-essential shops) have 
been adapted, relaxed or restricted to particular regions, while others (e.g., cancellations of public events and 
face mask regulations) have largely kept in place. To account for this development, the Bayesian model of Flax-
man et al.11 has been updated and extended to estimate the effectiveness of NPIs during the second infection 
wave in Europe13.

Other authors have argued that resulting effect estimates of NPIs are non-robust and highly model-depend-
ent14,15. In particular, the selection of NPIs to be included in the model predetermine the potential change points 
for the effective reproduction number and thus can have large effects on the estimates attributed to individual 
prevention measures. Furthermore, not only the implemented NPIs change over time, but also the adherence and 
awareness of the population, which may not be adequately described by categorical variables for the implemented 
prevention measures (cf. studies16,17 of mobility patterns during the first phase of the pandemic in Germany). 
Another limitation of the original model of Flaxman et al.11 is that the infection fatality rate (IFR) is assumed 
to be constant over time. However, the IFR of COVID-19 increases largely with increasing age18,19. As the age 
distribution of infections changes substantially during the course of the pandemic20, the effective IFR should not 
be regarded as constant over time when modelling the number of infections based on deaths data.

In this study we adapt the Bayesian hierarchical model of Flaxman et al.11 to estimate the course of the effective 
reproduction number in Germany by continuous smoothing splines, without the need for additional information 
regarding the timings of specific interventions. While our model is primarily driven by the numbers of reported 
deaths similar as in previous modelling approaches11,15, a main contribution of this study is the additional 
incorporation of the changing age distribution of confirmed infections to account for changes in effective IFR. 
We compare our model estimates of the effective reproduction number with classical estimates derived solely 
from the numbers of confirmed cases in combination with nowcasting6,21, showing that estimates of our model 
based on death counts tend to be more robust to changes in testing policies. Furthermore, by considering the 
total number of estimated infections per confirmed case (IPCC) as a varying factor, we are able to discuss dark 
figures of infections over the course of the pandemic in Germany.

The paper is structured as follows: the proposed Bayesian hierarchical model is described in the “Methods” 
section, while a more detailed comparison with the model of Flaxman et al.11 is provided in the Supplement to 
this paper (see Section S.1). Model estimates for the first year of the pandemic in Germany are presented in the 
“Results” section; complimentary results for the individual 16 German federal states are provided in the Sup-
plement (see Section S.4). The paper concludes with a discussion of the merits and limitations of the proposed 
hierarchical model in the context of related approaches.

Methods
To estimate the course of the pandemic in Germany based on death counts, we extend the Bayesian hierarchical 
model from Flaxman et al.11 by adjusting for time-dependent effective infection fatality rates and by considering 
splines for modelling the effective reproduction number over time. Figure 1 provides a schematic representation 
of the adapted hierarchical model. The main idea of the model is to estimate the effective reproduction num-
ber Rt retrospectively from daily numbers of reported deaths Dt associated with COVID-19. For this, we use 
death counts for Germany (and also for the 16 German federal states, see Section S.4 of the Supplement) based 
on daily situation reports published by the German federal agency for disease control and prevention (Robert 
Koch Institute, RKI22). All methods were carried out in accordance with relevant guidelines and regulations.

On the last level of the hierarchical model (see Fig. 1), the reported deaths Dt are modelled with a negative 
binomial distribution

Figure 1.   Schematic overview of the adapted Bayesian hierarchical model (cf. Flaxman et al.11).
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with mean dt and variance dt +
d2t
ψ

 . A half-normal distribution is considered as the prior for the dispersion 
parameter ψ ∼ N+

(0, 5) . Numbers of daily reported deaths Dt are linked to expected numbers of daily infec-
tions Iτ , τ < t , by taking into account estimates for the effective infection fatality rate (IFR) and the time distri-
bution between infection and reported death. More specifically, expected numbers of daily reported deaths dt 
are given by

where π denotes the (discretized) distribution for the time between infection and reported death for lethal infec-
tions, ÎFRτ is the estimated effective infection fatality rate and Iτ denotes the expected number of infections for 
day τ . Additionally, the parameter ν reflects the uncertainty regarding the estimated ÎFRτ ; similarly to the model 
of Flaxman et al.11, a normal distribution with mean 1 and standard deviation 0.1 is considered as the prior for ν . 
The distribution π for the time between infection and reported death is obtained as the sum of two components: 
the incubation period and the time between symptom onset and reported death. Based on results from Lauer 
et al.23, for the incubation period we use a log-normal distribution with mean 5.52 (days) and standard devia-
tion 2.43 (days). The distribution for the time between symptom onset and reported death is adopted from 
Flaxman et al.11 and given by a gamma distribution with mean 17.8 (days) and standard deviation 8.01 (days). 
Since our model is based on daily data, we consider a discretized version π of the distribution for the sum of the 
two periods (see Section S.1 of the Supplement for details on the discretization).

The IFR is an important link when trying to infer total numbers of infections from death counts. As the IFR 
of COVID-19 largely depends on the age of the infected individuals18,19,24, it is important to take the age structure 
of infections into account, which has been shown to vary over the course of the pandemic in Germany20. Thus, in 
contrast to the original model of Flaxman et al.11 using time-constant averaged IFRs, we consider time-dependent 
effective IFRs which reflect the changing age distribution of infections. Here, we estimate weekly effective IFRs 
based on the assumption that the age distributions of true infections can be approximated by the age distributions 
of confirmed cases20. In particular, based on data from the RKI25, let Ca,w denote the number of confirmed cases 
in calendar week w for age-group a ∈ {0–9, 10–19, ..., 70–79, 80+} . Furthermore, let ÎFRa denote the estimated 
infection fatality rate for age group a based on Brazeau et al.24 (see Section S.3 of the Supplement for sensitivity 
analyses using alternative age-specific IFR estimates from O’Driscoll et al.18 and Levin et al.19). The effective IFR 
for day τ in calendar week w is estimated as a weighted average of age-specific IFR estimates:

Finally, IFR estimates are shifted backwards by ten days to adjust for the delay between the reporting date 
of cases Ct and the date of infections It . This delay can be expressed as the sum of the incubation time with an 
expected value of 5.52 days23 and the time between onset of symptoms and reporting date (median delay of four 
days for German data26).

On the previous level of the hierarchical model (see Fig. 1), expected numbers of daily infections It are mod-
elled based on estimated infections Iτ of the preceding days τ < t via

where Rt denotes the effective reproduction number and g the (discretized) generation time distribution (i.e. 
the time between two infections in a transmission pair). As infection times are generally unknown, direct 
estimation of the generation time is rather difficult and commonly approximated by the serial interval. Based 
on results from Nishiura et al.27, the generation time g is modelled using a discretized log-normal distribution 
with mean 4.7 (days) and standard deviation 2.9 (days). An important and idealistic assumption of the consid-
ered semi-mechanistic model is that the country is viewed as a closed environment11, so that all infections are 
assumed to occur within the German population. Consequently, numbers of infections for the first days have 
to be initialized. Similarly to Flaxman et al.11, for the first six modelling days t = 1, . . . , 6 , expected numbers of 
infections It ∼ Exp(1/�) are exponentially distributed with mean � ∼ Exp(10) . The starting date for modelling 
( t = 1 ) is considered to be the 15th of January 2020, which is defined as the earliest date so that 60 days later, at 
least 10 cumulative deaths associated with COVID-19 have been reported in Germany.

On the first level of the hierarchical model (see Fig. 1), the effective reproduction number is modelled with 
a smoothing spline via

where Bp,3 are B-splines of third degree between equidistant knots (each with distance of two weeks) and ap 
denote the corresponding spline coefficients28. The maximum in Eq. (5) is taken to ensure that the effective 
reproduction number is non-negative. For a smoothing effect, the priors for the spline coefficients ap , p > 1 , are 

(1)Dt ∼ NB
(
dt , dt +

d2t
ψ

)
,

(2)dt =

t−1∑

τ=1

πt−τ · ÎFRτ · ν · Iτ ,

(3)ÎFRτ =
1

Cw

∑

a∈A

Ca,w · ÎFRa.

(4)It = Rt ·

t−1∑

τ=1

Iτ · gt−τ ,

(5)Rt = max
(∑

p

apBp,3(t), 0
)
,
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considered to be normal distributions ap ∼ N (ap−1, θ) with the previous spline coefficients ap−1 as expected 
values and common variance θ ∼ N+

(0, 1) , while the prior for the first spline coefficient a1 ∼ N+
(0, 1) is 

considered to be a half-normal distribution.
By modelling the true infections, our approach also allows for the analysis of dark figures of undetected infec-

tions during the pandemic. The total number of infections I = C + U  is composed of the number of confirmed 
(detected) cases C and the number of undetected infections U. The total number of infections per confirmed 
case (IPCC) is given by the ratio I/C, which we estimate as a time-varying factor of dark figures. Since there is 
an average delay of ten days between infections and reporting dates (see Methods), the IPCC factor for day t 
is estimated as the ratio of infections at day t − 10 estimated by our model and the 7-day-mean of confirmed 
cases at day t.

While the general hierarchical structure of our model is the same as in Flaxman et al.11, there are two main 
differences: First, the original model of Flaxman et al. is based on the assumption of time-constant IFRs (for dif-
ferent countries), whereas our model incorporates time-varying estimates of the effective IFR (cf. Fig. S1 of the 
Supplement). Second, the model of Flaxman et al. yields piecewise constant estimates for the effective reproduc-
tion number which can only change at prespecified time points where non-pharmaceutical interventions were 
adapted; on the other hand, our model based on splines provides a smooth and data-driven way of estimating the 
effective reproduction number over time, without requiring to prespecify potential change points. A complete 
and compact formulation of the proposed Bayesian model including all assumed prior distributions is presented 
in Section S.1 of the Supplement, comparing it also to the original model of Flaxman et al.11.

The Bayesian hierarchical model is implemented in R29 via the add-on package rstan for Stan30. The imple-
mentation of smoothing splines is based on Kharratzadeh28. Posterior samples are obtained by the No-U-Turn 
Sampler (NUTS) for adaptive Hamiltonian Monte Carlo, which takes multiple steps based on first-order gradients 
and automatically tunes the number of steps L as well as the step size ǫ without requiring any manual tuning by 
the data analyst31. Compared to classical random-walk Metropolis or Gibbs samplers, NUTS is particularly less 
prone to slow mixing in cases of highly correlated parameters induced by hierarchical model structures32. For 
algorithmic details on NUTS we refer to Hoffman and Gelman31. Using eight independent NUTS chains with 
2000 iterations each (considering burn-in periods of 1000 iterations), convergence diagnostics indicate that the 
algorithm provides a representative sample from the posterior distribution of our model (see Section S.5 of the 
Supplement).

Results
Using German surveillance data22,25, we model the course of the pandemic for Germany as a whole country as 
well as separately for each of the 16 German federal states during the first year of the pandemic. Here we present 
detailed national results, while further results for the individual federal states can be found in Section S.4 of the 
Supplement.

Results of the Bayesian hierarchical model (cf. Fig. 1) for Germany are depicted in Fig. 2. During the first 
year of the pandemic, death counts show two pronounced waves, with a shorter first wave in spring 2020 with 
fewer deaths compared to the second wave in autumn and winter 2020/2021. Figure 2 (first graph) indicates that 
the hierarchical model yields a good fit to the course of reported numbers of deaths. Note that daily reported 
deaths and confirmed cases show a characteristic weekly oscillating pattern. Estimates of our model, however, 
capture the average tendency and are robust to such reporting artefacts due to the use of smoothing splines with 
biweekly equidistant knots for modelling the effective reproduction number.

Figure 2 additionally illustrates the introduction of major non-pharmaceutical interventions (NPIs) in Ger-
many. Note that, due to the federal structure of Germany, there have been local differences regarding the imple-
mentation of NPIs (not shown here). Around the 23rd of March 2020, the “first lockdown” (Lockdown 1) was 
introduced in Germany, including strict contact restrictions and closures of non-essential shops. At this point, 
schools and nurseries had already been closed for one week and public events had been banned for two weeks 
in most parts of the country. Approximately three to four weeks after the introduction of the “first lockdown”, 
the first wave reached its maximum regarding the number of reported deaths. During summer 2020, cases and 
death counts were at relatively low levels. After a rapid increase of cases in October 2020, the German government 
introduced the so-called “lockdown light” to mitigate the spread of the virus. During this period, restaurants and 
leisure facilities were closed, while schools and shops remained opened with hygiene concepts in place. However, 
no noticeable decline of reported deaths was observed and confirmed cases remained at relatively high levels, 
which led to the introduction of the “second lockdown” in December 2020 (Lockdown 2), including closures 
of schools and non-essential shops amongst further measures. Three to four weeks after the introduction of the 
“second lockdown”, a decline of daily deaths was reported similarly as during the first wave in spring 2020. Note 
that, as expected, the general course of confirmed cases precedes the course of reported deaths.

Instead of modelling directly the numbers of confirmed cases, which are largely influenced by the adopted 
testing regime, the Bayesian hierarchical model provides estimates of the course of true infections. Estimated 
infections in turn precede the course of confirmed cases due to the incubation period and reporting delays 
(see second graph of Fig. 2). However, results show a remarkable difference between the course of estimated 
infections and confirmed cases during the second wave of infections in autumn/winter 2020/21: following the 
“lockdown light” introduced at the 2nd of November 2020, the course of confirmed cases suggests a flattening or 
even decreasing trend, while results of our hierarchical model indicate that true numbers of estimated infections 
continued to rise and reached a maximum around one week after the “second lockdown” in December 2020.

Such effects should also be viewed in light of changing testing policies, which can result in varying dark 
figures of undetected infections. During the first year of the pandemic (i.e. between the 1st of February 2020 
and the 31st of January 2021), there were in total 2, 221, 838 confirmed SARS-CoV-2 cases in Germany; for 
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the same time period, the model estimates 4.449 million (95% credible interval: [3.245m; 6.177m] ) infections 
based on age-specific IFR estimates from Brazeau et al.24, yielding an overall estimated infections per confirmed 
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Figure 2.   Results for the course of the COVID-19 pandemic in Germany via spline-based hierarchical 
modelling of death counts (cf. Fig. 1) using age-specific IFR estimates from Brazeau et al.24. Our model provides 
estimates of total numbers of infections over time (second graph) and of infections per confirmed case (IPCC) 
as a time-varying factor for dark figures of infections (third graph). By disentangling effects of changes in testing 
from transmission dynamics, estimates of our model for the effective reproduction number based on death 
counts tend to be more robust compared to RKI estimates based on confirmed cases (fourth graph). Model 
estimates are based on posterior medians, together with 50% and 95% credible intervals (CIs).
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case (IPCC) factor of 2.002 [1.460; 2.780] . Using alternative age-specific IFR assumptions based on O’Driscoll 
et al.18 and Levin et al.19 (cf. Fig. S1 of the Supplement), the model estimates 5.577m [3.966m; 7.931m] and 
3.008m [2.155m; 4.275m] infections for the first year of the pandemic, resulting in overall estimated IPCC 
factors of 2.510 [1.785; 3.569] and 1.354 [0.970; 1.924] , respectively. Although absolute numbers of estimated 
infections and levels of dark figures vary considerably for the different age-specific IFRs, general temporal trends 
of estimated infections and dark figures remain quite stable, while effective reproduction numbers estimated by 
our model are very robust regarding different age-specific IFR assumptions (see Section S.3 of the Supplement 
for detailed results of sensitivity analyses).

The third graph of Fig. 2 depicts the estimated course of the infections per confirmed case (IPCC) as a factor 
for dark figures of undetected infections. Results show that estimated dark figures are much larger before the 
“first lockdown” in spring 2020 than in the following course, reflecting limited testing capacities at the beginning 
of the pandemic. It can be observed that changes in estimated dark figures are often associated with shifts in 
testing policies and practice (here, vertical lines in the third graph of Fig. 2 indicate dates of important shifts). In 
particular, estimated dark figures declined sharply in June 2020 in the context of a local super-spreading event 
in a slaughterhouse in North Rhine-Westphalia, resulting in temporarily increased targeted testing of factory 
employees. During August 2020, when incidence rates were low and targeted testing of travellers returning from 
summer holidays was intensified, the IPCC factor is estimated to be close to one, indicating that most infections 
had been identified by testing in that period. Following increasing dark figures of infections in September and 
October 2020, on the 15th of October the Robert Koch Institute (RKI) changed its recommendations towards 
less stringent indications for SARS-CoV-2 tests, leading to a further increase in numbers of conducted tests and 
a considerable decrease in estimated dark figures of infections. However, with increasing incidences towards 
the end of October, on the 5th of November the recommendations were again updated towards more restricted 
testing, which again results in increasing dark figures estimated by our model. Finally, temporarily increased dark 
figures are estimated following Christmas, reflecting the decrease of conducted tests during this holiday period. 
Overall, our results indicate that the hierarchical modelling approach can reliably detect shifts in testing policies, 
even though model estimates of dark figures are solely based on numbers of confirmed cases and reported deaths, 
without incorporating any direct information regarding the numbers of conducted tests.

Finally, the fourth graph of Fig. 2 shows the resulting course of the effective reproduction number estimated 
by our hierarchical model based on death counts, in comparison with official estimates from the Robert Koch 
Institute (RKI), which are based on the evolution of confirmed cases6,21. It can be observed that estimates based 
on death counts are often similar to classical estimates based on confirmed cases. However, model estimates based 
on death counts prove to be more robust against shifts in testing policies. In particular, confirmed cases indicate 
a short-term spike in the effective reproduction number linked to a local super-spreading event in June 2020, 
whereas our model does not estimate a spike during this period; instead, it estimates reduced dark figures of 
infections, suggesting that the spike in the effective reproduction number was mainly related to targeted testing 
of contact persons. Furthermore, after the “lockdown light” at the 2nd of November 2020, classical estimates of 
the effective reproduction number tend to be smaller than model estimates based on death counts. Although 
the differences do not seem large, they imply considerably different interpretations regarding the course of the 
pandemic: while classical estimates (with values smaller or equal to one) suggest a flattening or even decreasing 
trend of infections following the “lockdown light”, estimates of our model (with values larger or equal to one) 
suggest that true numbers of infections continued to rise (cf. second graph of Fig. 2). Note that the “lockdown 
light” was introduced more or less at the same time when the RKI recommendations for testing were adapted 
(see third graph of Fig. 2), indicating that our model is able to disentangle overlying effects of reduced testing 
(resulting in larger dark figures) and the adaptation of NPIs on numbers of confirmed cases.

Discussion
We have extended and adapted the Bayesian hierarchical model of Flaxman et al.11 for modelling the course of the 
COVID-19 pandemic in Germany based on death counts. A main feature of the proposed approach is the smooth 
and data-driven way of estimating the effective reproduction number. As a result, there is no need to prespecify 
discrete change points for timings of non-pharmaceutical interventions (NPIs) as in the original model of Flax-
man et al.11, diminishing the chance that potential implicit biases are incorporated into the model14,15. While 
our approach shows parallels with the Bayesian model developed in Wood15, which uses smoothing splines to 
estimate effective reproduction numbers in the United Kingdom, an important additional characteristic of our 
work is the adjustment for time-varying effective infection fatality rates (IFRs), which are estimated to change 
substantially over the course of the pandemic as a result of varying age distributions of infections20.

Results for German surveillance data illustrate that the proposed retrospective model can provide additional 
valuable insights regarding the course of effective reproduction numbers and dark figures of true infections. 
While estimated reproduction numbers of our model are often similar to classical estimates from the Robert 
Koch Institute (RKI) based on confirmed cases6,21, the proposed modelling approach based on death counts 
proves to be more robust against shifts in testing policies. In contrast to classical estimation methods relying 
solely on confirmed cases, our approach has the potential to disentangle overlying effects of shifts in testing poli-
cies and actual changes in the effective reproduction number, as illustrated for the second wave of infections in 
Germany in November 2020, where the “lockdown light” was introduced concurrently with the adaptation of 
testing recommendations. Further results presented in the Supplement illustrate that our Bayesian modelling 
approach yields robust estimates for the different developments of the pandemic in the 16 individual German 
federal states (using the same model and priors as for the full country). Here one should note that death counts 
were at relatively low levels during summer 2020, so that estimating the effective reproduction number and dark 
figures of infections for individual federal states comes with larger uncertainty, which is also reflected in the 
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wider credible intervals of model estimates (particularly for federal states with smaller populations, see e.g. the 
results for Mecklenburg-Western Pomerania and Saarland in Figs. S11 and S15).

An important methodological conclusion of this study is that the assumption of a constant effective IFR as 
in the original model of Flaxman et al.11 from the beginning of the pandemic is not suitable for modelling the 
full first year of the pandemic in Germany. In particular during summer 2020 with relatively low incidences 
in Germany, there was a considerably younger age distribution of infections compared to periods with higher 
incidences in spring 2020 and winter 2020/2021, implying lower effective IFRs in the summer period (see Fig. S1 
of the Supplement). Assuming a constant effective IFR, the hierarchical model would, for example, estimate 
unreasonable small numbers of infections during summer 2020 (even lower than numbers of confirmed cases). 
This observation illustrates that the effective IFR is a key parameter of the hierarchical model to retrospectively 
infer numbers of true infections from reported death counts. Only by combining the adjustment for time-
dependent effective IFRs with the smooth modelling via splines, our model estimates of effective reproduction 
numbers largely resembled the official RKI estimates based on confirmed cases21. At the same time, by modelling 
death counts instead of inferring only from confirmed cases, our hierarchical model is more robust to changes 
in testing policies and provides valuable information regarding dark figures of undetected infections over time.

Our study is also related to the recent work of Schneble et al.10, which estimates relative changes in the case 
detection ratio (CDR) over time for different age groups (the CDR is the reciprocal of infections per confirmed 
case, IPCC). The authors employ a smooth generalized linear mixed model for confirmed cases and variables 
indicating whether the infections resulted in COVID-19 related deaths (without modelling the actual dates of 
deaths). While this classical mixed modelling approach provides age group specific estimates of relative changes 
in the CDR, our proposed Bayesian hierarchical modelling approach also yields estimates of absolute numbers 
of dark figures of infections as well as estimates of the effective reproduction number, by considering age-specific 
IFR estimates and dates of reported deaths. Our numerical results regarding trends in dark figures of infections 
generally support the results of Schneble et al.10: dark figures in Germany are estimated to be largest at the 
beginning of the pandemic and, after a period of relatively low estimated dark figures (i.e. large CDR) during 
summer 2020, numbers of undetected cases are estimated to increase sharply in September 2020.

An obvious limitation of our modelling approach relying on death counts is that it can only reflect the 
course of the pandemic in retrospect. While this is partly true for all modelling approaches, including the tra-
ditional ones based on confirmed cases (due to the incubation period and reporting delays), one clearly has to 
acknowledge that a timely reporting and analysis is essential for estimating the effects of political decisions (e.g., 
lockdown measures or other NPIs). In this context, our model based on death counts will always yield results 
several weeks later than day-by-day estimates relying on reported cases. In particular, our retrospective model 
is not designed for “nowcasting” the current development of the pandemic in real time8,9,33. A limitation of the 
presented analysis of German surveillance data is that dates of daily reported deaths may deviate from actual 
dates of deaths9. Similar to the Bayesian model of Flaxman et al.11, our approach relies on parametric assump-
tions, particularly regarding the distribution between infections and reported deaths. While a comparison of 
our results with official RKI estimates indicates that the considered distribution based on previous studies11,23 
is appropriate for German data, the specific parametric assumptions may not be generally transferable to other 
countries with different reporting characteristics.

The Bayesian hierarchical modelling approach also relies on various other assumptions11, among them sta-
tistical ones including the implemented prior distributions for model parameters (see “Methods” section and 
Section S.1 of the Supplement). From a more practical perspective, the model also relies on the assumption of 
a closed environment (no new infections imported from outside of the population) and on the assumption that 
cases are insusceptible for another (second) infection with COVID-19. For the estimation of the effective infec-
tion fatality rate (IFR) we assumed that the evolving age distribution of infections can be approximated by the 
corresponding age distribution of confirmed cases20; furthermore, it relies on the assumption that age-specific 
IFR estimates from Brazeau et al.24 are applicable to Germany (see Section S.3 of the Supplement for sensitivity 
analyses with alternative IFR estimates). In the current modelling approach we do not account for vaccinations, 
which does not pose an important limitation for the considered time period with low total numbers of admin-
istered vaccinations until the end of January 2021.

In this context, we have reason to believe that our hierarchical approach is particularly flexible regarding 
extensions for current and future challenges of COVID-19 modelling, as it shifts the focus from modelling con-
firmed cases towards reported deaths. Since we have included time-varying IFRs to account for changing age 
distributions of infections, future research could make use of this flexibility and incorporate also time-varying 
vaccination effects into our model, as well as potentially altered intrinsic severity of emerging SARS-CoV-2 
variants34. Adjustment for vaccinations could be achieved via a general population-wise factor or age group 
specific parameters representing the rates of vaccinated individuals in the respective groups (see also related 
studies35–37 for different modelling approaches of vaccination effects). Particularly in light of progressive vac-
cination programs in many countries, it can be expected that there will be additional changes in implemented 
testing regimes during the further course of the pandemic. For example, in the second year of the pandemic 
in Germany, SARS-CoV-2 rapid antigen tests were generally provided for free except for the short time period 
between 11th of October 2021 and 12th of November 2021, where free tests were restricted to those which fulfil 
certain eligibility criteria, including children and pregnant women. While this study focused on the first year 
of the pandemic in Germany, our modelling approach based on death counts is expected to be more robust to 
such sharp changes in testing policies compared to approaches based only on numbers of confirmed cases. In 
particular, Contreras et al.38 have illustrated that limited test-trace-and-isolate (TTI) capacities can lead to a 
“metastable regime with the risk of sudden explosive growth” in (undetected) infections. Furthermore, vaccinated 
individuals may generally be less likely to be tested due to asymptomatic or mild symptomatic infection39, which 
may induce larger dark figures of infections in the vaccinated part of the population. Such vaccination effects are 
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expected to further complicate the reliable estimation of the effective reproduction number based only on the 
numbers of confirmed cases. While our retrospective modelling approach is primarily based on the development 
of reported death counts, numbers of hospitalizations and intensive care unit cases are important additional and 
more timely indicators, which could also be integrated into the estimation of the course of the pandemic40,41.

In conclusion, the presented retrospective spline-based modelling approach for estimating effective reproduc-
tion numbers and dark figures of infections provides additional insights regarding the course of the pandemic. 
In particular, by incorporating effective infection fatality rates for modelling the link between infections and 
deaths, the hierarchical model can disentangle overlying effects of changes in testing and mitigation measures. 
Future research should be targeted at integrating various pieces of information for modelling the further course 
of the pandemic, including data on vaccinations, confirmed cases, hospitalizations, intensive care unit cases 
and death counts.

Data availability
All data used for this study are publicly available from the Robert Koch Institute (RKI). RKI estimates of the 
effective reproduction number are available online21. Data on daily reported death counts are available online22. 
Data on weekly confirmed cases for different age groups are available online25. Data on individual confirmed 
cases are available online26.

Code availability
Source code for reproducing all results of the paper is publicly available on Github: https://​github.​com/​wistu​
baT/​Splin​eMode​lGerm​any.
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