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Abstract

We propose a developmental model inspired by the cortico-basal system (CX-BG) for vocal

learning in babies and for solving the correspondence mismatch problem they face when

they hear unfamiliar voices, with different tones and pitches. This model is based on the neu-

ral architecture INFERNO standing for Iterative Free-Energy Optimization of Recurrent Neu-

ral Networks. Free-energy minimization is used for rapidly exploring, selecting and learning

the optimal choices of actions to perform (eg sound production) in order to reproduce and

control as accurately as possible the spike trains representing desired perceptions (eg

sound categories). We detail in this paper the CX-BG system responsible for linking causally

the sound and motor primitives at the order of a few milliseconds. Two experiments per-

formed with a small and a large audio database show the capabilities of exploration, gener-

alization and robustness to noise of our neural architecture in retrieving audio primitives

during vocal learning and during acoustic matching with unheared voices (different genders

and tones).

Author summary

We designed a developmental architecture inspired by the cortico-basal system for early

vocal learning. Our neural system explores, evaluates and strengthens the motor primi-

tives that match the best the sound repertoire created also dynamically. After a babbling

process in which the network tests and aligns pronounced sound and motor vocal tracks,

it is used for listening to novel voices, solving the correspondence problem.

Introduction

Infants learn language by matching perceptually the low-level auditory features they hear with

the articulatory motions they perform for vocal production. Perceptual ambiguity or mismatch

occurs when they have to interpret someone else’s speech based on their own sound repertoire,

which is akin to the correspondence problem [1].
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In order to interpret correctly which sound has been pronounced and which articulatory

motion is producing it, brain networks have to be organized flexibly early in infancy, for

retrieving and categorizing memory sequences of orders of milliseconds [2, 3].

We propose a brain-inspired model for the early vocal learning and the emergence of

sound categorization performed during infancy. So far, few computational models of language

processing exist and fewer are brain-inspired [4–8]. In this introduction, we will first review

computational models of early vocal learning. In the second, we will present our architecture

and discuss the advantages and limitations in comparison to these models.

Review of computational models of early vocal learning

Recent computational models of vocal production have been reviewed by Warlaumont and

Finnegan [9]. As they state in their paper, many computational models of vocal learning focus

on the production of a fixed vowel repertoire only [10]. In other models, it is the speech pro-

duction that is already organized syllabically, which includes static categorizations of vowels

learned [11–13]. These models do not address the question of how repertoires of consonant

syllables can be constructed, or of how more complex chunks can be created. In the majority,

the problems addressed involve the acoustic matching of static categorizations, which does not

account for variability in timing integration, switching between self-learning and interaction

with a caregiver, noise and errors in the perceptual categorization of unfamiliar voices or in

other languages.

Nevertheless, some address this issue: for instance, Miura’s study shows a robot that is capa-

ble of mutual imitation for vowel learning during human-robot interaction and improves

vowel recognition and imitation [14]. In this study, the robot has lips to limit its exploration

space and to improve its articulatory imitation. The self-mirroring plays an important role to

guide the robot to obtain clearer vowel prototypes through the ability to self-hear and self-cor-

rect [15].

In one of our recent works, Dermy, Valentin and colleagues present a sensory-motor archi-

tecture based on a neural network allowing a robot to recognize vowels in a multi-modal way

as a result of human mimicking [16, 17]. The robot learns online to associate what it is doing

with what it is seeing and hearing. In earlier works, Oudeyer studied how robots can develop

and build a discrete speech code without linguistic knowledge [18]. These studies underline

the issue of correspondence problem where the robot learns to vocalize by interacting with a

robot or human partner [19]. However, the sound characteristics used are mostly the first two

formants to distinguish vowels and the repertoire of sound categories is mostly limited to few

vowel prototypes and syllables.

Besides, several interesting models have been considered where the importance of timing,

self-supervised learning and continuous vocal imitation through interaction with a caregiver

are discussed. In these models, recurrent neural networks, and spiking neural networks have

been proposed with reward modulation for learning audio-motor spatio-temporal patterns

[11, 20, 21].

For instance, Warlaumont and colleagues [9] have exploited spiking recurrent neural net-

works using Spike Timing-Dependent Plasticity (STDP) for synchronizing contingent neurons

between audio and motor maps for learning a repertoire of syllables. Spatio-temporal clusters

are learned in an unsupervised manner and the global network self-organizes into a reservoir

of audio primitives. Similar research has been done by Kanda and colleagues [11] and by Kroe-

ger and colleagues [8, 22].

The advantages of spiking networks consist in detecting precise delays across signals, antici-

pating several dynamics in parallel, and dynamically switching the direction of the control
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flow from perception-driven control (external influence on internal dynamics) to motor-

driven control (internal influence on external dynamics). Some disadvantages lie on the level

of noise and the variability of the input dynamics in spiking recurrent neural networks, mak-

ing the learning and control of a large number of clusters difficult, in comparison to supervised

learning methods. This kind of spiking recurrent networks have been already evaluated in sim-

ilar research on self-perception in visuo-motor control [23], and on visuo-tactile integration

[24, 25].

Similar issues occur in recurrent neural networks or in reservoir computing with the so-

called vanishing gradient problem, which corresponds to the temporal window which the

RNNs can accurately predict [6, 11, 26, 27].

Another interesting framework based on intrinsic motivation has been investigated by

Moulin-Frier and colleagues [18, 28] and by [22] to explore a repertoire of articulatory

motions and syllables. The intrinsic motivation mechanism combines reinforcement learning

and novelty detection to optimize the learning curve by discretizing the parameter space in

small portions [29, 30]. This learning paradigm follows a developmental stage, which makes it

possible an autonomous exploration and a gradual discovery of the agent’s own motor reper-

toire. Although the motor space is high in their study (29 articulations), the sensory space is

small in comparison as it is constituted of three frequencies to track. Also, it is not clear how

the model can expand to higher dimensions and to more complex chunks since the conver-

gence time can be high. Furthermore, their architecture is modeled at a high level of abstrac-

tion and does not specifically reproduce neural mechanisms or brain architecture at different

time-scales.

Our proposal for early vocal learning

In our model, we try to keep advantages of the presented models, but go further against their

drawbacks. For instance, we put forward ideas of predictive coding [31], and free-energy mini-

mization as in Friston [32], along with the unsupervised learning mechanism of STDP to pro-

pose a neural architecture that discovers and learns by trials and errors the motor patterns

associated with the relevant sound patterns.

The Free-energy minimization principle introduced by Friston [32–34] instantiates that

surprise, or error prediction, can be minimized through an active inference process or a con-

trol problem. The variational free-energy on dynamics (effect) can be optimized by neural con-

trol or action (cause). Learning the relationship between cause and effect permits to anticipate

errors and to correct the system’s response even in presence of novel input, which differs from

the classic reinforcement learning paradigm. On a memory recall problem, long-range mem-

ory sequences can be dynamically controlled and actively retrieved as attractors. On a sensori-

motor problem, free-energy minimization is used for rapidly exploring, selecting and learning

the optimal choices of actions to perform (eg sound production) in order to reproduce and

control the most accurately as possible the spike trains representing desired perceptions (eg

sound categories).

We hypothesize that free-energy minimization will permit the control of the dynamics of

spiking neural networks and the learning of a large repertoire of audio chunks in comparison

to the other models found in the literature. Of particular importance, the free-energy optimiza-

tion should permit the rapid exploration and convergence of the model during the learning

stage even with the presence of noise, and should permit also to infer categories even in the

presence of novel input. Free-energy minimization does not require the gradual freezing of the

parameters’ space as found in intrinsic motivated models, which constraints the learning stage

into discrete and longer periods.
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We propose to model a neural architecture inspired by the cortico-basal circuits responsible

for processing and organizing the learning between the audio sensory map and the motor con-

trol; see [4, 35].

In the first experiment, we will present results on vocal learning from one speaker only

(e.g., one-to-one correspondence) and how our architecture rapidly constructs its sound rep-

ertoire by free-energy minimization of internal signals. In the second experiment, we will

show how this architecture solves the correspondence problem from six different speakers

(e.g., one-to-many correspondence), learning a model from the six speakers. We show in

that experiment how the predictive coding architecture can help to be robust to noise, for

inference.

In comparison to [36], we use the same neural architecture althought the difference lies on

the task applied on vocal learning and on the size of the audio dataset constituted of more than

ten thousand audio (MFCC) vectors, which is higher than the 25 vectors only in our previous

study. We prove therefore the scalability of our network to problems of higher dimensions.

Although several reward modulated spiking recurrent neural networks exist on vocal learn-

ing [9, 37], to our knowledge, no one has achieved such performances: (1) for constructing a

large audio repertoire and (2) being robust to noise during acoustic matching even from differ-

ent speakers.

The paper is organized as follows. In section, we will describe our model and present some

neural justifications supporting it. In section, we will present the neural architecture and its

learning mechanisms. In section, we will present the two experimental setups for vocal learn-

ing and acoustic matching, respectively from a limited learning database (only one speaker, 3

minutes length) and from a larger database (six speakers of different genders, 27 minutes

length). The results of these two experiments are set out and discussed in section.

Proposal framework for feature extraction and sequence learning

State of the art and model justification

We propose a neural architecture that models broadly the interaction between the cortical lay-

ers (CX) and the Basal Ganglia (BG) for retrieving sound units. The working memory is devel-

oped within the same framework of Free-Energy [34, 38, 39] that combines predictive coding

and reinforcement learning to code information and to minimize online error by exploiting

noise.

Our architecture uses the rank-order algorithm to model spiking neural networks (SNN)

[40]. This algorithm models the temporal order between neurons and permit to simulate well

the mechanism of Spike Timing-Dependent Plasticity (STDP) [41–43] in order to learn tem-

poral delays between pre- and post-synaptic firing neurons. We also exploit reinforcement

learning and intrinsic noise in order to realize a stochastic descent gradient and novelty detec-

tion in line with the framework of free-energy minimization [33].

We propose that these different mechanisms serve for the learning of temporal delays

between neurons in a self-organizing manner and makes possible the discovery of causes

and effects necessary for active inference and predictive coding. This work extends previous

research in which we developed several models of Working Memory (WMs) using SNNs cor-

responding to different brain areas. For example, our previous models exploited noise and

novelty detection to iteratively infer a model and minimize error prediction, either to control

one system’s dynamics in model-free networks of the hippocampus [44] and of the basal gan-

glia [36], or to select dynamically a better controller in a model-based network of the prefrontal

cortex [45].
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In [36], we modeled a compound network constituted of a cortical system based on unsu-

pervised learning and a basal ganglia system based on reinforcement learning to control long-

range memory sequences of spikes –, above 1000 iterations without loss,– and to solve the so-

called temporal credit assignment problem by inferring causes and effects, even with long-

range delays. Because of its ability to optimize and control dynamics iteratively using predic-

tion error, known as free-energy minimization, we named our network INFERNO, standing

for Iterative Free-Energy Optimization for Recurrent Neural Networks [36]. Our original

paper [36] extensively analyzes with different parameters and metric the performances of the

INFERNO architecture used in this paper. In particular, we show how the robustness to delays

arises from the free-energy minimization enabling the control of the input to the recurrent

network. Related work is currently performed for the learning and chaining of sound primi-

tives [46] and motor primitives [47].

Presently, we apply the INFERNO network to speech learning (perception and production)

for the recognition and generation of audio memory sequences.

In this framework, we can apprehend the cortico-striatal loop as two learning systems that

attempts to perform an optimal control and resolve error prediction among their dynamics. In

Fig 1, we display our framework with the cortical system (CX) composed of the Primary Audi-

tory Cortex (PAC) system and the Superior Temporal Gyrus (STG) layer modeled with SNNs

to encode incoming inputs, the Striatum layer (STR) that categorizes the state of the STG

dynamics and the Globus Pallidus (GP) that attempt to retroactively control the input dynam-

ics of the PAC and STG with a reentrant loop. The error prediction is evaluated and mini-

mized over time by supervision of the STR units (the critic) and by noise generation and

stochastic exploration performed on the GP output layer (the actor).

Neural foundations for error-minimization in the cortico-striatal systems

In different brain areas, working memories (WMs) are hypothesized as embedding neural pro-

cesses with forward and inverse models that can encode, anticipate and eventually control

Fig 1. Framework of the INFERNO architecture for audio primitive retrieving based on iterative optimization

through the cortico-basal ganglia loop (CX-BG). The Primary Auditory Cortex (PAC) receives and categorizes the

audio vectors as a first stage, the Superior Temporal Gyrus cortex (STG) integrates over time its outputs that are

eventually categorized by the Striatum (STR) in the basal ganglia. The Globus Pallidus (GP) searches and retrieves the

audio vectors that best match the STG dynamics recognized by the striatal units. The iterative optimization process is

carried out by minimizing noise with a temporal difference reinforcement signal.

https://doi.org/10.1371/journal.pcbi.1008566.g001
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incoming signals to be more robust and to overcome their variability [48–50]. Two brain areas

namely the Basal Ganglia (BG) that selects actions with respect to current states [51] and the

Prefrontal Cortex (PFC) that represents forthcoming actions with respect to current contexts

[3, 52, 53], are important for embedding these WMs; see Fig 1. Being part of two different

loops but connected at the BG level, they realize reactive (BG) and proactive (PFC) control,

processing information differently and at different speed.

On the one hand, some evidence indicates that the striatum in BG has a principal function

in learning-related plasticity associated with selecting one set of actions from many, resulting

in the acquisition of habitual behavior [54, 55]. On the other hand, PFC achieves behavioral

planning in terms of the end result, rather than in terms of the movement required to perform

the task [56, 57].

Graybiel and Grafton suggest in [58] that proactive control is associated with sustained

and/or anticipatory activation of lateral PFC, which reflects the active maintenance of task

goals. By contrast, reactive control should be reflected in transient activation, along with a

wider network of additional brain regions such as the BG. Therefore, these two control mecha-

nisms differ in terms of their involvement during learning and retrieving tasks or sequences,

with the BG dynamics working at a faster pace than the PFC.

In the computational neurosciences domain, reactive and proactive control relate to what is

called model-free and model-based systems in Reinforcement Learning (RL) [51, 59–61], hav-

ing one system for stimulus-response tasks performing greedy-like optimization –, which

means sensorimotor RL tasks (e.g., motor exploration and sound matching),– and the other

learning distinct policies for prediction –, which serves for planning goal-directed behaviors

(e.g., chunking syllabes into words). Koechlin and colleagues explain how these two systems

contribute to adaptive behavior [53] and to language processing [62].

These two features of planning and optimization are also linked to what is now called the

Bayesian theory of the brain [63, 64] and to the paradigm of predictive coding for cognition

[31, 33, 38]. These general theories describe how our expectations (as well as our errors) on

sensory inputs are used as attention signals to adjust the prior expectations for the next events.

Brain areas are hypothesized as using error prediction as a core information to mutually con-
trol their dynamics, not just to bind them together.

Under this framework, two or more brain networks can interact dynamically (e.g., the Cor-

tex CX with the Basal Ganglia BG) so that we have always one network (e.g., the controller)

that infers the reliability of another (e.g., the observer) with respect to a specific context. Along

with Bayes theory, predictive coding also has a link with optimal control theory [65], which we

think interesting in terms of perspectives for modeling the corticostriatal system as it turns the

problem of learning and retrieving memory sequences into a control problem.

This neural process has been particularly studied for speech and language sequences

because auditory modality is the sense that is especially sensitive to temporal structure. In the

case of speech production, Romanski and colleagues propose that the phonotopical level

requires the implementation of high-order models for encoding words or sentences as articu-

latory vocal tracks [66].

Materials and methods

We here present the neural architecture INFERNO used for predictive coding associated with

CX and BG. We then describe the coding mechanism used for modeling the spiking neurons

and the learning mechanisms associated with temporal order and rank coding. We then define

the experimental setup and the parameters used in the context of audio primitive retrieval for

encoding the audio signals.
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The recurrent network INFERNO

The neural architecture INFERNO [36] consists of two coupled learning systems arranged as

in Fig 2. The first network corresponds to one recurrent neural network of spiking neurons

(SNNs) and the second network consists of one associative map. The SNN implements a for-

ward model of the incoming signals whereas the associative map implements an inverse model

aimed at retrieving and controlling those signals. The inverse-forward controller can be mod-

eled with the function Yout = f(I) for the SNN and with the function I = g(Yout) for the associa-

tive map, in which I is the input vector and Yout are the output dynamics.

In order to minimize error, the second network generates intrinsic noise Inoise to control

the dynamics of the first, following a RL mechanism. The activity of the SNN Yout is compared

to one desired goal vector Ydes to compute the error E between Ydes and Yout and the current

input is kept for the next step I(t+ 1) = I(t)+ Inoise, if and only if it diminishes the gradient ΔE.

Over time, I converges to Iopt its optimum value, and Yout converges to Ydes, the desired vector.

This scheme is in line with actor-critic algorithms and predictive coding. Its organization is

similar to novel architectures combining two or more competitive neural networks such as

auto-encoders or generative adversarial networks.

We showed in [36] that this variational process is similar to a stochastic descent gradient

algorithm performed iteratively and can solve the temporal credit assignment problem for

delays above tens of iterations. For instance, the convergence to the desired goal after a certain

delay can be viewed as the retrieval of a memory sequence for such duration. Furthermore, the

free-energy minimization is generative in the sense that it can retrieve novel solutions I for the

same output Y. This can be viewed as a synchronization process toward attractor memories

[67].

Neuron model—Rank-Order Coding algorithm

We use the rank-order coding (ROC) algorithm to model integrate-and-fire neurons and the

STDP rule [40, 68]. In their study, Laurent Perrinet and Simon Thorpe showed that rank-

Fig 2. Stochastic descent gradient optimization used to control the neural dynamics. Free-energy (noise) is injected

as Input in the network. After a period of time, the Output vector is read to recognize the state and its value is

compared to a goal vector. If the variational error E is decreasing, the stochastic descent gradient keeps the current

Input. After several cycles, the Input converges to its optimal values that minimizes error and maximizes the state

recognition stage.

https://doi.org/10.1371/journal.pcbi.1008566.g002
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order codes model well the STDP in discrete time steps. We observed also such behaviors in

recurrent networks in [36, 69] and our results showed that it is possible to use it effectively

to approximate the integrate-and-fire type of neurons and temporal dependencies. Other

models can be applied but the computation of the rank-order neurons is fast and easy to

implement, which is convenient for our study and for future implementation in robots for

online processing.

For instance, ROC neurons can translate ordered spatio-temporal patterns into ranked

weights, see Fig 3. The more similar the sequence order of the incoming signals, the higher the

amplitude level of the ROC neurons. Conversely, the less similar the sequence order of the

incoming signals, the lower the amplitude level of the ROC neurons.

If we adopt an ordinal ranking sensitive to the amplitude level of incoming units as dis-

played in Fig 3, this coding strategy adequately retranscribes the Hebbian rule of “neurons that

fire together wire together”. These units can model accurately the properties of common neu-

ral populations in the neocortex.

YSTG
i ðtÞ ¼ Y

PAC
i ðtÞ þ

X50

j¼1

X20

k¼1

wSTG
jk rankðYSTG

k ðt � 1ÞÞ ð1Þ

where the sum over ‘k implements a 20 iterations window buffer.

The equations of the rank-order coding algorithm that we used are as follows. The neurons’

output Y is computed by processing the dot product between the function rank() sensitive to a

specific rank ordering within the input signal vector I and the synaptic weights w; w 2 [0, 1].

As an example, one possible rank function can be rankðiÞ ¼ 1

1þi that decreases monotonically

with respect to the ith rank of one item. For the PAC network, we have for an input vector

Fig 3. Rank-Order Coding principle [68]. This type of neuron encodes the rank code of an input signal. Its amplitude

is translated into an ordered sequence and the neuron’s synaptic weights are associated with this sequence. In our

example, the neural activity is salient to this particular order, which is seen in the line widths of the synaptic weights.

https://doi.org/10.1371/journal.pcbi.1008566.g003
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signal X of dimension M = 12 and for a population of N = 50 neurons (M afferent synapses):

YPAC
n ¼

XM

m

rankðXÞwPAC
nm ; 8n 2 N ð2Þ

For the STR network, we have for a vector signal of dimension M = 50 and for a population

of N = 14000 neurons (M afferent synapses):

YSTR
n ¼

XM

m

rankðYSTG
m Þw

STR
nm ; 8n 2 N ð3Þ

The rank function rank() can be implemented classically as a power law of the argsort()
function normalized between [0, 1] for modeling the STDP. This warranties that the density dis-

tribution is bounded and that the weight matrix is sparse, which makes the rank-order coding

neurons similar to radial basis functions. This attribute permits them to be used as receptive

fields so that the more distant the input signal is to the receptive field, the lower is its activity

level. The updating rule of the weights is similar to the winner-takes-all strategy in Kohonen

networks [70] with an adaptive learning rate αn, 8n 2 N. For the best neuron Yb, we have for

STR network:

DwSTR
bm ¼ abðrankðYSTG

m Þ � w
STR
bm Þ; 8m 2 M ð4Þ

The same updating rule applies for the PAC and STG networks.

DwPAC
bm ¼ abðrankðXÞ � wPAC

bm Þ; 8m 2 M ð5Þ

DwSTG
bm ¼ abðrankðYPAC

m Þ � w
STG
bm Þ; 8m 2 M ð6Þ

Besides, the GP network updating rule is based on a reinforcement learning rule, as follows:

DwGP ¼ bðYSTR � wGPÞ:d1 ð7Þ

where δ1 = 1 if reinforcement, and 0 otherwise.

YGPðt þ 1Þ ¼ YGPðtÞ þ noise:dDE ð8Þ

where δΔE = 1 if ΔE> 0, and 0 otherwise.

There are no inhibitory weights or neurons in the model, which is in contradiction with

what is found in the Striatum. However, our framework is in line with the general assumptions

of the cortico-basal loop functioning presented in [51, 71] in which the action of the reinforce-

ment signal δΔE acts as an inhibitory/learning signal. Our model of the basal ganglia has also

some similarity with the Graybiel model in [54] in which the GP ‘expert systems’ are noisy

generative models and are inhibited/modulated by a signal only during learning, when errors

occur.

Experimental setup

The aim of our experiments is to study the vocal learning and acoustic matching during self-

supervised learning from the listening of one speaker or from several. The experimental setup

for Experiment 1 in section consists of a small audio dataset of 2 minutes length of a native

French woman speaker repeating five sentences three times. The audio .wav file is translated

into MFCC vectors (dimension 12) sampled at 25ms each and tested either with a stride of

10ms or with no stride. A stride is the temporal shift between two samples. Typically, if we
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have one sound sample between [0, 25ms] then the next sample will be between [10ms, 35ms].

A stride of 25ms guaranties that there is no overlapping across samples. The whole sequence

represents 14.000 MFCC vectors for the case with strides and 10.000 MFCC vectors for the

case with no strides.

The numbers of Striatal and GP units are chosen so that they correspond to the number of

MFCC vectors, which means 14000 units (or 10.000 units without strides) for each layer. We

do so in order to test the reliability of our architecture to retrieve input data with an orthogonal

representation. The compression rate is, however, low (1:1). We organize the MFCC vectors

only depending on the temporal order of appearance in the Wav file.

In contrast, Experiment 2 in section will use a bigger audio dataset of 27 minutes length

from six native French speakers, the same speaker as in Experiment 1 plus two other women

and three men, repeating the same sentences as in the previous experiment. The audio .wav

file is translated into MFCC vectors (dimension 12) sampled at 25ms each, which corresponds

to 140.000 MFCC vectors for the case with 10ms stride. The numbers of Striatal and GP units

are kept the same as for the first experiment (14.000 units), which means that the size for the

BG layers is now ten times lower than the total number of MFCC to be retrieved in the

sequence. The compression rate this time is high (1:10). This second experiment will serve to

test the generalization capabilities of our architecture and its robustness to high variabilities

with respect to the inputs, replicating the correspondence problem.

The sentences used in the audio database were selected because they cover all the syllables

in French. Each period takes 10 minutes on a conventional laptop for the supervised method.

The stabilization is done depending on the global error and we can decide below a certain

threshold or we can choose a maximum number of iteration to stop the learn stage. For the

unsupervised one, it can take much longer, 30 minutes to one hour to stabilize the dynamics

below a certain error level. In our computation, we let the system stabilizes itself for a maxi-

mum of ten periods independently to a particular threshold level. We provide a link to .wav

files samples and results as well as a link to source code at https://git.cyu.fr/apitti/inferno.

Results

Experiment 1—Self-supervised vocal learning of audio primitives

In section, we make the Primary Auditory Cortex (PAC), STG and Striatum layers learn in

an unsupervised manner so that the three structures self-organize to sparse distributions

using Hebb’s law for the PAC and the Striatum whereas the STG learns the temporal

dependencies across time using the STDP learning mechanism; the direction of the informa-

tion flow is PAC!STG!STR. In section, the GP layer learns audio primitives (the MFCC

vectors) through free-energy optimization; the direction of the information flow is then

STR!GP!PAC!STG!STR. We study the two cases where we leave the system unsuper-

vised (self-organized regime) and where we control its dynamics (forced regime), resp. section

and. The self-organized mode is done through a winner-takes-all, which means that the high-

est STR unit activity is the one selected. In the supervised mode, the PFC provides the desired

STR unit to be selected. We analyze the performance of the Inferno architecture in section.

Striatal categorization of STG states. In order to understand the behavior of the system

during the learning stage, we display the raster plots of the different dynamics for the PAC,

STG and Striatum layers for 1000 iterations respectively in Fig 4B, 4C and 4E. The correspond-

ing waveform sample is presented in Fig 4A and the evolution of one STR neuron activity is

also presented at different learning periods in Fig 4D. While the PAC first receives the MFCC

vectors at each iteration in Fig 4B, the STG integrates the different dynamics with a temporal

horizon of 20 iterations, see Fig 4C. Then, a third layer, the Striatum (the STR network),
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categorizes the current state of the STG network in a higher dimension. A clustered version of

its dynamics is displayed in Fig 4E to visualize better the neurons dynamics and the amplitude

evolution of one neuron is presented over several learning stages to describe it in Fig 4D. We

justify the need to have a Striatum network of dimension as large as the audio database in

order to separate orthogonally the MFCC vectors.

So far, the learning stage is feed-forward from PAC!STG!STR and the categorization is

done in an unsupervised manner. The plasticity coefficient added to the learning mechanism

of the Striatal units in Eq 7 avoids any catastrophic forgetting after updating the weights several

time, see Fig 4D. Over time, the dynamics of the STR network are less noisy, slightly diminish

and stabilize demonstrating that a learning process is at work, as showed in Fig 4D.

CX-BG Iterative free-energy exploration-optimization. Once several periods are done

over the complete audio sequence, the neurons stabilize to certain representations. It is

Fig 4. Dynamics of different structures during and after the learning stage. In A and B, waveform sample that the

PAC layer categorizes in the form of MFCC vectors in a higher representation. In C, this information is passed to the

STG layer that integrates over time (20 iterations) the incoming information. In D, evolution of the neural activity of

one STR unit at different learning stages. In E, the final layer, the STR, categorizes for a second time the filtered

information in a bigger neural population.

https://doi.org/10.1371/journal.pcbi.1008566.g004
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possible then to perform an active exploration stage in the other direction—which means

STR!GP!PAC!STG!STR for retrieving the corresponding audio entries in GP through

reinforcement learning.

This stage corresponds to a motor babbling in which the audio inputs are generated in GP

and evaluated after a delay in STR. The prediction error in STR is used to drive the dynamics

in GP using free-energy and to control the PAC layer and STG dynamics via an iterative opti-

mization process. Over time, each audio vector is reinforced for each GP-Striatal pair when-

ever the GP auditory pattern makes its corresponding Striatal unit fire. The audio pattern

converges to an optimal MFCC vector for which the Striatal unit was the most active. As pro-

posed by several neuroscientists, the GP layer may control indirectly the Striatal layer through

the cortical dynamics [34, 54, 55]. The prediction error may drive the amount of noise within

the system and the ratio between exploration and exploitation. This scheme corresponds to a

predictive coding mechanism, which can solve the temporal credit assignment problem

between causes (in GP) and delayed effects (in STG) as we found in [36].

We display in Fig 5 three examples of retrieved GP dynamics (middle chart) for which

the prediction error in Striatum is diminished over time (top chart) with respect to the spatio-

temporal patterns of the STG layer (bottom chart). The dashed line corresponds to a reset per-

formed on the GP dynamics in order to observe dynamically the error minimization mecha-

nism at work. The three samples correspond to the optimization process for three different

Striatal units and for three GP vectors. During the free-energy descent gradient, each GP vec-

tor converges to one audio pattern for which the STG activity is the most recognized by the

corresponding Striatal unit. As showed in the graphs, the optimization process does not neces-

sarily converge to the same minima after the reset done on the GP vector but can be stacked to

another one. This means that different patterns of activity in the GP layer can influence the

activity in the STG layer in a similar way. Therefore, the categorization carried out in STR is

not perfectly orthogonal (sparse) and different solutions coexist to retrieve the STG spatio-

temporal dynamics.

We analyze in Fig 6 the learning performance of the free-energy optimization stage on the

STR dynamics. Fig 6A presents the density distribution of the prediction error minimization

for all the Striatal units and Fig 6B presents the reconstruction error in the GP units with

respect to the MFCC vectors. In Fig 6A, the prediction error is computed as the difference

between the maximal activity of neurons when triggered and their upper limit, which means

that for an error equal to zero, the STR neuron is firing maximally whereas for an error equal

to 1, the STR neuron is not firing at all. The result in this graph shows that for a majority of the

STR units (80% of the population), the optimization process permits minimization the predic-

tion error below a value of 0.3, which means that most of the GP neurons retrieved the optimal

input vector that causes the STR to fire. Instead, for a small proportion of them (20% of the

population), the error is above 0.4, which means that the optimization process was not effec-

tive. In this case, the INFERNO architecture did not find the relationship between auditory

input and the striatal category.

In Fig 6B, the reconstruction error is computed as the Euclidean distance between the

MFCC vectors presented in the audio database with the nearest GP vectors retrieved through

free-energy optimization after normalization. The density probability distribution normalized

between [0, 1] shows that the reconstruction process is good with an approximation error cen-

tered at 4%. The GP layer has found most of the MFCC vectors.

We present in Fig 7 further statistical analysis of the retrieved sound signals. In Fig 7A, we

show a histogram for the MFCCs reconstruction error over 4 periods processing right across

the audio sequence. The error is computed with the Euclidean distance between each GP vec-

tor with the nearest MFCCs from the audio samples. The error is not normalized between
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[0, 1] as in Fig 6B, the MFCCs vary between [0, 1200]. After each period, the error on each

sample follows a distribution with lower error mean and narrower variance. The iterative opti-

mization process goes from a 12% error to a 2% error on average on the samples. This shows

the efficiency of the reinforcement learning stage in reconstructing the input dynamics.

Fig 5. Free-energy optimization. A-C, error minimization of three Striatal units (top chart) using noise to retrieve GP

vectors (retrieved MFCC vectors) for which the Striatal units fire maximally (middle chart). The STG units display

different spike trains for which a solution is found (bottom charts). The dashed lines correspond to a reset of the GP

dynamics (reset of the optimal MFCC vector) in order to show that the minimization process is always present and

that different solutions can be retrieved dynamically.

https://doi.org/10.1371/journal.pcbi.1008566.g005

PLOS COMPUTATIONAL BIOLOGY Vocal learning and adaptation to others using predictive coding free-energy optimization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008566 February 18, 2021 13 / 27

https://doi.org/10.1371/journal.pcbi.1008566.g005
https://doi.org/10.1371/journal.pcbi.1008566


A different curve is plotted in Fig 7B obtained from a Euclidean measure of the identitymis-

match between the retrieved MFCC index and the correct one (ground truth) and displayed

ordered in time within the sequence; therefore vectors with same index will have zero error.

This measure should not be mistaken with the previous one as it computes the Euclidean dis-

tance between index of MFCCs and not between the MFCC vectors. The direct plot of the

‘MFCC error’ was rather difficult to read and we preferred this ‘meta’ distance to ease the com-

prehension. A low level indicates that the index of retrieved MFCC vector expected is near the

real one and a high level indicates that the indices do not match. As similar to the previous fig-

ure, the error distribution diminishes gradually after each pass on the sequence. We can also

observe that at the beginning and at the end of the sequence, the relative error is rather small

corresponding to background noise when the person did not start speaking and when she

ended up in advance.

When reconstituting the .wav file in Fig 7C from the retrieved MFCC vectors, we can

observe a gradual refining of the audio waveform from the four periods with respect to the

Fig 6. Reconstruction analysis after free-energy optimization. In a), density probability distribution of the Striatal

units with respect to their prediction error level. In b), density probability distribution of reconstruction error of

MFCC vectors by the GP layer. For most of the neurons within the STR layer, the optimization process makes it

possible to construct MFCC vectors close to the real ones from the audio database. The error reconstruction follows a

central field distribution centered at 0.05 and standard deviation ± 0.05.

https://doi.org/10.1371/journal.pcbi.1008566.g006
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Fig 7. Performance analyzis after several exposures and reconstruction analysis of the audio signals. In a),

Euclidean distance between the MFCCs retrieved and those from the audio database. In b), identity mismatch between

the predicted MFCCs index and the correct one for the whole audio sequence. In c), waveform reconstruction for the

four learning periods.

https://doi.org/10.1371/journal.pcbi.1008566.g007
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ground truth displayed at the bottom chart. The sequence is shown for 11 seconds although

the global test was performed over two minutes length of the audio database.

After four exposures of the neural architecture to the audio sequence, the retrieved signals

gradually converge to the correct waveform. At period #0, the waveform is very discrete with

square-like pattern and the amplitude and the wavelength are not respected. Gradually, from

period #1 to #3, we can observe a refinement of the waveform matching the ground truth

curve. We provide the link of the different .wav files at https://git.cyu.fr/apitti/inferno.

Self-supervised learning. The learning of the MFCCs does not need to be carried out in a

specific order. It can be performed in an unsupervised manner by testing dynamically different

sounds through cortico-basal recursion. This learning strategy may be seen as a motor bab-

bling stage with random exploration. The resulting sequence is not necessarily coherent but at

each iteration, the optimization process is at work to explore and improve the MFCC vectors

found in GP. We present in Fig 8A the unsupervised learning of the GP units combined with

the information processing done in the STR and STG layers for two thousand iterations.

Below a certain error level (1st chart), the Striatal neurons have discharged maximally and

another exploration cycle is engaged with the selection of a different Striatal unit (2nd chart).

This second cycle will modify the dynamics in the GP (3rd chart), the PAC and the STG layer

until (4th chart) maximization of the STR units. The recall is not instantaneous at the begin-

ning of the cycle and several iterations are necessary to make the different layers converge. The

process is similar to a greedy hill-climbing strategy although it is more visible in Fig 5.

Forced learning. As opposed to the unsupervised learning strategy presented previously,

we can force the recall of the Striatal neurons in a specific serial order, see Fig 8B. This control

is normally assured by another structure, the PFC, to retrieve an ordinal sequence. The PFC

provides a teaching signal to STR. This signal consists in activating the STR unit we want to

learn. As a consequence it bypasses the WTA stage in STR, and makes the winning neuron the

desired STR unit. This forced recall is performed by the activation of the corresponding STR

unit. This activation is done by the experimenter through the PFC (see section). This may also

be done by the PFC alone (see [46]).

The error minimization stage takes a shorter time to converge to the optimum STG dynam-

ics in comparison with the unsupervised learning strategy. However, the errors are higher than

we might expect. Indeed, we used a maximum number of iterations per unit–, which permits

to select directly the STR neuron we want to converge,– in order to do the supervised learning

in one epoch only. Therefore the minimization process is more focused, effective and faster

than the self-organized method–, which requires more epochs to converge,– in order to attain

a similar error range. We could have a smaller error than 0.3 if we have added more iterations

or chosen a lower threshold.

Comparing the two learning strategies, we found that the unsupervised learning with self-

organization could achieve error minimization and control on the STG dynamics but the

retrieving of longer sequences was not completely effective. These results are similar to what

we found previously in [36]. Using unsupervised learning, the search space is not fully

explored if the dimensionality is too large and the neural architecture can be trapped into local

minima even if we use noise for descent gradient.

The learning stage can be very long and sub-optimal in comparison to the forcing method

performed in a supervised manner. Over time, the supervised learning appeared more efficient

at tutoring the INFERNO network by providing goals, when we force the activity level of one

STR unit to a high state (see section) and minimize its error up to a certain threshold.

This is in line with the idea of intrinsic motivation [29, 30, 72, 73], that a goal-based

approach plays a structuring role in comparison with a random-based approach, which will

not take off if the dimension space is too large. Such a structuring role is perhaps played by the
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PFC and Hippocampus on the whole cortex during development [74]. The PFC and Hippo-

campus may play a structuring role on the whole cortex during a developmental stage [46, 75],

while a model-free RL system alone is not enough for it.

Retrieved MFCCs & audio primitives. We display in Fig 9A the reconstructed .wav signal

(in red) with respect to the real signal (blue) (2 minutes length) from the MFCC retrieved in

GP and realigned in the correct order, Fig 9B. The MFCC coefficient errors between the real

signal and the one reconstructed are displayed in Fig 9C.

We can observe that the overall waveform of the sound signal is correctly reconstructed

although some errors and some delays are visible and audible. The errors could likely be

Fig 8. Self-supervised VS forced learning. We compare the two learning strategies resp. in A and B, in terms of

convergence and dynamics. the self-supervising strategy might correspond to a babbling stage in which each audio

unit is selected and tested at each cycle in a random fashion. Instead, the forcing strategy makes it possible to control

the learning of each unit separately until convergence. In the supervised case (forced STR activity in B), the error is

high for one specific STR unit in the beginning and then it is diminishing iteratively over time. We select one by one

each STR unit until the error is diminishing to a certain threshold level during a limited amount of time, then the next

neuron is selected to optimize the GP vector that optimally triggers the STG categories and the STR units. For the

unsupervised case (unsupervised motor babbling in A), as at each iteration a different STR unit is selected because of

internal noise, it is not clear to see such gradual decreasing of error for each unit.

https://doi.org/10.1371/journal.pcbi.1008566.g008
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Fig 9. Reconstructed Waveform and MFCC comparison. In A, the original waveform is in blue and the

reconstructed one is in red. In B, the reconstructed MFCC raster plot. In C, the raster plot of the MFCC error between

the original sequence and the retrieved one.

https://doi.org/10.1371/journal.pcbi.1008566.g009
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reduced with longer time for convergence, but we did not test this hypothesis in this experi-

ment. The MFCC coefficient errors in Fig 9C show that the error is larger for the high MFCC

coefficients (high pitch) than for the small MFCC coefficients (low pitch). As the smaller coef-

ficients correspond to low frequencies, it makes sense that the important part of the signal,

which is in the high frequencies, is harder to retrieve.

Experiment 2—Correspondence matching with several speakers

In this section, we present the experiment carried out on a larger audio database with an archi-

tecture of the same size as in the previous section, which means with 14.000 STR units. The

audio database of 27 minutes (140.000 MFCCs) is more difficult as it consists of sentences pro-

nounced by six different speakers with equal numbers of each gender. As expressed in section,

the sentences used here were selected because they cover all the syllables in French.

As the ratio between STR units and MFCC to be encoded is now 1:10, we here investigate

the generalization and inference capabilities of the network during acoustic matching with

unheared voices, known as the correspondence problem. This experiment reproduces some of

the conditions faced by babies during acoustic matching when the audio repertoire learned is

small and the heared voices are mostly unfamiliar and novel.

As we do not have access to the ground truth classes in the MFCC audio dataset, we cannot

compute the basic classification analysis with recall and precision. Instead, we will analyze the

performances in term of similarity between the original MFCC sound vector and the generated

ones by the Inferno network. This measure is similar to the ABX distance proposed in [76, 77]

for unlabeled audio database, and we will present it later.

The questions we would like to ask are: How well the motor and sound repertoires match

novel voices? How robust is the categorization of unheared MFCC vectors in the STR (percep-

tual) layer and how similar is the reconstructed GP (motor) repertoire to the ground truth

MFCC vectors? Differently said, how well what the network pronounces match what it listens?

We present in Fig 10A–10F different analysis carried out after the learning stage, resp. in

a) the correspondence matrix between the retrieved indices of the STR units that match

those of the ground truth MFCC vectors present within the audio database, in b) the Euclid-

ean distance between the ground truth MFCC vectors present within the audio database and

the retrieved MFCC vectors of the STR units, in c) the correspondence matrix between the

ground truth MFCC vectors and the nearest MFCC vector also within the audio dataset

which matches the closest the one predicted by the STR unit in a). A zoom in this MFCC cor-

respondence matrix is plotted in Fig 10D and a histogram of the ABX distance computed

from the correspondence matrix is presented in Fig 10E. Fig 10F displays a sample of the

retrieved waveform.

The graph plotted in Fig 10A corresponds to the mapping between the STR units that

match the closest the MFCC vectors in the audio database. The Euclidean distance is com-

puted from the GP vectors retrieved in order to measure the correspondence between the

MFCC and STR indices. Each MFCC within the audio database is predicted by only one STR

unit. Conversely, each STR unit can code for several MFCC vectors. This shows the generaliza-

tion capabilities of certain STR units within the network. For instance, we found that certain

STR units cluster more than 100 MFCC vectors whereas others do not cluster any MFCC of

the unheared database. Besides, we plot the Euclidean distance in Fig 10B to show the good

generalization of the algorithm with a reconstruction error of 5%.

Using this mapping, it is possible to construct in Fig 10C and in 10D a correspondence

matrix between the MFCC vectors A and B found in the audio database where A represents

the ground truth vector and B the closest MFCC vector to the vector X generated by the STR
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units. The Euclidean distance between the A and B vectors computes then the ABX score pro-

posed by [76] and plotted in Fig 10E.

The graphes in Fig 10C and in Fig 10D are constructed as follows. At first, we select the

most probable STR unit X found in Fig 10A for each ground truth MFCC vector A. In second,

we compare the MFCC vector generated with all the MFCC vectors in the audio database and

select the nearest index B. We plot in c) a small portion of the database of the first 10.000

MFCC units out of 140.000 MFCCs units and in Fig 10D between the interval [120.000;

125.000] for a better visualization. A one-to-one correspondence between vectors A and B –,

which means that they have the same index,– indicates a good generalization and a good

matching by the Inferno network. Conversely, items of different index indicate the redun-

dancy within the audio dataset and a mismatch with the Inferno network’s prediction, which

is something expected within the correspondence problem task.

For instance, the diagonal indicates that the mapping is bijective and that the network has

retrieved some perfect matching between MFCC vectors B closest to the STR units X and the

MFCC vectors A in the audio database:there is a good mapping between what can perceive

and what can “pronounce” the Inferno network. We found 3702 matches between the A and B

vectors out of 14.000 MFCC vectors X; which corresponds to a similarity score and a perfect

matching for 26% of the items in the new database with those of the original database. The

horizontal stripes indicate the redundancy within the large audio database, as well as some

Fig 10. Analysis of STR reconstruction and MFCC mapping during acoustic matching with different speakers. In

A, the correspondence matrix between STR units X and MFCCs vector A within the audio database of unheared

voices. In B, the Euclidean distance between the MFCC vectors of the predicted STR units X with the ground truth

MFCC vectors A within the audio database. In C the correspondence matrix between the ground truth MFCC vectors

A and the nearest ones B from the reconstructed vectors X selected in STR, based on the correspondence matrix in A;

plotted for the first 10.000 MFCC vectors. In D, a zoom in the correspondence matrix for 5000 units within the interval

range [120.000; 125.000]. The diagonal indicates the good matching between what perceives the Inferno network and

what it can pronounce, even from unheared MFCC samples during the learning stage. In E, the ABX distance

histogram proposed by [76, 77] computed from the Euclidean distance between the A and B vectors retrieved

previously. In F, an example of a retrieved waveform is provided from an unheared sound sequence after the learning

stage.

https://doi.org/10.1371/journal.pcbi.1008566.g010
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classification errors by the network. The zoom in the mapping plotted in Fig 10D shows that a

linear correlation is performed and that the noise due to classification errors is however not so

large. The ABX distance histogram in Fig 10D shows an average error of 4% by the Inferno

network with peaks at zero error, which is in average with other predictors’ performances but

on different unlabeled audio databases [76, 77].

These results describe how the network performs on a large audio dataset when facing the

correspondence problem, the discrepancy indicates that the number of vectors to be retrieved

is high in comparison to the number of units within the network. However, the perceptual tun-
ing constructed by the network, using Kuhl’s expression [1], permits to be robust to the extrin-

sic noise generated by unfamiliar voices. This is confirmed by the rather low Euclidean

distance plotted in Fig 10B and the ABX score in Fig 10E between the ground truth MFCC vec-

tor and the generated ones by the Inferno network. The reconstructed waveform in Fig 10F

plotted in red in comparison with the real waveform plotted in blue is one illustration of this:

although the wave envelope is mostly preserved, the sound details are degraded. This is how

the Inferno network imposes a dimensionality reduction and has attempted to limit discrep-

ancy and reconstruction errors when facing the correspondence problem [1].

Discussion

We have applied the neural architecture INFERNO to the retrieving of audio primitives by

evaluating prediction errors. This neural architecture is based on free-energy minimization

using recurrent spiking neural networks that model broadly the CX-BG loop, see [36].

In this paper, we have shown its efficiency in the challenging task of audio primitive genera-

tion and recognition during vocal learning and acoustic matching. The BG network rapidly

explores and retrieves MFCC sound vectors by testing them stochastically through the CX

layer. The more the striatal units recognize and predict the CX output, the stronger is the rein-

forcement of the link with the discovered GP units. At the end of this minimization process,

the GP layer constitutes a sound repertoire of MFCCs. We however acknowledge that our

implementation does not propose a strict plausible model of the Striatum. In a more biologi-

cally realistic version of it, inhibitory neurons should have been modeled to force the striatal

control on the non-desired GP units.

The INFERNO network has two features, namely generalization and robustness to tempo-

ral delays. On the one hand, the number of units in the Striatum layer imposes a dimensional-

ity reduction depending on the number of sound primitives to be learned (e.g., the number of

MFCC vectors). On the other hand, the temporal chains formed in the CX layer makes it possi-

ble to solve the temporal credit assignment problem and to link causes and effects thanks to

STDP.

In the first experiments in section we have designed the network with the same number of

STR units as there are of MFCCs to be retrieved (14.000 units) in order to have an orthogonal

representation with few overlapping items. These experiments were necessary to assess the

robustness of the network particularly in high dimensions.

Although we have shown that the CX-BG network was capable of retrieving audio primi-

tives in a self-organized manner, its exploration phase takes longer than in a supervised man-

ner. The exploration of the audio primitives in a self-organized manner is similar to a motor

babbling, which tests different sounds until convergence to the correct ones is achieved. In

comparison to [36], the precise recovery of the temporal sequence was not possible due to the

redundancy within the sound repertoire in GP with too many similar MFCC vectors. Con-

versely, it is acknowledged that the Basal Ganglia possess also a limited number of motor prim-

itives. This result makes sense as we reconstruct audio MFCC vectors in the GP layer and not
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motor primitives, which possess lower dimensionality, as we should have with a vocal robot, a

model of the articulatory system or with a vocoder. Despite the dimensionality problem, the

BG-CX loop is known to encode conditioning responses and its role is not devolved to the

control of the precise serial recall of sequences. Instead, the PFC is known to perform such

executive control on the cortico-basal ganglia system to realize a precise control of temporal

sequences. This second PFC-BG system is presented in the complementary article in [46].

In the second experiment in section, we performed the acoustic matching with several

speakers constituting an audio sequence ten times longer than the previous ones (27 minutes .

wav and 140.000 MFCC) in order to assess the generalization capabilities of INFERNO to

higher dimensions with a limited number of sound primitives. For this purpose, we inten-

tionally kept the number of sound primitives the same as in the first experiment (14.000 units)

to investigate the acoustic matching when interacting with different speakers. Although the

reconstruction error was important in comparison to the results in the first experiment, the

network was still able to generalize correctly to this larger temporal sequence. This underlies

the capabilities of inference of the architecture despite the large variability found in the

database.

These attributes for generalization and inference appear in line with what happens during

development when facing the corresponding problem. For instance, infants appear to learn a

dictionary of prototypical sounds and to know how to adjust different voices and, different

contexts in their mother tongue [1]. One difficulty is to know how speech is decomposed into

distinct units to be analyzed. At the end of the developmental stage, a large number of sounds

will seem similar to infants although they are different; e.g., “r” and “l” in Japanese. This phe-

nomenon, occurring from 6 months to 18 months, is known as perceptual categorization in

which discriminating capabilities are narrowing. During this period, infants appear to organize

a repertoire of prototypical sounds with which they can compare and infer any sound they

think to be the closest as a sort of ‘perceptual magnet’ [78, 79]. This repertoire is either percep-

tual, motor, or sensorimotor and the decision-making seems to correspond Bayesian inference

in speech [80–82]. The Inferno network present such attributes.

In our present research, the sound repertoire encoded is only perceivable as audio primi-

tives as encoded in the GP layer in the form of MFCC vectors. In future research, wewill use

audio datasets found in the litterature to compare our results with other models, for instance

audio datasets designed for unsupervised learning and development modeling from the Zero

Resource Speech Challenge [77]. We are also thinking of using a vocoder with an audio

speaker in place of the MFCCs in order to generate a real sound with a microphone to retrieve

the sound information from another channel. That is, we think that having a robot that can

speak and listen will help it learn by itself and from its social environment in a more ecological

fashion through embodiment following a developmental process [5–7, 83]. In this line, we

also envision extending our framework to visual information for audio-speech recognition

[16, 17, 84].

Conclusion

In this paper, we presented a systemic model of the cortico-basal system (CX- BG) based on

free-energy optimization in order to learn sound primitives through vocal babbling. We used

the architecture INFERNO to solve the causal problem consisting on retrieving the motor

primitives (MFCC vectors) that cause desired perceptual states (coded sound vectors). In

extended work, we will modify our system to implement action with articulatory motions and

vocal tracks. In our comprehension of the free-energy optimization strategy proposed by Fris-

ton [32], free-energy optimization is similar to an adaptive reinforcement learning process
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carried out between two or more learning structures that attempt to minimize error prediction

from each other by anticipatory control, surprise or coordination using a variational signal,

the Free-Energy gradient. Therefore, it brings the adaptation and learning problem into the

framework of optimal control and of predictive coding.

In our study, the cortico-basal circuits allowed to process and to organize the learning

between the audio sensory map and the motor control. Our neural architecture INFERNO

permitted to combine reinforcement learning and spiking neural networks for constructing a

large audio repertoire of sound units in an autonomous manner, via a vocal babbling stage.

The results show that the architecture is robust to noise and could adapt to new speakers,

therefore solving the corresponding problem. For instance, the learning stage was performed

with one unique speaker whereas the validation stage was performed on six different speakers.

In a complementary paper in [46], we have modeled a second network composed of the

basal ganglia and of the prefrontal system (BG-PFC) in order to learn the temporal structure

within audio sequences; i.e., the temporal order of the items within the sequences or its syntac-

tic rules. This second network models the processing done in the Broca area for rule-based

behaviours using a gating mechanism. It demonstrated computational advantages and better

performances in comparison to the state of the art LSTM deep network [85] on a relatively

small audio database with a large number of classes, a difficult task for deep networks.

Acknowledgments

We would like to thank Mathieu Lagrange (LS2N, UMR 6004 CNS, Ecole Centrale de Nantes)

for providing the audio database.

Author Contributions

Conceptualization: Alexandre Pitti, Mathias Quoy.

Investigation: Alexandre Pitti.

Methodology: Alexandre Pitti, Sofiane Boucenna, Catherine Lavandier.

Supervision: Catherine Lavandier.

Validation: Sofiane Boucenna, Catherine Lavandier.

Writing – original draft: Alexandre Pitti, Mathias Quoy, Sofiane Boucenna, Catherine

Lavandier.

Writing – review & editing: Alexandre Pitti, Mathias Quoy, Sofiane Boucenna, Catherine

Lavandier.

References

1. Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. Early language acquisition: cracking the

speech code. Nature reviews neuroscience. 2004; 5(11):831–843. https://doi.org/10.1038/nrn1533

2. Buzsaki G. Rhythms of the Brain. Oxford University Press; 2006.

3. Miller E. The “working” of working memory. Dialogues Clin Neurosci. 2015; 15(4):411–418.

4. Civier O, Bullock D, Max L, Guenther FH. Computational modeling of stuttering caused by impairments

in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain and Lan-

guage. 2013; 126:263–278. https://doi.org/10.1016/j.bandl.2013.05.016

5. Asada M. Modeling Early Vocal Development Through Infant–Caregiver Interaction: A Review. IEEE

TCDS. 2016; 8(2):128–138.

6. Cangelosi A, Ogata T. Speech and Language in Humanoid Robots. A Goswami, P Vadakkepat (eds),

Humanoid Robotics: A Reference, Springer Nature BV 2019. 2018; p. 2261–2292.

PLOS COMPUTATIONAL BIOLOGY Vocal learning and adaptation to others using predictive coding free-energy optimization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008566 February 18, 2021 23 / 27

https://doi.org/10.1038/nrn1533
https://doi.org/10.1016/j.bandl.2013.05.016
https://doi.org/10.1371/journal.pcbi.1008566


7. Dupoux E. Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the

infant language-learner. Cognition. 2018; 173.

8. Kroger BJ, Bafna T, Cao M. Emergence of an Action Repository as Part of a Biologically Inspired Model

of Speech Processing: The Role of Somatosensory Information in Learning Phonetic-Phonological

Sound Features. Front Psychol. 2019; 10:1462. https://doi.org/10.3389/fpsyg.2019.01462

9. Warlaumont AS, Finnegan MK. Learning to Produce Syllabic Speech Sounds via Reward-Modulated

Neural Plasticity. PLoS ONE. 2016; 11(1):e0145096. https://doi.org/10.1371/journal.pone.0145096

10. Miura K, Yoshikawa Y, Asada M. Vowel Acquisition Based on an Auto-Mirroring Bias with a Less Imita-

tive Caregiver. Advanced Robotics. 2012; 26:23–44. https://doi.org/10.1163/016918611X607347

11. Kanda H, Ogata T, Takahashi T, Komatani K, Okuno HG. Continuous vocal imitation with self-orga-

nized vowel spaces in recurrent neural network. IEEE International Conference on Robotics and Auto-

mation. 2009; p. 4438–4443.

12. Warlaumont AS. Salience-based reinforcement of a spiking neural network leads to increased syllable

production. in Proc IEEE 3rd Joint Int Conf Develop Learn Epigenet Robot (ICDL-EpiRob), Osaka,

Japan. 2013; p. 1–7.

13. Kroger BJ, Kannampuzha J, Kaufmann E. Associative learning and self-organization as basic principles

for simulating speech acquisition, speech production, and speech perception. EPJ Nonlin Biomed

Phys. 2014; 2(2):1–28.

14. Miura K, Asada M, Hosoda K, Yoshikawa Y. Vowel acquisition base on visual and auditory mutual imita-

tion in mother-infant interaction. IEEE conf ICDL-EPIROB. 2006;.

15. Ishihara H, Yoshikawa Y, Miura K, Asada M. Caregiver’s sensorimotor magnets lead infant’s vowel

acquisition through auto mirroring. IEEE conf ICDL-EPIROB. 2008;.

16. Dermy O, Boucenna S, Pitti A, Blanchard A. Developmental Learning of Audio-Visual Integration From

Facial Gestures Of a Social Robot. preprint. 2016;.

17. Valentin P, Boucenna S, Gaussier P, Pitti A. Robot Recognizing Vowels in a Multimodal Way. IEEE

ICDL-EPIROB, 2019. 2019;.

18. Oudeyer PY. The self-organization of speech sounds. J Theoretical Biology. 2005; 233(3):435–449.

https://doi.org/10.1016/j.jtbi.2004.10.025

19. Miura K, Yoshikawa Y, Asada M. Unconscious anchoring in maternal imitation that helps finding the cor-

respondence of caregiver’s vowel categories. Advanced Robotics. 2012; 21:1583–1600.

20. Endo N, Kojima T, Ishihara H, Horii T, Asada M. Design and preliminary evaluation of the vocal cords

and articulator of an infant-like vocal robot “Lingua”. 14th IEEE-RAS International Conference on

Humanoid Robotics (Humanoids). 2014;(1063–1068).

21. Heinrich S, Weber C, Wermter S. Embodied language understanding with a multiple timescale recurrent

neural network. Proceedings of the 23rd International Conference on Artificial Neural Networks (ICANN

2013), Sofia, BG ser Lecture Notes in Computer Science. 2013; 8131:216–223.

22. Murakami M, Kroger BJ, Birkholz P, Triesch J. Seeing [u] aids vocal learning: Babbling and imitation of

vowels using a 3D vocal tract model, reinforcement learning, and reservoir computing. Front Psychol.

2019; 10:1462.

23. Pitti A, Mori H, Kozuma S, Kuniyoshi Y. Contingency Perception and Agency Measure in Visuo-Motor

Spiking Neural Networks. IEEE Trans on Autonomous Mental Development. 2009; 1:86–97. https://doi.

org/10.1109/TAMD.2009.2021506

24. Pitti A, Alirezaei H, Kuniyoshi Y. Cross-modal and scale-free action representations through enaction.

Neural Networks. 2009; 22:144–154. https://doi.org/10.1016/j.neunet.2009.01.007

25. Pitti A, Pugach G, Gaussier P, Shimada S. Spatio-Temporal Tolerance of Visuo-Tactile Illusions in Artifi-

cial Skin by Recurrent Neural Network with Spike-Timing-Dependent Plasticity. Scientific Reports.

2017; 7:41056. https://doi.org/10.1038/srep41056

26. Sugita Y, Tani T. Learning semantic combinatoriality from the interaction between linguistic and behav-

ioral processes. Adapt Behav. 2005; 13(1):33–52. https://doi.org/10.1177/105971230501300102

27. Laje R, Buonomano DV. Robust timing and motor patterns by taming chaos in recurrent neural net-

works. Nature Neuroscience. 2013; 16(7):925–935. https://doi.org/10.1038/nn.3405

28. Moulin-Frier C, Nguyen SM, Oudeyer PY. Self-organization of early vocal development in infants and

machines: The role of intrinsic motivation. Front Psychol. 2014; 4:1006.

29. Kaplan F, Oudeyer PY. In search of the neural circuits of intrinsic motivation. Frontiers in Neuroscience.

2007; 1(1):225–236. https://doi.org/10.3389/neuro.01.1.1.017.2007

30. Singh S, Lewis R, Barto AG, Sorg J. Intrinsically Motivated Reinforcement Learning An Evolutionary

Perspective. IEEE Transactions on Autonomous Mental Development. 2010; 2(2):, 70–82. https://doi.

org/10.1109/TAMD.2010.2051031

PLOS COMPUTATIONAL BIOLOGY Vocal learning and adaptation to others using predictive coding free-energy optimization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008566 February 18, 2021 24 / 27

https://doi.org/10.3389/fpsyg.2019.01462
https://doi.org/10.1371/journal.pone.0145096
https://doi.org/10.1163/016918611X607347
https://doi.org/10.1016/j.jtbi.2004.10.025
https://doi.org/10.1109/TAMD.2009.2021506
https://doi.org/10.1109/TAMD.2009.2021506
https://doi.org/10.1016/j.neunet.2009.01.007
https://doi.org/10.1038/srep41056
https://doi.org/10.1177/105971230501300102
https://doi.org/10.1038/nn.3405
https://doi.org/10.3389/neuro.01.1.1.017.2007
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1371/journal.pcbi.1008566


31. Spratling MW. Predictive Coding as a Model of Cognition. Cognitive Processing. 2016; 17(3):279–305.

https://doi.org/10.1007/s10339-016-0765-6

32. Friston K. Learning and inference in the brain. Neural Networks. 2003; 16(9):1325–1352. https://doi.

org/10.1016/j.neunet.2003.06.005

33. Friston K, Kilner J, Harrison L. A free energy principle for the brain. Journal of Physiology-Paris. 2006;

100(1-3):70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001

34. Friston KJ, Kiebel S. Predictive coding under the free-energy principle. Philosophical Transactions of

the Royal Society of London Series B, Biological Sciences. 2009; 364:1211–21. https://doi.org/10.1098/

rstb.2008.0300

35. Senft V, Stewart TC, Bekolay T, Eliasmith C, Kroger BJ. Reduction of dopamine in basal ganglia and its

effects on syllable sequencing in speech: A computer simulation study. Basal Ganglia. 2016; 6:7–17.

https://doi.org/10.1016/j.baga.2015.10.003

36. Pitti A, Gaussier P, Quoy M. Iterative free-energy optimization for recurrent neural networks

(INFERNO). PLoS ONE. 2017; 12(3):e0173684. https://doi.org/10.1371/journal.pone.0173684

37. Yuji Kawai JP Tomohiro Takimoto, Asada M. Efficient reward-based learning through body representa-

tion in a spiking neural network. IEEE conf ICDL-EPIROB. 2018; p. 198–203.

38. Clark A. Surfing Uncertainty Prediction, Action, and the Embodied Mind. Oxford University Press;

2015.

39. Rao RP, Ballard DH. Predictive coding in the visual cortex a functional interpretation of some extra-clas-

sical receptive-field effects. Nat Neurosci. 1999; 2:79–87. https://doi.org/10.1038/4580

40. Perrinet L, Delorme A, Samuelides M, Thorpe SJ. Networks of Integrate-and-fire neurons using Rank

Order Coding. A: How to Implement Spike Timing Dependent Plasticity. Neurocomputing. 2001; 1-4

(38-40).

41. Bi Gq, Poo Mm. Activity-induced synaptic modifications in hippocampal culture, dependence of spike

timing, synaptic strength and cell type. J Neurscience. 1998; 18:10464–10472.

42. Izhikevich EM, Gally A J, Edelman MG. Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex.

2004; 14:933–944. https://doi.org/10.1093/cercor/bhh053

43. Izhikevich E. Polychronization Computation With Spikes. Neural Computation. 2006; 18:245–282.

https://doi.org/10.1162/089976606775093882

44. Pitti A, Kuniyoshi Y. Modeling the Cholinergic Innervation in the Infant Cortico-Hippocampal System

and its Contribution to Early Memory Development and Attention. Proc of the International Joint Confer-

ence on Neural Networks (IJCNN11). 2011; p. 1–8.
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69. Pitti A, Braud R, Mahé S, Quoy M, Gaussier P. Neural Model for Learning-to-Learn of Novel Task Sets

in the Motor Domain. Frontiers in Psychology. 2013; 4(771). https://doi.org/10.3389/fpsyg.2013.00771

PMID: 24155736

70. Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics.

1982; 43:59–69. https://doi.org/10.1007/BF00337288

71. Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Current

Opinion in Neurobiology. 2000; 10(6):732–739. https://doi.org/10.1016/S0959-4388(00)00153-7

72. Baldassarre G. What are intrinsic motivations? A biological perspective. In: 2011 IEEE international

conference on development and learning (ICDL). vol. 2. IEEE; 2011. p. 1–8.

73. Barto AG. Intrinsic motivation and reinforcement learning. In: Intrinsically motivated learning in natural

and artificial systems. Springer; 2013. p. 17–47.

74. McClelland JL, Botvinick MM, Noelle DC, Plaut DC, Rogers MS Seidenberg T T, Smith L. Letting struc-

ture emerge connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sci-

ence. 2010; 14(5):348–356.

75. Pitti A, Quoy M, Lavandier C, Boucenna S. Digital Neural Networks in the Brain: From Mechanisms for

Extracting Structure in the World To Self-Structuring the Brain Itself. arXiv preprint arXiv:200511203.

2020;.

76. Schatz T, Vijayaditya P, Bach F, Jansen A, Hermansky H, Dupoux E. Evaluating speech features with

the Minimal-Pair ABX task (I): Analysis of the classical MFC/PLP pipeline. INTERSPEECH. 2013;.

77. Dunbar E, Cao X, Benjumea J, Karadayi J, Bernard M, Besacier L, et al. The Zero Resource Speech

Challenge 2017. CoRR. 2017;abs/1712.04313.

78. Kuhl PK. Human adults and human infants show a ‘perceptual magnet effect’ for the prototypes of

speech categories, monkeys do not. Percept Psychophys. 1991; 50(2):93–107. https://doi.org/10.3758/

BF03212211

79. Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. Linguistic experience alters phonetic per-

ception in infants by 6 months of age. Science. 1992; 255(5044):606–608. https://doi.org/10.1126/

science.1736364

80. Laurent R, Barnaud ML, Schwartz JL, Bessière P, Diard J. The complementary roles of auditory and

motor information evaluated in a Bayesian perceptuo-motor model of speech perception. Psychological

Review, American Psychological Association. 2017; 14(1):e0210302.

PLOS COMPUTATIONAL BIOLOGY Vocal learning and adaptation to others using predictive coding free-energy optimization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008566 February 18, 2021 26 / 27

https://doi.org/10.1016/S0959-4388(00)00192-6
https://doi.org/10.1016/j.tics.2007.09.007
https://doi.org/10.1016/S0166-4115(97)80105-7
https://doi.org/10.1016/j.cobeha.2018.03.008
https://doi.org/10.1038/nn1790
https://doi.org/10.1126/science.1192788
https://doi.org/10.1038/nn963
https://doi.org/10.1152/jn.00675.2004
https://doi.org/10.1016/j.conb.2014.08.011
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.3389/fpsyg.2013.00771
http://www.ncbi.nlm.nih.gov/pubmed/24155736
https://doi.org/10.1007/BF00337288
https://doi.org/10.1016/S0959-4388(00)00153-7
https://doi.org/10.3758/BF03212211
https://doi.org/10.3758/BF03212211
https://doi.org/10.1126/science.1736364
https://doi.org/10.1126/science.1736364
https://doi.org/10.1371/journal.pcbi.1008566


81. Kording K, Wolpert DM. Bayesian decision theory in sensorimotor control. Trends Cogn Sci. 2006;

10:319–326. https://doi.org/10.1016/j.tics.2006.05.003

82. Barnaud ML, Schwartz JL, Bessière P, Diard J. Computer simulations of coupled idiosyncrasies in

speech perception and speech production with COSMO, a perceptuo-motor Bayesian model of speech

communication. PLoS ONE, Public Library of Science. 2019; 14(1):e0210302. https://doi.org/10.1371/

journal.pone.0210302

83. Kuniyoshi Y. Fusing autonomy and sociality via embodied emergence and development of behaviour

and cognition from fetal period. Phil Trans R Soc B. 2019; 374(20180031). https://doi.org/10.1098/rstb.

2018.0031 PMID: 30852992

84. Pitti A, Blanchard A, Cardinaux M, Gaussier P. Gain-Field Modulation Mechanism in Multimodal Net-

works for Spatial Perception. 12th IEEE-RAS International Conference on Humanoid Robots Nov29-

Dec1, 2012 Business Innovation Center Osaka, Japan. 2012; p. 297–302.

85. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997; 9:1735–1780. https://

doi.org/10.1162/neco.1997.9.8.1735

PLOS COMPUTATIONAL BIOLOGY Vocal learning and adaptation to others using predictive coding free-energy optimization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008566 February 18, 2021 27 / 27

https://doi.org/10.1016/j.tics.2006.05.003
https://doi.org/10.1371/journal.pone.0210302
https://doi.org/10.1371/journal.pone.0210302
https://doi.org/10.1098/rstb.2018.0031
https://doi.org/10.1098/rstb.2018.0031
http://www.ncbi.nlm.nih.gov/pubmed/30852992
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1371/journal.pcbi.1008566

