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Abstract: Ozone concentrations are key indicators of air quality. Modeling ozone concentrations is
challenging because they change both spatially and temporally with complicated structures. Missing
data bring even more difficulties. One of our interests in this paper is to model ozone concentrations
in a region in the presence of missing data. We propose a method without any assumptions on the
correlation structure to estimate the covariance matrix through a dimension expansion method for
modeling the semivariograms in nonstationary fields based on the estimations from the hierarchical
Bayesian spatio-temporal modeling technique (Le and Zidek). Further, we apply an entropy criterion
(Jin et al.) based on a predictive model to decide if new stations need to be added. This entropy
criterion helps to solve the environmental network design problem. For demonstration, we apply the
method to the ozone concentrations at 25 stations in the Pittsburgh region studied. The comparison of
the proposed method and the one is provided through leave-one-out cross-validation, which shows
that the proposed method is more general and applicable.

Keywords: entropy; environmental network design; dimension expansion; hierarchical Bayesian
spatio-temporal modeling; nonstationary field; semivariogram

1. Introduction

Ozone concentrations are the daily maximum 8 h moving averages of hourly ozone
concentration data recorded in micrograms per cubic meter, µg/m3, which are key indica-
tors of air quality. Monitoring the changes both spatially and temporally is very important
for the assessment of air quality change, which has a great impact on our environment,
society and economy. However, modeling the ozone concentrations is not an easy task since
the ozone concentrations vary over space and time with complicated spatial structures,
temporal structures and spatio-temporal interactions. Furthermore, the presence of missing
data brings even more difficulties. As commented in [1], although we cannot escape the
“curse of dimensionality”, we can take advantage of recent developments in computing
speed and numerical advances (e.g., Markov chain Monte Carlo) that allow us to implement
Bayesian spatio-temporal dynamical models in a hierarchical framework. Such a frame-
work provides simple strategies for incorporating complicated spatio-temporal interactions
at different stages of the models’ hierarchy, and the models are feasible to be implemented
for high-dimensional data. Two popular hierarchical Bayesian spatio-temporal models can
be found in [1,2], among others. The latter one was used in [3].

Ref. [3] studied the ozone concentrations within−79◦ to−81.5◦ longitude and 39.5◦ to
41.5◦ latitude around the Pittsburgh region (−79.23◦, 43.39◦), in which all of the monitoring
stations have missing data. That paper dealt with the missing problems in two steps.
First, it filled in some of the missing measurements by using linear models so that the
pattern of missing data became monotone (the monotone missing is also referred to as
the staircase pattern). Second, it applied hierarchical Bayesian spatio-temporal (HBST)
modeling proposed in [2] on this staircase of missing data to estimate the hyperparameters
of the spatial-temporal model. Based on the estimated hyperparemeters, it estimated the
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spatial correlation function for the monitoring stations. Then, it estimated the covariance
matrix for all of the stations and derived the predictive distribution for the ungauged sites.

Generalized linear models can be used to accommodate non-Gaussian geostatistical
data (e.g., see [4]). Ref. [3] selected the generalized linear model with the quasi-Poisson
family as an appropriated spatial correlation function by examining the pattern of spatial
correlations obtained via the hierarchical model in the plot. However, their link function
is not appropriate if there are negative correlations. This is a strong restriction because
negative correlations are common for the ozone concentrations and other spatial-temporal
data. Moreover, choosing a model by examining the plots derived in terms of the observed
data set is not rigorous enough and may only be suitable just for a particular data set.

In this paper, we propose a method to estimate the covariance matrix through a dimen-
sion expansion method for modeling the semivariograms in nonstationary fields based on
the estimations from hierarchical Bayesian spatio-temporal modeling. For demonstration,
we apply the proposed method on the same data as in Jin et al. [3]. Without any assumption
on the correlation structure, the proposed method is more general than the method in [3]
such that it is applicable to other spatio-temporal data sets. Using the covariance matrix
estimated by the proposed method on the entropy criterion in the environmental network
design problem, our study provides interesting findings, and the locations of the selected
ungauged stations are more reasonable. We provide comparison of these two methods
through leave-one-out cross-validation, which shows that the proposed method provides
improved results.

The paper is arranged as follows. In Section 2, we briefly introduce hierarchical
Bayesian spatio-temporal modeling. In Section 3, we describe the ozone concentrations
in the Pittsburgh region and apply the hierarchical Bayesian spatio-temporal modeling
techniques for filling in missing measurements following [3]. In Section 4, we model
the ozone concentrations in the Pittsburgh region. We first introduce the method for
estimating the covariance matrix through a dimension expansion method for modeling the
semivariograms in nonstationary fields, and we then give spatial predictive distributions
on the ungauged sites using the covariance matrix estimated by the proposed method.
In Section 5, we present the results of the entropy of the predictive distributions and an
optimality criterion for extending an environmental network. In Section 6, we provide the
model evaluation through leave-one-out cross-validation. We conclude this paper with a
conclusion in Section 7.

Throughout the rest of the paper, the L1-norm of a vector c is denoted by ‖c‖1, a p× p
identity matrix is denoted by Ip, the transpose of a matrix A is denoted by A> and the trace
of a square matrix B is denoted by tr(B). In addition, ‘⊗’ represents the Kronecker product,
Nk×`(·, ·) refers to a matrix Gaussian distribution, tk×`(·, ·) denotes a matric-t distribution,
IW(·, ·) stands for the inverted Wishart distribution (see (a) of the appendix for definitions
of these distributions) and GIW(·, ·) denotes the generalized inverted Wishart distribution.

2. Hierarchical Bayesian Spatio-Temporal Modeling

We briefly describe HBST modeling in this section, which is the same as that given
in [3] excluding Step 3 in the HBST modeling procedure. It is noted that this modeling
is a special case of the HBST modeling presented in Chapter 10 of Le and Zidek (2006)
excluding Step 3 in the HBST modeling procedure.

Define the following notations:
d = number of different type stations (e.g., agricultural, residential, commercial

and industrial);
n = number of time points (e.g., number of days);
u = number of locations with no monitors (i.e., ungauged sites);
g = number of locations with monitors (i.e., gauged sites).
The stations are organized into k blocks where the gj (j = 1, 2, · · · , k) sites in the jth

block have the same number of timepoints mj at which no measurements are taken. These
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blocks are numbered so that the measurements correspond to a monotone data pattern or a
staircase structure, that is,

m1 > m2 > · · · > mk ≥ 0.

The response variables are written as

Y = [Y[u], Y[g]].

Here, Y[u] of dimension n× u denotes the unobserved responses at ungauged sites while
Y[g] of dimension n× g is given by

Y[g] =
[
Y[g1], · · · , Y[gk ]

]
=

[(
Y[gm

1 ]

Y[go
1]

)
, · · · ,

(
Y[gm

k ]

Y[go
k ]

)]
,

where Y[gm
j ] is an mj × gj matrix of missing measurements at the gj gauged sites for the mj

time points and Y[go
j ] is an (n−mj)× gj matrix of observed measurements at the gj gauged

sites for the (n−mj) time points.
We assume that the response matrix Y follows the Gaussian and generalized inverted

Wishart model specified by
Y|B, Σ ∼ N(XB, In ⊗ Σ),
B|Σ, B0 ∼ N(B0, VB ⊗ Σ),
Σ ∼ GIW(Θ, δ).

(1)

where B is an l × (g + u) coefficient matrix with the hyperparameter mean matrix B0 and
the variance components VB, X is the matrix of covariates which is defined in (4) and {Θ, δ}
is a set of model parameters specified below.

We partition B corresponding to the l time-varying covariates in conformance with
the block structure as

B = (B[u], B[g1], · · · , B[gk ]).

By assuming an exchangeable structure across sites, B can be written as B = B̃R, where
B̃ is the l × d hyperparameter matrix and R = (ri,j)d×(u+g) with ri,j = 1 for Station j under
Class i and rij = 0 otherwise.

Likewise, we partition the (u + g)× (u + g) covariance matrix Σ over gauged and
ungauged sites conformably as

Σ =

(
Σ[u,u] Σ[u,g]

Σ[g,u] Σ[g,g]

)
,

where Σ[u,u] is a u× u matrix being for the ungauged sites. Further, we partition the g× g
covariance matrix Σ[g,g] for the gauged site blocks as follows:

Σ[g,g] =

Σ[g1,g1] · · · Σ[g1,gk ]

...
...

...
Σ[gk ,g1] · · · Σ[gk ,gk ]

.

Similarly, for j = 1, · · · , k, we put

Σ[gj ,··· ,gk ] =


Σ[gj ,gj ] · · · Σ[gj ,gk ]

...
...

...
Σ[gk ,gj ] · · · Σ[gk ,gk ]

.
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We reparametrize the matrix Σ through the recursive one-to-one Bartlett transforma-
tion for the two blocks:

Σ =

(
Γ[u] + (Υ[u])>Σ[g,g]Υ[u] (Υ[u])>Σ[g,g]

Σ[g,g]Υ[u] Σ[g,g]

)
,

where Γ[u] = Σ[u,u] − Σ[u,g]
(

Σ[g,g]
)−1

Σ[g,u] and Υ[u] =
(

Σ[g,g]
)−1

Σ[u,g]. Similarly, by ap-

plying the Bartlett decomposition, we can represent the submatrix Σ[gj ,··· ,gk ] , for j =
1, · · · , k− 1, as

Σ[gj ,··· ,gk ] =

(
Γj + Υ>j Σ[gj+1,··· ,gk ]Υj Υ>j Σ[gj+1,··· ,gk ]

Σ[gj+1,··· ,gk ]Υj Σ[gj+1,··· ,gk ]

)
,

where Γk = Σ[gk ,gk ] and for j = 1, · · · , k− 1,

Γj : gj × gj = Σ[gj ,gj ] − Σ[gj ,(gj+1,··· ,gk)]
(

Σ[gj+1,··· ,gk ]
)−1

Σ[(gj+1,··· ,gk),gj ],

Υj : (gj+1 + · · ·+ gk)× gj =
(

Σ[gj+1,··· ,gk ]
)−1

Σ[(gj+1,··· ,gk),gj ],

with

Σ[gj+1,··· ,gk ] =


Σ[gj+1,gj ]

...
Σ[gk ,gj ]

.

Therefore, the GIW prior distribution for Σ in (1) is equivalently defined in terms of
(Γ[u], Υ[u]) and {(Γ1, Υ1), · · · , (Γk, Υk), Σk} as follows:

Υ[u]|Γ[u] ∼ N(Υ00, H0 ⊗ Γ[u]),
Γ[u] ∼ IW(Λ0, δ0),
Υj|Γj ∼ N(Υ0j, Hj ⊗ Γj), j = · · · , k− 1,
Γj ∼ IW(Λj, δj), j = 1, · · · , k,

(2)

where Υ[u] is the slope of the optimal linear predictor of Y[u] based on Y[g] and Γ[u] is the
residual covariance of the optimal linear predictor. Similar interpretations can be applied
to Υj and Γj, for j = 1, · · · , k− 1.

LetH be the set of the hyperparameters in (1) and (2), i.e.,H = {Θ, δ, VB, B0}, where
Θ = {(Υ00, H0, Λ0), (Υ01, H1, Λ1), · · · , (Υ0k−1, Hk−1, Λk−1), Λk} with degrees of freedom
parameters δ = (δ0, δ1, · · · , δk)

>. WriteH = [Hu,Hg]. Here,Hg = {VB, B0, (Υ01, H1, Λ1, δ1),
· · · , (Υ0,k−1, Hk−1, Λk−1, δk−1), (Λk, δk)}, which represents the hyperparameters involved
in the marginal distribution of Y[go ].

If a data matrix appears to be an ascending staircase, the HBST modeling procedure is
given as follows:

Step 1. Compute the hyperparameter values that maximize the marginal distribution
f (Y[go ]|Hg) using an empirical Bayesian approach (see (b) of Appendix A). The
EM algorithm is used to obtain Ĥg.

Step 2. Obtain the predictive distributions f (Y[gm
k ]|Y[go ], Ĥg) of missing measurements as

in (c) of Appendix A. Fill in the missing data by using the predictive distributions.
Step 3. Obtain the estimate Σ̂[g,g] from the estimate of Ĥg. In terms of Σ̂[g,g], obtain the

estimate of the covariance matrix by using a dimension expansion method given in
Qin et al. [5] and the thin-plate spline method given in Wabba and Wendelberger
(1980). The details are given in Section 4.1.
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Step 4. Estimate the hyperparametersHu and obtain the conditional predictive distribu-
tion f (Y[u]|Y[g], Ĥ) (see Section 4.2).

3. Ozone Concentrations from the Monitoring Stations in Pittsburgh Region

The ozone concentrations were recorded within −79◦ to −81.5◦ longitude and 39.5◦ to
41.5◦ latitude around the Pittsburgh region (−79.23◦, 43.39◦) for four consecutive summer
months, June, July, August and September, over the period from 1995 to 2007. There were
25 monitoring stations in the region as shown in Figure 1, which is the same as Figure 1
in [3]. The original data set Y0 was collected from 25 stations, and there were a total of 1586
(13 years × 122 days) measurements at each station. The number of missing data in Y0 is
shown by N1.Miss in Table 1, which is the same as Table 1 in [3]. In this section, we fill in
missing measurements.

−81.0 −80.5 −80.0 −79.5

3
9

.5
4

0
.0

4
0

.5
4

1
.0

4
1

.5

Agricultural(1)  Residential(2) Commercial(3) Industrial(4)

Pittsburgh

5(3)

25(2)

1(2)

2(2)

3(3)

4(3)

6(3)
7(2)

8(3)

9(1)

10(2)

11(1)

12(3)

13(2)

14(2)

15(1)

16(1)
17(2)

18(2)

19(1)

20(3)21(2)

23(3)24(2)

22(4)

Figure 1. Monitoring stations in the Pittsburgh region.

Table 1. Location of the stations and number of missing data.

ID Class Lon Lat N1.Miss N2.Miss N3.Miss ID Class Lon Lat N1.Miss N2.Miss N3.Miss

1 2 −40.24 80.66 855 854 854 14 2 −40.38 80.18 22 0 0
2 2 −41.09 80.65 610 610 610 15 1 −40.56 80.50 13 0 0
3 3 −39.64 79.92 618 610 610 16 1 −40.68 80.35 11 0 0
4 3 −40.30 79.50 488 488 488 17 2 −40.74 80.31 4 0 0
5 3 −40.36 80.61 858 854 366 18 2 −41.21 80.48 5 0 0
6 3 −40.44 80.01 370 366 366 19 1 −40.44 80.42 16 0 0
7 2 −40.41 79.94 370 366 366 20 3 −40.14 79.90 3 0 0
8 3 −40.81 79.56 328 318 318 21 2 −40.17 80.26 1 0 0
9 1 −39.81 80.28 278 244 244 22 4 −40.99 80.34 0 0 0
10 2 −40.93 81.12 12 0 0 23 3 −40.42 79.69 5 0 0
11 1 −41.45 80.59 1 0 0 24 2 −40.42 80.58 5 0 0
12 3 −40.46 79.96 2 0 0 25 2 −40.12 80.69 488 488 0
13 2 −40.61 79.73 8 0 0

The numbers 1, 2, 3 and 4 under Class denote agricultural, residential, commercial and industrial, respectively.

3.1. Filling in the Missing Measurements for Each Monitoring Station within the Period of
Monitoring Blocks

Since there are missing data in the dataset, we follow the steps in [3] in filling in some
missing measurements occurred during the operation of each monitoring station, using the
regression model as



Entropy 2022, 24, 492 6 of 13

y122(i−1)+j = a sin
(

2(122(i− 1) + j)π
122

)
+ b cos

(
2(122(i− 1) + j)π

122

)
+ ci + ε122(i−1)+j

= a sin
(

jπ
61

)
+ b cos

(
jπ
61

)
+ ci + ε122(i−1)+j, (3)

for i = 1, . . . , 13, and j = 1, . . . , 122, where a and b are regression coefficients, ci, for
i = 1, . . . , 13, are the categorical factors and {εt} is a sequence of independently and
identically distributed Gaussian random variables with mean 0 and variance σ2. The
model (3) assigns different means to the years with a yearly cycle of 122 days. We re-
express the 13 factors in the model via Helmert contrasts, which compare the first level
of the factor with all later levels, the second level with all later levels, and so forth. The
Helmert matrix, Z13×13, is defined as follows.

Z =



1 −1 −1 · · · −1 −1
1 1 −1 · · · −1 −1
1 0 2 · · · −1 −1
...

...
...

. . .
...

...
1 0 0 · · · 11 −1
1 0 0 · · · 0 12


.

Let X, the matrix of covariates, be

X =
(
S Z⊗ 1122

)
1586×15, (4)

where 1n = (1, 1, . . . , 1, 1)>1×n and

S =

(
sin(π/61) · · · sin(iπ/61) · · · sin(1586π/61)
cos(π/61) · · · cos(iπ/61) · · · cos(1586π/61)

)>
2×1586

,

and let y = (y1, y2, . . . , y1586)
>, β = (a, b, d1, . . . , d13)

> and ε = (ε1, ε2, . . . , ε1586)
> denote

the response variables, regression coefficient vector and error variables, respectively. The
model (3) is written as y = Xβ + ε.

We then fill in the missing measurements within the blocks by the least squares predic-
tions plus errors and obtain a new data set Y1 in which the unfilled missing measurements
are either in the end of the time period or in the beginning of the time period. The number
of missing data in Y1 is shown in Table 1 by N2.Miss.

3.2. Filling in the Missing Measurements in Y1

To fill in the missing measurements in Y1, we can proceed as follows [3]:

(i) Obtain a new data set Y2 from Y1 by filling in the 488 missing measurements at
Stations 5 and 25 during the end of the time period by using the HBST modeling
technique. N3.Miss in Table 1 displays the number of missing data in the data set
Y2, which shows that Y2 has a staircase data structure, as all of the missing data are
located in the beginning of the time period.

(ii) Put d = 4, l = 15, n = 1586, k = 7, m1 = 854, m2 = 610, m3 = 488, m4 = 366,
m5 = 318, m6 = 244, m7 = 0, g1 = 1, g2 = 1, g3 = 0, g4 = 3, g5 = 1, g6 = 1 and
g7 = 16. Fill in the remaining missing values in Y2 by executing Steps 1–2 of the HBST
modeling procedure.

4. Model the Ozone Concentrations in the Pittsburgh Region

To model ozone concentrations in the Pittsburgh region by spatial interpolation, we
cover the region by the 100 grid boxes of a spatial resolution of latitude 0.2◦× longitude
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0.2◦. Thus, u = 100. The grid points are ungauged sites, and their classes are displayed
in Figure 4. To derive the predictive distributions for these grid points, a key step is to
estimate the covariance matrix.

4.1. Estimation of the Covariance Matrix

In this subsection, we introduce a method for estimating the covariance matrix through
a dimension expansion method for modeling the semivariograms in nonstationary fields in
terms of Ĥg from Step 1 of the HBST procedure.

Let {Y(x) : x ∈ S}, S ∈ Rd, be an environmental random process, where x is a
d-dimensional spatial index that varies continuously throughout the region S . At n spatial
locations denoted by {xi : i = 1, . . . , n}, we observe realizations of the random process
Y(x), i.e., {Y(xi) : i = 1, . . . , n}. We are interested in learning the spatial dependency of
the process through the observed data. The semivariogram function which describes the
degree of spatial dependency of an intrinsic stationary random process is a cornerstone
in spatial statistics. An intrinsic stationary random process satisfies the following two
conditions (Cressie [6]):

1. E(Y(x)) = U , for x ∈ S ,
2. var

(
Y(xi)− Y(xj)

)
= 2γ(xi − xj),

where a semivariogram is defined as γ(xi − xj) =
1
2 var

(
Y(xi)− Y(xj)

)
for two different

locations, xi and xj, in the monitored region. The estimated covariance matrix of the
monitoring stations Σ̂[g,g] is based on the estimation ofHg from Step 1 of the HBST proce-
dure. We estimate the semivariograms of the ozone concentrations from the monitoring
stations by

γ̂(xi − xj) =
1
2

ˆvar(Y(xi)) +
1
2

ˆvar(Y(xj))− ˆcov
(
Y(xi), Y(xj)

)
. (5)

From Figure 2, we notice that the estimated semivariograms related to Station 3
(marked by “×”) are much higher than the other stations. We examine the location of
Station 3 and notice that it was on the edge of the monitored region. Moreover, there
were over ten airports around this station. According to Xue et al. [7], there is a great
impact of high-altitude aircrafts on the ozone layer in the stratosphere. This becomes an
influential factor in modeling the ozone concentrations. Next, we introduce how this factor
is considered in the proposed modeling technique.

Figure 2. Empirical semivariograms of the ozone concentrations from the monitoring stations versus
the Euclidean distances between monitoring stations based on the Bayesian hierarchical model. The
semivariograms related to Station 3 are marked by “×”.

It is obvious that this field is not stationary. Bornn et al. [8] proposed a novel ap-
proach to find the latent dimensions over which the nonstationary fields exhibit stationarity
through dimension expansion. They justified that for a nonstationary Gaussian process
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Y(x), where x ∈ Rd, there exists a vector z ∈ Rp, p > 0, such that the expanded process
Y([x, z]) is stationary under appropriate moment constraints. Note that [x, z] is the con-
catenation of the vectors x and z. The stationary semivariogram with latent vectors can be
expressed by

2γ
(
[xi, zi]−

[
xj, zj

])
= E

(
Y([xi, zi])− Y

([
xj, zj

]))2,

where [xi, zi] is the expanded spatial index for the ith location. Qin et al. [5] improved the
method in Bornn et al. [8] by considering the covariance structure of the γ̂i,j, for j 6= i,
which are generally correlated. In our application, we use the lasso-penalized weighted
least-squares criterion (WLS) in Qin et al. [5] as follows,

(
φ̂, Z

)
WLS =argmin

Œ,Z
∑
j<i

1
γ2

φ

(
di,j([X, Z])

){γ̂i,j − γφ
(
di,j([X, Z])

)}2 + λ
p

∑
k=1
‖Z.k‖1. (6)

to estimate the parameters and the expanded dimensions. Here, γ̂i,j is the estimated
semivariogram by (5) and di,j([X, Z]) is the Euclidean distance between the locations [xi, zi]
and

[
xj, zj

]
and Z.k is the kth column of Z. [X, Z] is the concatenation of the matrices X

and Z. The tuning parameter λ in the group lasso is used to determine the number of latent
dimensions and regularize the estimation of Z to prevent overfitting. γφ

(
di,j([X, Z])

)
is

a parametric stationary semivariogram model with parameter φ. The most popular ones
are the exponential model, the spherical model and the Gaussian model (see Journel and
Huijbregts [9] and Cressie [6]), among others). For example, the exponential model is
defined as

γφ(d) = φ1(1− exp(−d/φ2)) + φ3,

where φ = (φ1, φ2, φ3)
>, φ1 ≥ 0, φ2 ≥ 0 and φ3 ≥ 0.

The semivariogram plot with estimated expanded dimensions (Figure 3) of the moni-
toring stations shows that the field is in good agreement with the theoretical model, as most
of the points are near the solid red line, the fitted exponential semivariogram model. Two
extra dimensions are added to the original coordinate with λ = 0.01. Figure 3 shows that
with the extra dimensions, Station 3 is pushed much further out of the two-dimensional
plane, reflecting the impact of high-altitude aircrafts on the ozone layer in the stratosphere
we have mentioned earlier.

Figure 3. Semivariogram plot of the ozone concentrations from the monitoring stations over a larger
range of distances than the range shown in Figure 2, owing to the application of dimension expansion.
The fitted exponential semivariogram model is shown by the red solid line.

After the expanded dimensions for the monitoring stations are obtained, we use
the thin-plate spline method [10] to estimate the hidden dimensions for the ungauged
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sites. The semivariograms for the ungauged stations are estimated by the exponential
model using the estimated parameter vector φ̂. Next, we estimate the semivariograms
γsi ,sj between stations si and sj using the exponential model based on the distances over
the space composed by the original and the expanded dimensions. Last, the covariance
between any two sites can be estimated by

Σ̂i,j = Ĉov(Y(si), Y(sj)) =
1
2

σ̂Y(si)
+

1
2

σ̂Y(sj)
− γ̂si ,sj ,

where σ̂Y(si)
and σ̂Y(sj)

are estimates of σY(si)
and σY(sj)

obtained by the thin-plate spline
approach.

4.2. Prediction of the Daily Ozone Concentrations at the Grid Points

By Chapter 10 of Le and Zidek (2006), spatial predictive distributions at the grid points
given the monitoring sites are as follows:

(Y[u]|Y[g],H) ∼ tn×u

(
Uu|g,

Φ[u|g] ⊗Ψ[u|g]

δ∗0
, δ∗0

)
, (7)

where δ∗0 = δ0 − u + 1, Ψ[u|g] = Λ0, U [u|g] = XB[u]
0 + (Y[g] − XB[g]

0 )Υ00 and Φ[u|g] =

In + XVBX> + (Y[g] − XB[g]
0 )H0(Y[g] − XB[g]

0 )> (see (a) of Appendix A for definition of the
matric-t distribution).

We estimate the hyperparameters associated with the grid points Λ0, Υ00, H0 and
δ0 via

δ̂0 =
δ̂1 + · · ·+ δ̂k

k
, Ĥ0 = Λ̂[1,··· ,k], Υ̂00 = (Σ̂[g,g])−1Σ̂[g,u],

Λ̂0 =
δ̂0 − u− 1

1 + tr(Σ̂[g,g]Ĥ0)
(Σ̂[u,u] − Υ̂>00Σ̂[g,g]Υ̂00)

with

Λ̂[j,··· ,k] =

(
Λ̂j + Υ̂>0jΛ̂

[j+1,··· ,k]Υ̂0j Υ̂>0jΛ̂
[j+1,··· ,k]

Λ̂[j+1,··· ,k]Υ̂0j Λ̂[j+1,··· ,k]

)
, j = 1, . . . , k− 1,

and Λ̂[k] = Λ̂k.
After all of the hyperparameters in the predictive distributions are estimated, we can

predict the daily ozone concentrations at all the grid points in the time period of study by
generating samples from the predictive distributions.

5. Environmental Network Extension

Assume that Y has the density function f . The total reduction in uncertainty of Y can
be presented by the entropy of its distribution, i.e., H(Y) = −E[log f (Y)/h(Y)], where h(·)
is a not necessarily integrable reference density (Jaynes [11]). According to the predictive
distribution (7), the total entropy H(Y[u]|Y[g]) can be defined as

H(Y[u]|Y[g]) =
1
2

log
(∣∣∣Ψ[u|g]

∣∣∣)+ cu(u, q), (8)

where cu(u, q) is a constant depending on the degree of freedom and the dimension of the
ungauged sites.

The key step in expanding an environmental network is to find appropriate ungauged
sites to add to the existing network that maximizes the corresponding entropy. We use the
following optimality criterion as given in [3]:
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max
add

(
1
2

log
∣∣∣Ψ[u|g]

∣∣∣)add
(9)

The add sites, in a vector of dimension u1, are selected to maximize the entropy in (8).
In [3], the grid points {91, 92, 93} were selected with the highest entropy 11.3774. The
proposed method selects the grid points {41, 71, 100} with entropy 12.1207. This selection
is more reasonable, as they are not gathered in the southeast corner of the region like
{91, 92, 93}. The selected sites among 100 grid points by the two methods are shown in
Figure 4 below.

Figure 4. The selected sites among 100 grid points (black circled points by [3] and red circled points
by our method).

6. Model Evaluation

In this section, we use the leave-one-out cross-validation to evaluate the accuracy
of the predictive model derived using the proposed method and compare the proposed
method with the one in [3]. We select the observations from one of the original 25 stations
as validation data, and observations in the remaining 24 stations are treated as training
data. We use the data from day 855 to day 1586 at the end of the study from each station to
evaluate the prediction because during this period, none of the stations has missing data.
By choosing this period, we avoid using the Bayesian hierarchical modeling technique
for estimating the missing data in the training data set, which is time-consuming and not
our intention for evaluating the proposed method on estimating the covariance matrix.
Station 22 is excluded because it is the only industrial station in the study. For each of
the 24 stations, we generate 100 samples from the predictive distribution with parameters
estimated using observations from the rest of the 23 stations. We compute the average
of relative absolute bias (ARAB) as ∑100

j=1
∣∣(yj,i,t − yi,t

)/
yi,t
∣∣, where yj,i,t is the jth sample

generated from the predictive distributions and yi,t is the observation from Station i on
time t. The results are given in Table 2.

In Table 2, “-” means that there is no prediction for the station because there are
negative correlations and the method in [3] is not applicable to estimate the predictive
distribution. The results in Table 2 show that the proposed method provides slightly more
accurate predictions than the one in [3] for most of the stations. More important is that,
when there are negative correlations obtained from the estimations of the hierarchical
Bayesian spatio-temporal modeling technique, the method in [3] fails to estimate the
covariance matrix, while the proposed method still provides accurate predictions except
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for Station 3. This is expected because Station 3 is an influential station. Therefore, if we
use observations at Station 3 as the validation data set, it has a great impact on estimating
the covariance matrix.

Table 2. Mean and SD of the average of relative absolute bias.

ID Our Method Jin et al. (2012) [3] ID Our Method Jin et al. (2012) [3]

1 0.0789 (0.0627) 0.8134 (0.0682) 13 0.1145 (0.1096 ) 0.2003 (0.1769)
2 0.1206 (0.1356) 0.1221 (0.1121) 14 0.1361 (0.1732) 0.2211 ( 0.2283)
3 0.8517 (0.8517) 0.1572 ( 0.1572) 15 0.1911 (0.2052) -
4 0.1756 (0.1693) - 16 0.1189 (0.1179) 0.1285 (0.1161)
5 0.1575 (0.1731) 0.1986 (0.1855) 17 0.1496 (0.1594 ) 0.1669 (0.1727)
6 0.1336 (0.1513) 0.1477 (0.1667 ) 18 0.1253 (0.1154 ) 0.1256 (0.1372)
7 0.1265 (0.1563 ) 0.1456 (0.1732) 19 0.1369 (0.1272) 0.1026 ( 0.0994)
8 0.0968 (0.0804) 0.1135 (0.1023) 20 0.1603 (0.1598) 0.1310 (0.1134)
9 0.1497 (0.1104) 0.1619 (0.1208) 21 0.1351 (0.1154) 0.1274 (0.1123)
10 0.1589 (0.1796 ) - 23 0.1617 (0.1858) -
11 0.6913 (0.6455) - 24 0.1286 (0.1051) -
12 0.1406 (0.1409) 0.1265( 0.1416) 25 0.1583 (0.1701) 0.1722 ( 0.1675)

7. Conclusions

In this paper, we have derived a predictive model through the hierarchical Bayesian
spatio-temporal modeling technique given in [12] at ungauged sites based on the covariance
matrix estimated by a dimension expansion method for modeling semivariograms in
nonstationary fields. Further, we have applied an entropy criterion (see [12] or [3] for details)
based on the predictive model to decide if new stations need to be added. This entropy
criterion helps to solve the environmental network design problem. For demonstration, we
have applied the proposed method on ozone concentrations at 25 stations in the Pittsburgh
region studied in [3]. The proposed method has provided satisfactory results. Moreover,
the results have shown that the method is more general and applicable, as no assumption
is imposed on the correlation structure.
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Appendix A. Hierarchical Bayesian Spatio-Temporal Modeling

The following is mainly based on Chapter 10 of Le and Zidek (2006).

(a) Somedistributions
Matrix normal distribution. If, for an n× m matrix U and positive definite matrices

A : n× n and B : m×m, the density function of an n×m random matrix X has the form

f (X) = (2π)−
nm
2 |A|−

m
2 |B|−

n
2 exp{−1

2
tr[A−1(X−U )B−1(X−U )>]},

then X is said to have a matrix normal distribution and is denoted by X ∼ Nn×m(U , A⊗ B).
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Inverted Wishart distribution. If, for a p× p positive definite matrix Ψ and a positive
constant δ ≥ p, the density function of a p× p random matrix S has the form

f (S) =
1

2
δp
2 Γp(

δ
2 )
|Ψ|

δ
2 |S|

−(δ+p+1)
2 exp

{
−1

2
tr(S−1Ψ)

}
,

then S is said to have an inverted Wishart distribution and is denoted by S ∼ IW(Ψ, δ).
Matric-t distribution. If, for an n×m matrix U , positive definite matrices A : n× n and

B : m×m and a positive constant δ > 0, the density function of an n×m random matrix
X has the form

f (X) ∝ |A|−
m
2 |B|−

n
2

∣∣∣In + δ−1 A−1(X−U)B−1(X−U )>
∣∣∣− δ+n+m−1

2 ,

then X is said to have a matric-t distribution and is denoted by X ∼ tn×m(U , A⊗ B, δ).

(b) Estimation ofHg = {VB, B0, (Υ01, H1, Λ1, δ1), · · · , (Υ0,k−1, Hk−1, Λk−1, δk−1), (Λk, δk)}
Le and Zidek (2006) showed that the predictive distributions derived through the

integrated framework above are completely characterized by their hyperparameters, which
are estimated by an empirical Bayes approach, that is, to estimate them by maximizing the
marginal likelihood of all the measured responses (conditional on those hyperparameters)
evaluated at their observed values. This procedure is referred to as type-II maximum likeli-
hood estimation (type-II MLE). To estimateHg, the following procedure can be employed:
Compute the hyperparameter values that maximize the marginal distribution f (Y[go ]|Hg),
where Y[go ] = {Y[go

1], · · · , Y[go
k ]}. The subscript g indicates that not all the hyperparame-

ters are involved in this marginal distribution. The response matrix Y follows the GIW
distribution specified by (1) and (2). The marginal distribution f (Y[go ]|Hg) can be written as

Y[go ]|Hg ∼
k

∏
j=1

t(n−mj)×gj
(U [j]

o , Φ[j]
o ⊗Ψ[j]

o , δ
[j]
o ), (A1)

where U [j]
o = U [j]

(2), Φ[j]
o = A[j]

22, Ψ[j]
o =

Λj
δj−gj+1 , δ

[j]
o = δj − gj + 1 with ε̃[gj+1,··· ,gk ] =

Y[gj+1,··· ,gk ] − XB
[gj+1,··· ,gk ]

0 , for j = 1, · · · , k− 1,U [j]
(1)

U [j]
(2)

 :
(

mj × gj
(n−mj)× gj

)
= XB

[gj ]

0 + ε̃[gj+1,··· ,gk ]Υ0j,

and (
A[j]

11 A[j]
12

A[j]
21 A[j]

22

)
:
(

mj ×mj mj × (n−mj)
(n−mj)×mj (n−mj)× (n−mj)

)
= In + XVBX> + ε̃[gj+1,··· ,gk ]Hj(ε̃

[gj+1,··· ,gk ])>.

Although f (Y[go ]|Hg) can be written as a matric-t distribution as in (A1), direct maxi-
mization of this marginal density presents a challenge. The EM algorithm helps circum-
vent it.

(c) Predictive distributions of missing data
By Theorem 10.1 of Le and Zidek (2006), it follows that

Y[gm
k ]|Y[go ],Hg ∼ tmk×gk (U

[k]
(m|g), Φ[k]

(m|g) ⊗Ψ[k]
(m|g), δ

[k]
(m|g)), (A2)
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Y[gm
j ]|Y[gm

j+1,··· ,gm
k ], Y[go ],Hg ∼ tmj×gj(U

[j]
(m|g), Φ[j]

(m|g) ⊗Ψ[j]
(m|g), δ

[j]
(m|g)), (A3)

where U [j]
(m|g) = U [j]

(1) + A[j]
12(A[j]

22)
−1(Y[go

j ] − U [j]
(2)), Φ[j]

(m|g) =
δj−gj+1

δj−gj+n−mj+1

[A[j]
11 − A[j]

12(A[j]
22)
−1 A[j]

21], Ψ[j]
(m|g) = 1

δj−gj+1 [Λj + (Y[go
j ] − U [j]

(2))
>(A[j]

22)
−1(Y[go

j ] − U [j]
(2))] and

δ
[j]
(m|g) = δj − gj + n−mj + 1.
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