Chapter 16 ®
Challenges, Opportunities Qs
and Theoretical Epidemiology

Lessons learned from the HIV pandemic, SARS in 2003, the 2009 HIN1 influenza
pandemic, the 2014 Ebola outbreak in West Africa, and the ongoing Zika out-
breaks in the Americas can be framed under a public health policy model that
responds after the fact. Responses often come through reallocation of resources
from one disease control effort to a new pressing need. The operating models
of preparedness and response are ill-equipped to prevent or ameliorate disease
emergence or reemergence at global scales [27]. Epidemiological challenges that
are a threat to the economic stability of many regions of the world, particularly
those depending on travel and trade [132], remain at the forefront of the Global
Commons. Consequently, efforts to quantify the impact of mobility and trade
on disease dynamics have dominated the interests of theoreticians for some time
[14, 143]. Our experience includes an HINI influenza pandemic crisscrossing
the world during 2009 and 2010, the 2014 Ebola outbreaks, limited to regions
of West Africa lacking appropriate medical facilities, health infrastructure, and
sufficient levels of preparedness and education, and the expanding Zika outbreaks,
moving expeditiously across habitats suitable for Aedes aegypti. These provide
opportunities to quantify the impact of disease emergence or reemergence on
the decisions that individuals take in response to real or perceived disease risks
[11, 62, 93]. The case of SARS in 2003 [40], the efforts to reduce the burden of
HINI1 influenza cases in 2009 [33, 62, 80, 93] and the challenges faced in reducing
the number of Ebola cases in 2014 [24, 27] are but three recent scenarios that
required a timely global response. Studies addressing the impact of centralized
sources of information [150], the impact of information along social connections
[33, 37, 42], or the role of past disease outbreak experiences [105, 130] on the
risk-aversion decisions that individuals undertake may help identify and quantify
the role of human responses to disease dynamics while recognizing the importance
of assessing the timing of disease emergence and reemergence. The co-evolving
human responses to disease dynamics are prototypical of the feedbacks that define
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complex adaptive systems. In short, we live in a socioepisphere being reshaped by
ecoepidemiology in the “Era of Information”.

What are the questions and modes of thinking that should be driving ongoing
research on the dynamics, evolution, and control of epidemic diseases at the popu-
lation level? The challenges of SARS, Ebola, Influenza, Zika, and other diseases are
immense. While we may guess which emerging or re-emerging disease may lead
to the next possible catastrophe, we cannot know. The contemporary philosopher
Yogi Berra is rumored to have said, “Making predictions is hard, especially about
the future”. There are some epidemiological topics that have already received some
attention but are not yet fully developed. In the rest of this chapter we highlight
some challenges, opportunities, and promising approaches in the study of disease
dynamics at the population level.

16.1 Disease and the Global Commons

As has been noted, “The identification of a theoretical explanatory framework that
accounts for the pattern regularity exhibited by a large number of host—parasite
systems, including those sustained by host—vector epidemiological dynamics, is but
one of the challenges facing the co-evolving fields of computational, evolutionary,
and theoretical epidemiology” [25]. Furthermore, “The emergence of new diseases,
the persistence of recurring diseases and the re-emergence of old foes, the result of
genetic changes or shifts in demographic, and environmental shifts have increased
due to mobility, global connectedness, trade, bird migration, poverty and long-
lasting violent conflicts. These diseases often present modeling challenges which
may yield to existing analytic techniques but sometimes require new mathematics”
[25].

The Global Commons are continuously reshaped by the ability of an increasing
proportion of the human population to live, move, or trade nearly anywhere. There-
fore, understanding the patterns of interactions between humans, or between humans
and vectors, as well as their relationships to patterns of individual movement,
particularly those of the highly mobile, is critical to public health responses that
effectively ameliorate the ability of a disease to spread. In today’s world, hosts’ risk
knowledge (good or bad information) when combined with the ability of public
health officials to measure and properly communicate, in a timely manner, real
or perceived information on disease risks, limit our ability to derail the spread of
emergent and re-emergent diseases, at time scales that make a difference.

16.1.1 Contagion and Tipping Points

Contagion is believed to be the direct or indirect result of interactions between
individuals experiencing radically different epidemiological, or immunological, or
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social states. Contagion tends to succeed within environments or communities that
“facilitate” modes of infection among its members. Contagion is an “understood”
or “believed” mode of disease transmission or of “socially transmitted” behaviors,
popularized by Malcolm Gladwell, a journalist who made use of his general
understanding of the concept of “contagion.” In his construction of reasonable or
plausible explanations for the observed and documented dramatic reductions in car
thefts and violent crimes in New York City in the 1990s, [71] Gladwell expanded the
use of the concept of contagion and tipping point in his development of a framework
that captures—as the result of contagion—the spread of a multitude of social ills or
virtues [72]. Specifically, contagion is seen in [71] as a force capable of starting
and sustaining growth in criminal activity as long as a “critical mass” of individuals
capable and willing to commit crimes is available. The growth in criminal activity
in New York City is, according to Gladwell, the result of the “interactions” between
a large enough pool of criminally active (infected) individuals and individuals
susceptible to criminal contagion [71]. Gladwell extends the perspective pioneered
by Sir Ronald Ross [141] and his “students” [90-92] to the field of social dynamics.

Gladwell concludes as Ross did in 1911 that implementing control measures
(crime contact-reduction measures) that bring the size of the population of criminals
(the core) below a critical threshold (tipping point), are sufficient to explain the
drastic reductions in criminal activity in NYC. Gladwell concludes, “There is
probably no other place [NYC] in the country where violent crime has declined
so far, so fast” [71].

16.1.2 Geographic and Spatial Disease Spread

The SARS epidemic of 2002-2003 emphasized the possibility of disease trans-
mission over long distances through air travel, and this has led to metapopulation
studies that account for long-distance transmission [5-8]. A metapopulation, in this
context, is a population of populations linked by travel. A metapopulation model
would have an associated, independent of travel, reproduction number as well as
reproduction numbers that account for travel between patches, either temporary
travel or permanent migration . This is an Eulerian perspective, describing migration
between patches.

An alternative approach to the modeling of the spatial spread of diseases is based
on a Lagrangian perspective, which can be formulated, for example, in terms of
residence times [18, 25] . This approach has been introduced in Chap. 15. In this
structure, actual travel between patches is not described explicitly, and this makes
the analysis less complicated. Calculation of the reproduction number and the final
size relations is possible.

Another aspect of the study of the spread of diseases is the spatial spread of
diseases through diffusion. This has been introduced in Chap. 14 of this book and
has been examined in considerable detail in [136], with particular emphasis on
epidemic waves.
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16.2 Heterogeneity of Mixing, Cross-immunity, and
Coinfection

In epidemics, as in the rest of biology, the role of heterogeneity plays a fundamental
role and a critical question arises: what is the level of heterogeneity that must be
included to address a specific question properly? For example, first-order estimates
of the fraction that must be vaccinated to eliminate a communicable disease can
be handled with homogeneous mixing models while the elaboration of optimal
vaccination strategies in real-life situations often require an age-structured model
[28, 81]. The study of nosocomial (in-hospital) infections provides an additional
example of the role of heterogeneity in transmission or degree of susceptibility or
resistance [38, 39, 106]. The SARS epidemic provided a timely example of the
criticality of heterogeneous mixing, in nosocomial transmission [85, 152] . Since
there was no treatment available during the SARS epidemic, the main management
approach rested on the effectiveness of isolation of diagnosed infectives, quarantine
of suspected infectives, and early diagnosis. Quarantine was decided by tracing of
contacts made by infectives but in fact few quarantined individuals developed SARS
symptoms. The role of early diagnosis and the effectiveness of isolation seemed
to have been the key to SARS control with improvements in contact tracing also
playing an important role in epidemic control.

Another set of questions arises when one considers the immunological history of
individuals or populations. There are many instances in which more than one strain
of a disease is circulating within a population and the possibility of cross-immunity
between strains becomes important [3, 4]. Mathematically, co-strain co-circulation
may lead to models that support a disease-free equilibrium (or non-uniform age
distribution), equilibria in which only one strain persists, and an equilibrium in
which two strains coexist. The role of cross-immunity in destabilizing disease
dynamics (periodic solutions) has been studied extensively in the case of influenza
models without age structure [57, 123, 124, 151] and also in age-structured models
[29, 30]. Coinfections of more than one disease are also possible and their analysis
requires more elaborate models. This is a real possibility with HIV and tuberculosis
[96, 119, 133, 135, 140, 144, 154].

16.3 Antibiotic Resistance

In short-term disease outbreaks, antiviral treatment is one of the methods used
to treat illness and also to decrease the basic reproduction number %y and thus
to lessen the number of cases of disease. However, many infectious pathogens
can evolve and generate successor strains that confer drug resistance [55]. The
evolution of resistance is generally associated with impaired transmission fitness
compared to the sensitive strains of the infectious pathogen [112]. In the absence
of treatment, resistant strains may be competitively disadvantaged compared to the
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sensitive strains and may go extinct. However, treatment prevents the growth and
spread of sensitive strains, and therefore induces a selective pressure that favors the
resistant strain to replicate and restores its fitness to a level suitable for successful
transmission [2]. This phenomenon has been observed in several infectious diseases,
in particular for management of influenza infection using antiviral drugs [138].

Previous models of influenza epidemics and pandemics have investigated strate-
gies for antiviral treatment in order to reduce the epidemic final size (the total
number of infections throughout the epidemic), while preventing widespread drug
resistance in the population [77, 107, 111, 113, 114]. Through computer simulations,
these studies have shown that, when resistance is highly transmissible, there may be
situations in which increasing the treatment rate may do more harm than good by
causing a larger number of resistant cases than the decrease in cases produced by
treatment of sensitive infections. A recent epidemic model [156] has exhibited such
behavior and suggested that there may be an optimal treatment rate for minimizing
the final size [107, 111, 114].

In diseases such as tuberculosis, which operate on a very long time scale, the
same problems arise but the modeling scenario is quite different. It is necessary
to include demographic effects such as births and natural deaths in a model. This
means that there may be an endemic equilibrium, and that the disease is always
present in the population. Instead of studying the final size of an epidemic to
measure the severity of a disease outbreak, it is more appropriate to consider the
degree of prevalence of the disease in the population at endemic equilibrium as a
measure of severity. For diseases such as tuberculosis, in which there are additional
aspects such as reinfection, there may be additional difficulties caused by the
possibility of backward bifurcations. The importance of understanding the dynamics
of tuberculosis treatment suggests that this is a topic that should be pursued [60].

Antibiotic-resistant bacterial infections in hospitals are considered one of the
biggest threat to public health. The British Chief Medical Officer, Dame Sally
Davies, noted that “the problem of microbes becoming increasingly resistant to the
most powerful drugs should be ranked alongside terrorism and climate change on
the list of critical risks to the nation.” Yet while antibiotic use is rising, not least in
agriculture for farmed animals and fish, resistance is steadily growing.

The challenges posed by the persistence, evolution, and expansion of resistance
to antimicrobials are critically important because the number of drugs is limited
and no new ones have been created for three decades [2, 16, 38, 65, 99]. We
are facing a global crisis in antibiotics, the result of rapidly evolving resistance
among microbes responsible for common infections that threaten to turn them into
untreatable diseases. Every antibiotic ever developed is at risk of becoming useless.
Antimicrobial resistance is on the rise in Europe, and elsewhere in the world.

Dr. Margaret Chan, Director General of the World Health Organization, while
addressing a meeting of infectious disease experts in Copenhagen, noted that “A
post-antibiotic era means, in effect, an end to modern medicine as we know it.
Things as common as strep throat or a child’s scratched knee could once again kill.
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For patients infected with some drug-resistant pathogens, mortality has been shown
to increase by around 50 per cent.”!

Strategies suggested to curb the development of resistant hospital-acquired
infections include antimicrobial cycling and mixing, that is, models of antibiotic
use that make use of two distinct classes of antibiotics that may distributed over
different schedules with the goal of slowing down the evolution of resistance.
Cycling alternates both classes of drugs over pre-specified periods of time while
mixing distributes both drugs simultaneously at random, that is, roughly half of the
physicians would prescribe the first drug class while the other half would prescribe
the second class. If the goal is to slow down single class drug resistance then
“mixing” is the answer [16] while if the goal is to minimize dual resistance (if
such a possibility exists) then the best option is cycling [38]. Of course, there are
other factors that may accelerate resistance (physicians’ compliance) or slow down
resistance (quarantine and isolation). All the above questions may be addressed via
the use of contagion models [38].

16.4 Mobility

The Global Commons are continuously reshaped by the ability of an increasing
proportion of the human population to live, move, or trade nearly anywhere.
Therefore, understanding the patterns of interactions between humans, between
humans and vectors, and the patterns of individuals’ movement, particularly those
who are highly mobile, is critical in guiding public health responses to disease
spread. In today’s world, hosts’ knowledge of information about risk, combined
with the ability of public health officials to measure and properly communicate, in
a timely manner, real or perceived information on disease risks, affects our ability
to derail the spread of emergent and re-emergent diseases, at scales that make a
difference.

Simon Levin showed that understanding scale-dependent phenomena is inti-
mately tied in to our understanding on how information at particular scales impact
other scales. His four decade old seminal paper establishing the relationships
between processes operating at different scales that highlighted how macroscopic
features arise from microscopic processes open the door to the theoretical advances
that have dominated the study of ecological and epidemiological systems [101].
Specifically, the theory of metapopulations, common to the study of the models
in this book [104, 155], was used to establish the role that localized disturbances
have had in maintaining biodiversity [103, 127]. Kareiva et al. observe that there is
a multitude of frameworks to study the role of disturbance, noting that, “Models
that deal with dispersal and spatially distributed populations are extraordinarily
varied, partly because they employ three distinct characterizations of space: as

I The Independent, Friday 16 March 2012.
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‘islands’ (or ‘metapopulations’), as ‘stepping-stones’, or as a continuum” [88]. We
choose to deal with mobility in Chap. 15 and this chapter uses a metapopulation
approach [80, 93, 104], with populations that exist on discrete “patches” defined
by some characteristic(s) (i.e., location, disease risk, water availability, etc.). As is
customary, patches are connected by their ability to transfer relevant information
among themselves, which, in the context of disease dynamics, is modeled by
the ability of individuals to move between patches. Patches may be constructed
(defined) by species (human and mosquito) with movement explicitly modeled via
patch-specific residence times and under a framework that sees disease dynamics
as the result of location-dependent interactions and location characteristic average
risks of infection [17, 18].

We observed that “It is therefore important to identify and quantify the pro-
cesses responsible for observed epidemiological macroscopic patterns: the result
of individual interactions in changing social and ecological landscapes” [25]. In the
rest of this chapter, we touch on some of the issues calling for the identification
of an encompassing theoretical explanatory framework or frameworks. We do
this by identifying some of the limitations of existing theory, in the context of
particular epidemiological systems. The goal is fostering and re-energizing research
that aims at disentangling the role of epidemiological and socioeconomic forces
on disease dynamics. In short, epidemic models on social landscapes are better
formulated as complex adaptive systems. Now the question becomes, “How does
such a perspective help our understanding of epidemics and our ability to make
informed adaptive decisions?” These are huge complex questions whose answers
have engaged a large number of interdisciplinary and trans-disciplinary teams of
researchers. What may be promising directions? In what follows, we discuss some
of the modeling used to address some of the challenges and opportunities that we
believe must be considered in the field of theoretical epidemiology.

16.4.1 A Lagrangian Approach to Modeling Mobility and
Infectious Disease Dynamics

The deleterious impact of the use of cordons sanitaires [58, 100] to limit the spread
of Ebola in West Africa points to the importance of developing and implementing
novel approaches that may ameliorate the impact of disease outbreaks in areas where
timely response to the emergence of novel pathogens is not possible at this time.
Disease risk is a function of the scale and the level of heterogeneity considered.
Risk varies by countries and within a country by areas of localized poverty, or
as a function of the availability and quality of sanitary/phytosanitary conditions,
or as a result of access and the quality of health care, or variability on the
levels of individual education, or as a result of engrained cultural practices and
norms. Travel and trade, easily bypassing in today’s world the natural or cultural
boundaries defined by many of factors just outlined, are now seen as engines that
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drive the spread of pests and pathogens across regional and global scales. Hence,
the identification of explanatory frameworks that help to disentangle the role of
epidemiological, socioeconomic, and cultural perspectives on disease dynamics
becomes evident and necessary in the Global Commons. Further, since the work
of Sir Ronald Ross over a century ago [141], efforts to develop a mathematical
framework that allow us to tease out the role of various mechanisms on disease
spread while enhancing our understanding of what may be the most effective mea-
sures to manage or eliminate a disease, the fields of mathematical and theoretical
epidemiology have developed into rich and useful fields of their own. Their role
in the development of public health policy and the study of disease evolution
within hosts (immunology) and between populations and its relationship to the
study of host—pathogen interactions within ecology or community ecology are now
integral components of the education and training of theoreticians and practitioners
alike [1, 12, 19-23, 26, 41, 53, 54, 59, 74, 76, 82, 102, 122, 157].

The use of (per capita) contact or activity rates in modeling the interactions
between individuals, that is, who mixes with whom or who interacts with whom, has
been the natural social dynamics currency used to model human-to-human or vector-
to-human interactions in the context of the transmission dynamics of communicable
diseases. The “physics or chemistry traditions™ are used to model disease trans-
mission as the result of the “collisions” between individuals (with different energy
or activity levels) in different epidemiological states. Further, movement, typically
modeled using a metapopulation approach, is seen as the relocation between patches
of non-identifiable individuals. The scholarly and extensive review in [§3] addresses
this perspective within homogeneous and heterogeneous mixing (age-structured)
population models (see also [30]). Weakening the assumption of homogeneous
mixing via contacts in epidemiology has been addressed using network-based
analyses that identify host contact patterns and clusters [13, 120, 121, 128] (and
references therein with [121] offering an extensive review). Focusing on how each
individual is connected within the population has been used to address the effects of
host behavioral response on disease prevalence (see [67, 68, 110] for a review).
Other approaches have included the effects of behavioral changes triggered by
“fear” and/or awareness of disease [56, 66, 131, 134]. Although this stress-induced
behavior may benefit public health efforts in some cases, it can also cause somewhat
unpredictable outcomes [75].

However, the fact remains that our ability to determine (and hence define)
what an effective contact is in the context of communicable diseases, that is, our
ability to measure the average number of contacts that a typical patch resident
has per unit of time and where, has been hampered by high levels of uncertainty.
Therefore, when we ask, what is the average rate of contacts that an individual
has while riding a packed subway in Japan or Mexico City, or what is the average
rate of contacts that an individual has at a religious event involving hundreds of
thousands of people, including pilgrimages, one quickly arrives at the conclusion
that different observers are extremely likely to arrive at very distinct understandings
and quantifications of the frequency, intensity, and levels of heterogeneity involved.
In short, this perspective puts emphasis on the use of a different currency (residence
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times) because measuring contacts at the places where the risk of infection is
the highest, pilgrimages, massive religious ceremonies, “Woodstock time events”,
packed subways, and other forms of mass gathering or transportation have not been
done to the satisfaction of most researchers. The risk of acquiring an infectious
disease within a flight can be measured at least in principle as a function of the
time that each individual of x-type spends flying, the number of passengers, and
the likelihood that an infectious individual is on board. For example, measuring the
risk of acquiring tuberculosis, an airborne disease that may spread by air circulation
in a flight, may be more a function of the duration of the flight and the seating
arrangement than the average rate of contacts per passenger within the flight (see
[31] and references therein). Furthermore, replication studies that measure risk of
infection in a given environment may indeed be possible under a residence time
model. In short, the risks of acquiring an infection can be quantified as a function of
the time spent (residence time) within each particular environment. The Lagrangian
modeling approach builds (epidemiological) models by tracking individuals’ patch-
residence times and estimating their contacts according to the time spent in each
environment [32]. The value of these models increases when we have the ability
to assess risk as a patch-specific characteristic. In short, the use of a Lagrangian
modeling perspective rather than the use of contacts is tied to the difficulties that
must be faced when the goal is to measure the average rate of contacts per type-x
individual in the environments that facilitate transmission the most.

The Lagrangian approach is highlighted here via the formulation of a disease
model involving the joint dynamics of an n-patch geographically structured popu-
lation with individuals moving back and forth from their place of residence to other
patches. Each of these patches (or environments) is defined by its associated risk
of residence-time infection. Patch risk measurements account for environmental,
health, and socioeconomic conditions. The Lagrangian approach [73, 125, 126]
keeps track of the identity of hosts regardless of their geographical/spatial position.
The use of Lagrangian modeling in living systems was, to the best of our knowledge,
pioneered and popularized by Okubo and Levin [125, 126] in the context of animal
aggregation. Recently, Lagrangian approaches have also been used to model human
crowd movement and behavior [15, 49, 78, 79] and in the context of bioterrorism
[31].

Here, host-residence status and mobility across patches are monitored with the
help of a residence times matrix P = (p;j)1<i, j<n » Where p;; is the proportion
of time residents of Patch i spend in Patch j. Letting N; denote the population of
Patch i predispersal, that is, when patches are isolated, we conclude that effective
population size in Patch i, at time ¢, is given by Z;zl pjiNj. Thatis, the effective
population within each patch must account for the residents and visitors to Patch i
at time ¢. A typical SIS model captures this Lagrangian approach in an n - patch
setting via the system of nonlinear differential equations:
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n
S =bi —d;iS; +yili — Z(Si infected in Patch j)
j=1
(16.1)

n
I = Z(Si infected in Patch j) — y;I; — d; I;,
j=1

where b;, d;, and y; denote the constant recruitment, the per capita natural death,
and recovery rates, respectively, in Patch i. The effective population 27‘:1 pijNjin

each Patchi,i = 1, ..., n includes Z;': | pijl; infected individuals. Therefore, the
infection term is modeled as follows:

Y ket Prjlk

S; infected in patch j = B; x p;;S;i % .
’ L Yk PN

The likelihood of infection in each patch is tied to the environmental risks,

defined by the “transmission/risk™ vector Z = (B1, B2, ..., Bs)" and the_pro—
portion of time spent in pgrticular area. Letting I = (I1,,..., 1), N =
(Z_i»z_;)"'vz_zt,NZPtN,dz(dlvdzs"'vdn)lvandy=(y17y2$"'7yn)t

allows to rewrite System 16.1 in the following single vectorial form
I =diag(N — DPdiag(B)diag(N)"'P'I — diag(d + y)I. (16.2)

The dynamics of the disease in all of the patches depends on the patch connec-
tivity structure. Therefore, if the residence-time matrix PP is irreducible, patches are
strongly connected, then system 2 supports a sharp threshold property. That is, the
disease dies out or persists (in all patches) whenever the basic reproduction number
K is less than or greater than unity [18]. % is given by

Ro = p(diag(N)Pdiag(#)diag(N) PV,

where p denotes the spectral radius and V = —diag(d + y). The dynamics of the
system when the matrix [P is not irreducible can be characterized using the following
patch-specific basic reproduction numbers:

I o (ﬁ) o [ 2 (#)

Vi +d; P Bi > i1 Prjbidy

The disease persists in Patch i whenever %S(IP’) > 1, whereas the disease dies
out in Patch i if prj = Oforallk = 1,...,n, and k # i,provided p;; > 0 and
Hy(P) < 1.
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Patch-specific disease persistence can be established using the average Lyapunov
theorem [86] (see [18] for more details).

In Model 16.2, human behavior is crudely incorporated through the use of a
constant mobility matrix P. The role that adaptive human behavior may play in
response to disease dynamics is captured, also rather crudely, via a phenomenolog-
ical approach that assumes that individuals avoid or spend less time in areas of high
prevalence. This effect is captured by placing natural restrictions on the entries of
P. The inequalities W < 0 and %}11’) > 0, for (i, j) € 1, 2, guarantee the
expected behavioral resf)onse. An example of such dependency could be captured
giitoiili+1; B N —
ey and p;; (11, I) = Oij T+, 4T; >
for (i, j) € 1,2 and 0;; = p;;(0, 0), are such that Z?:l o;ij = 1. The simulation
below shows how a crude, density-dependent modeling mobility approach can alter
the expected disease dynamics from those generated under constant P (Figs. 16.1
and 16.2). In the special case, where there is no movement between patches (p12 =
p21 = o12 = 021 = 0), that is, there is no behavioral change, the two populations
support, as expected, the same dynamics (see the blue curves in Figs. 16.1 and 16.2).

The speed at which the vector-borne Zika virus disease spread throughout Latin
America, Central America, and the Caribbean (then hitting Mexico and the United
States) was strongly linked to human mobility patterns. Travelers transport the
disease and infect native mosquitoes. Here, it is assumed that vector mobility is
negligible and the assumptions proceed to incorporate the life history and epidemi-
ology of mosquitoes [10, 84, 98, 108, 109, 141], which can be effectively captured

by the following functions: p;; (I;, I;) =

80

I| State independant residence time

- = - |, State dependant residence time
70— 1 p
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Fig. 16.1 Dynamics of the disease in Patch 1 for three special cases. The symmetric residence
times (p12 = p21 = 012 = o021 = 0.5) are described by the solid and dashed black curves. The blue
curves represent the case where there is no movement between patches, that is, pjo = p21 = o012 =
021 = 0. The red curves represent the high-mobility case for which pj2 = p21 = o012 =021 = 1. If
there is no movement between the patches (blue curves), the disease dies out in the low risk Patch
1 in both approaches with %& = d,lj-]y, = 0.7636. The vertical axis represents the prevalence of
the disease in Patch 1. Figure courtesy of Ref. [18]
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80

T
I2 State independant residence time

70+ - - -1, State dependant residence time
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Time

Fig. 16.2 Dynamics of the disease in Patch 2. In the high-mobility case pj2 = p21 = 012 = 021 =
1 (and then P11 = p2 = o011 = oy = 0), the disease dies out (solid red curve) for P constant, with
%2 =5 + 7 = 0.8571. For the constant residence-time matrix, the system is strangely decoupled
because individuals of Patch 1 spend all their time in Patch 2, whereas individuals of Patch 2 spend
all their time in Patch 1. Hence, Patch 2 individuals (d> and p2) are subject exclusively to the
environmental condmons that define Patch 1 (8), and so the basic reproduction of the “isolated”
22 _
Patch 1 is % 7 + 5

state-dependent (dashed red curve) as pi2(ly, h) = 1+Z+12 ,pa1I1, ) = l+11+lz’p11(11 b) =

H—Illﬁ’ and pxn (11, 1)) = m. Figure courtesy of Ref. [18]

and the disease dies out because %2 = 0.8571. The disease persists if P

by decoupling host and vector mobility [98, 145]. Figure 16.3 and System 16.3
illustrate the approach. A Lagrangian model based on residence times has been
proposed recently for vector-borne diseases like dengue, malaria, and Zika [17].
The appropriateness of the Lagrangian approach for the study of the dynamics of
vector-borne diseases lies also in its assessment of the life-history specifics of the
vector involved [145].

Iy = Bundiag(Ny — Ip)Pdiag(a)diag(P'Ny)~' I, — diag(u + y) Iy

I, = Brvdiag(a)diag(N, — Iv)diag(IF’tNh)”IPtIh —diag(py + 8)1y.
(16.3)

Lagrangian approaches have been used to model vector-borne diseases (see
[48, 87, 139, 142, 153] and other references contained therein), although these
researchers have not considered the impact that the residence-time matrix P may
have on patch effective population size. Specifically, in [48, 142], the effects of
movement on patch population size at time ¢ are ignored, namely, the population
size in each Patch j is fixed at N;. In [139], it is assumed that human mobility
across patches does not produce any “net” change on the patch population size.
On the other hand, in Model 16.3 the relationship between each patch population
and mobility is dynamic and explicitly formulated. Moreover, the limited (vector
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Patches

Groups

Fig. 16.3 Flow diagram of a Lagrangian model in which the host structure is decoupled from the
vectors’ structure. Figure courtesy of Ref. [17]

mobility is ignored) Lagrangian approach used here to model the dynamics of
vector-borne diseases captures some unique features because the “spatial” structure
of mosquitoes is not the same as that of humans. Mosquitoes are stratified into m
patches (that may represent, for example, oviposition or breeding sites or forests)
with infection taking place still within each Patch j, characterized by its particular
risk Bypaj for j = 1,..., m. Here, By, represents the infectiousness of human to
mosquitoes bite with a; denoting the per capita biting rate in Patch j. Hosts, on
the other hand, are structured by social groups or age classes (n). This residence
habitat division can be particularly useful in the study of the impact of target control
strategies.

The model in [17] describes the interactions of n host groups in m patches via
System 16.3, where

Ii=UnisInos s il Ly =1, ooy ooy Iyl
Ny = [Nn1, Nuoy ooy Npul's Ny = [Ny.1, Nuos ooy Nyl

8 = [819827~"96m][5a = [a15a2""5am]taand“ = [Mlv“Zv---’MVl][‘
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The infected host population is denoted by the vector [ and the host population by
Nj,. The infected vector population is denoted by 7, and the mosquito population
by N,. The parameters a;, §;, and u, denote the biting, death rate of control, and
natural death rate of mosquitoes in Patch j, for j = 1, ..., m. The infectiousness of
human to mosquitoes is B, whereas the infectiousness of mosquitoes to humans is
given by Bjv. The host recovery and natural mortality rates are given, respectively,
by y and p. Finally, the matrix P represents the proportion of time host of group i,
i =1,...,n,spend in Patch j, j = 1, ..., m. The basic reproduction number of
Model 3, with m patches and n groups, is given by %g (m,n) = p(My,Mp,), where

Mpyy = Buvdiag(a)diag(P' Ny)~'diag(N,)P'diag(u + y) ™!
and
My, = Bundiag(N)Pdiag(P' Ny)~'diag(a)diag(py, +8)".

If the host—vector network configuration is irreducible, then System 16.3 is
cooperative and strongly concave with an irreducible Jacobian, hence the theory
of monotone systems, particularly Smith’s results [146], guarantee the existence of
a sharp threshold. That is, the disease-free equilibrium is globally asymptotically
stable if %’3 (m, n) is less than unity and a unique globally asymptotic stable interior
endemic equilibrium exists otherwise. The effects of various forms of heterogeneity
on the basic reproduction number have been explored in [17], and we have found, for
example, that the irreducibility of the residence-time matrix IP is no longer sufficient
to ensure a sharp threshold property, although the irreducibility of the host—vector
network configuration is necessary for such property [17].

The Lagrangian approach to disease modeling can use contacts [32] or times or
both as its currency. Here, we choose time-spatial-dependent risk, that is, we choose
to handle social heterogeneity by keeping track of individuals’ social or geograph-
ical membership. In this context, it is possible to include adaptive responses, for
example, via the inclusion of prevalence-dependent dispersal coefficients. In this
setting, the underlying hypothesis is that host behavioral responses to disease are
automatic: either constant or following a predefined function. The average residence
time [P incorporates the average behavior of all hosts in each patch. This assumption
is rather crude because it implicitly assumes that hosts have accurate information on
health status and patch prevalence and respond to risk of infection accordingly. The
incorporation of the role that human decisions, as a function of what individuals
value and the cost that individuals place on these choices and trade-offs, within
systems that account for the overall population disease dynamics has been addressed
recently [61, 132] and discussed in economic epidemiology.
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The movement/behavior of individuals within and between patches may be driven
by real or perceived personal economic risk and associated social dynamics.
Embedding behavioral-driven decisions in epidemiological models has shed new
perspectives on the modeling of disease dynamics [61], expanding available option
to manage infectious diseases [44, 62]. Economic epidemiological modeling (EEM)
has a history of addressing the role of individuals’ behavior when facing the risk of
disease. However, it has often failed to incorporate within host-pathogen feedback
mechanisms [34-36, 52, 70, 97, 137]. EEMs that account for host-pathogen feed-
back mechanisms has propelled the study of the ways that contact decisions impact
disease emergence or alter infectious disease-transmission dynamics. Decisions
involved may include the determination to engage in trade on particular routes
[89, 94, 95, 129], or to travel to specific places [62, 147-149], or to make contact
with or to avoid particular types of people [61, 63, 116]. EEMs advance the
view that the emergence of novel zoonotic diseases, such as SARS or the Nipah
virus, depend on the choices that bring people into contact with other species
[50, 51]. EEMs are usually built under the assumption that associated disease
risks are among the factors that individuals must consider when making decisions.
Individual decision-making processes, within epidemic outbreaks, must incorporate
the humans’ cost-benefit-driven adaptive responses to risk.

16.5.1 Economic Epidemiology

Simple EEMs are, by mathematical necessity, initially built on classical compart-
mental epidemiological models that account for the orderly transition of individuals
facing a communicable disease, through the susceptible, infected, and recovered
disease stages: the result of social and environmental interactions. EEMs assume
that the amount of activity one participates in, with whom, and where may all be
envisioned as the solutions to an individual decision problem. It is assumed that
individual decision problems are generated by rational-value formulations based
on (driven by) personal, real or perceived, cost of disease, and disease avoidance:
decisions constrained by underlying population-level disease dynamics. Thus,
finding effective ways of modeling rational value connections to individualized
cost-benefit analyses of disease risk is fundamental to the building of useful EEMs.
It is a quite challenging enterprise.

EEM approaches have precursors in the epidemiological literature [9, 64, 69].
EEM construction has been strongly influenced by past and ongoing work on
the exploitation of species [45-47], a literature that addresses optimal harvesting
questions in the context of wild species, or the control of invasive pests, or the
management of forestry system. The methodology for modeling behavior within
an EEM rests on a proper specification of behavioral costs and a description of
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the payoffs linked to such behaviors; the stipulation of an appropriate objective
function, congruent with the decision-makers’ goals; the coupling to the dynamics
of the natural resource and/or infectious human capital; and the mechanisms
available for a decision-maker to alter his or her behavior and the behaviors of those
around him or her. Although not all motivations for mitigation against infection are
monetary in nature, we choose to refer to them as economic.

Modeling whether or not an individual undertakes infection-causing behavior
provides a natural starting point since it is connected to the rate of generation of
secondary cases of infection per unit of time, the so-called incidence rate. A simple
incidence function that captures the instantaneous expectation of the rate of new
infections at a given time is therefore given by

S®)cPsi(t)p,

where S(¢) is the number of individuals susceptible to the disease, c is the average
amount of activity they engage in, Pg; () is the probability that a unit of such activ-
ity takes the susceptible individual in contact with infectious individuals/material,
and p is the probability that such contact successfully infects.

A decision to reduce the volume of activity one engages in (lowering c¢) has been
shown in many cases to be phenomenologically identical to reducing one’s chances
of coming in contact with infection (lowering Ps;(¢)) by altering where the activity
takes place and with whom one engages or by substituting a particular behavior
for a riskier one [62, 118]. The modeling assumes that individuals derive benefits
from making contacts but may incur costs associated with an infection. Hence, the
modeling assumes that activity volume or contacts are chosen to maximize expected
utility (rudimentarily, benefit less cost), balancing the marginal value of a contact
against the increased risk of infection. The utility function is assumed to depend
on the health status of the individual and the contacts that they make, that is, the
utility of a representative individual of health status 4 is given, for example, by the
function

U, =U(h,Ch. (16.4)

The utility function is assumed to be concave, decreasing in illness and increasing
in contacts. If the probability of transitioning from susceptible to infected health
status depends on the rate of contacts, the optimal choice of contacts is the solution
to a dynamic programming problem:

Vi(h) = max Ut(ht,C!’>+erhfvt+1(j) : (16.5)
J

where r is the discount rate and p™/ is the probability of transition from health state
h to health state j. This probability depends on the current state of the system,
{S(@), I(t), R(t)}, the behavior of individuals in other health classes, C~", and
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the behavior of individuals in the decision-makers’ own health class, C h 1n short,
we have a complex adaptive system where individuals within the model, in this
example, impact disease outcomes (through changes in the incidence). Egs. (16.4)
and (16.5) are both optimized from an individual perspective. Within this individual
context, EEMs have shown that individual distancing, conditional on health status,
plays an important role in the spread of infectious disease. However, it has also been
shown that the provision of incentives for infectious individuals to self-quarantine
is likely to be welfare-enhancing [43, 44, 61, 115]. Thus, understanding how the
individual responds to relative costs of disease and disease prevention is critical to
the design of public policy that affects those costs. Indeed, the role of recovered
individuals in protecting susceptible individuals has been generally overlooked in
public health interventions, and yet it is known that their behavior is, in fact, critical
to disease management due to the positive externality the individuals’ contacts
generate once in an immune, non-disease-transmitting state [63]. The benefits of
herd immunity include the positive externality associated with acquired immunity
but may, in turn, be nullified by nontargeted social-distancing policies that induce
such immune individuals to reduce contacts. By incentivizing the maintenance of
contacts by recovered individuals policy may lower the probability of susceptible
individuals contacting infected individuals and/or allow susceptible and infected
individuals to individually increase contacts without changing the probability of
infection.

16.5.2 Lagrangian and Economic Epidemiology Models

Theoretical epidemiology aims to disentangle the role of epidemiological and
socioeconomic forces on disease dynamics. However, the role of behavior and indi-
vidual decisions in response to a changing epidemic landscape has not been tackled
systematically. In this chapter, we highlight alternative ways for modeling disease
transmission that can use contacts as its currency or residence times or both. It seems
evident that the use of contacts, in the context of influenza, Ebola, tuberculosis, or
other communicable diseases (as opposed to sexually transmitted diseases), while
intellectually satisfying, fails to recognized the fact that contacts cannot be measured
effectively in settings where the risk of acquiring such infections is the highest. In
fact, when contact-based models are fitted to data, it has become clear that contact
rates play primarily the role of fitting parameters; in other words, if the goal is
connecting models to data that include transmission mechanisms, then the use of
contacts has serious shortcomings. Therefore, in order to advance the role of theory,
we need models that are informed by data. Hence, the need to invest on efforts that
bring forth alternative modes of modeling. While Lagrangian approaches are not a
panacea, their use extends the possibilities because they depend on parameters like
residence times and average time to infection for a given environment (risk), that
is, parameters that can be measured. Frameworks should be explored and compared
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and their analyses contrasted. We have revisited recent work that equates behavior
with cost—benefit decisions, which, in turn, are linked, within our framework, to
health status and population-level dynamics, the components of a complex adaptive
system. Connecting the Lagrangian movement-modeling approach with EEMs
seems promising, albeit computationally and mathematically challenging. However,
as discussed in [117], the perception that the benefits of disease control are limited
by the capacity of the weakest link in the chain to respond effectively is not a basic
result of EEM models, which actually show that it may not be in within the ability of
an individual in a poor community/country to do more risk mitigation. The need for
richer communities or nations to find ways to incentivize greater levels of disease-
risk mitigation in poor countries may be the best approach.

Simon Levin, in his address as the 2004 recipient of the Heineken award, placed
our narrow perspective in a broader powerful context:

A great challenge before us is thus to understand the dynamics of social norms, how they
arise, how they spread, how they are sustained and how they change. Models of these
dynamics have many of the same features as models of epidemic spread, no great surprise,
since many aspects of culture have the characteristics of being social diseases. 1998
Heineken award winner Paul Ehrlich and I have been directing our collective energies to this
problem, convinced that it is as important to understand the dynamics of the social systems
in which we live as it is to understand the ecological systems themselves. Understanding
the links between individual behavior and societal consequences, and characterizing the
networks of interaction and influence, create the potential to change the reward structures
so that the social costs of individual actions are brought down to the level of individual
payoffs. It is a daunting task, both because of the amount we still must learn, and because
of the ethical dilemmas that are implicit in any form of social engineering. But it is a task
from which we cannot shrink, lest we squander the last of our diminishing resources.
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