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Simple Summary: Freshwater ecosystems are increasingly affected by climate dynamics. This
study is the first to explore the seasonal effects on the spatial patterns in functional diversity along
an elevational gradient. The results showed that the pattern of functional diversity of riverine
macroinvertebrates along the elevation gradient was either unimodal or monotonically decreasing.
Seasonal changes did not affect the elevational patterns. The findings provide important research
and management tools for the temporary effects of river ecosystems.

Abstract: Spatial biodiversity is a key issue in biogeography for the explorations of biological origin
and diversification. However, seldom studies have addressed the temporal changes in spatial patterns
of biodiversity. We explored the taxonomic and functional diversities of riverine macroinvertebrates
in central China, with the elevational gradient, in different seasons in a normal climate year (i.e., no
extreme anomalies in the annual precipitation or average annual temperature). The air temperature
and streamflow discharge were decreased monotonically with the increase of elevation both in the
dry and wet seasons. In addition, the total nitrogen had no significant change with the increase of ele-
vational gradient in the dry season but showed a monotonically decreasing pattern in the wet season.
The total phosphorus showed a monotonically decreasing pattern with the elevational gradient in the
dry season but had no significant change in the wet season. The spatial pattern of taxonomic diversity
of macroinvertebrates along the elevational gradient showed complex patterns, but the functional
diversity had either the unimodal or monotonically decreasing pattern. In addition, the functional
diversity with the elevational gradient had similar patterns between the dry and wet seasons. Further
analysis of the elevational pattern in different seasons is an important basis for understanding the
status quo of functional diversity and formulating countermeasures for biodiversity conservation.

Keywords: functional diversity; season; riverine macroinvertebrate; elevational variation

1. Introduction

How biodiversity changes along spatial gradients is a key issue in biogeography for
empirical and theoretical explorations of biological origin and diversification [1–3]. The
influences of elevation on the structure of biological communities play vital roles in the
drivers of global biodiversity [4,5]. Research on the biodiversity along elevational gradients
mainly focuses on taxonomic diversity [6]. Nevertheless, a growing number of studies
have confirmed that environmental filtering selects biological assemblages with shared
biological traits rather than individual species [7]. In terms of ecosystem functions, studies
based on biological traits can provide more information than studies merely on species
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diversity [8]. Using biological traits to represent functional composition and diversity is
one of the hotspots in ecological research, e.g., for macroinvertebrates [9]. The functional
traits have been proven to serve as a promising proxy of the community or ecosystem
functions in response to the various types of disturbances [10–12].

The elevational patterns of biodiversity in many biological assemblages, e.g., mam-
mals, plants, fungi, and bacteria, have been examined [13]. For example, rather than
showing a universal pattern, e.g., decreased biodiversity with increasing elevations, simi-
lar to the latitudinal pattern [14,15], biodiversity elevational patterns are different across
regions and taxonomic groups [16,17]. Existing studies have found that the elevational
patterns mainly conform to several ones, e.g., the unimodal [18,19] and monotonically
decreasing patterns for aquatic invertebrates [20,21]. In harsh and constantly disturbed
environments, environmental filtering may be particularly important. It is also possible
to limit the functional composition of local communities to taxa with similar biological
characteristics of adaptation to the environmental conditions. This adaptation leads to
a decrease in functional diversity. On the contrary, under stable conditions, competitive
exclusion may reduce the functional similarity among species but increase the functional
diversity [22].

By assessing the role of environmental filtration in the changes of community compo-
sition, functional diversity becomes significant in understanding the changes of diversity
and ecosystem processes [23,24]. A few studies have explored the elevational patterns of
functional diversity, and their contradictory findings on the pattern of functional diversity
along the elevation gradient have been presented [25,26]. For example, the functional
richness of macroinvertebrates in the Rocky Mountains was positively correlated with the
size and flow stability of streams along the elevational gradient [27]. Conversely, Thakur
& Chawla [28] found that in the high-altitude vegetation of the Western Himalaya, the
functional diversity decreased with the increase of elevation. Similarly, de Bello et al. [24]
and Gazol et al. [29] observed that the functional diversity of the Alps and Southern Ural
decreased with increasing elevation. Zhang et al. [26] found a unimodal pattern with the
highest functional diversity near the middle of the gradient. In the dry evergreen Afromon-
tane forest of Hararghe Highland, Southeast Ethiopia, Teshome et al. [23] found that most
functional diversity indices decreased with increasing elevation, and their results suggested
that elevation is the most critical environmental filter affecting species distribution and
community structure.

The ecosystem is dynamic, even at a short-term scale, and the availability of habitats,
environmental heterogeneity, and spatial connectivity between the habitats all change
over time [30]. The habitat dynamics can result in the temporary varying richness and
community composition [31]. Freshwater ecosystems are increasingly affected by the
climate dynamics. Research on the comprehensive effects of climatic factors, such as season
on freshwater ecosystems, is still in its infancy. The understanding of macroscopic effects
on proven indicators, such as macroinvertebrates, can provide important research and
management tools of river ecosystems, which can assist in the design and implementation of
effective management and conservation strategies. The temporal dynamics of Asian rivers
are mostly caused by monsoons; the interannual and annual variations of precipitation
and river flow in the basin are significant, and the hydrological situations are complex [32].
Elevational environmental factors (e.g., temperature) have been recognized to affect the
composition and diversity of communities distributed along elevations and latitudes [33,34].
However, there is still a lack of research on the seasonal effects on the elevational patterns
of functional diversity, especially in freshwater ecosystems.

Our study is the first to explore the seasonal influences on the changes in functional
diversity along elevational gradients. The study presented a mechanistic highlight on the
influence of climatic factors on the elevational patterns of functional diversity. Macroinver-
tebrates have important ecological functions in river ecosystems [35,36]. They are sensitive
to natural environmental fluctuations and human disturbances and can comprehensively
reflect the dynamic changes of aquatic ecosystems at spatiotemporal scales [37]. Our aims
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are as follows: (1) to explore the spatial patterns of functional diversity of riverine macroin-
vertebrates along the elevational gradient; (2) to assess the importance of seasons in the
elevational patterns of functional diversity.

2. Materials and Methods

The whole year was divided into two periods, according to the temporal distribution
of rainfall and hydrological change (i.e., dry and wet seasons) in our study area. We
calculated the functional diversity indices of the sampling communities in different seasons.
Finally, we assessed the elevational patterns of functional diversity in the different seasons.
The elevational gradient integrates a variety of environmental factors. In this study, four
environmental factors (air temperature, flow, total nitrogen, and total phosphorus) were
measured or collected to explore the driving factors behind the elevational patterns of
biodiversity in different seasons.

2.1. Study Area

We conducted this study in Shennongjia, which is a national nature reserve in Hubei
Province, China. Shennongjia’s highest peak, Shennongding, is 3105 m above sea level,
which also is the highest in central China, with the height of the lowest elevation peak being
420 m [38]. The unique geographical location and complex terrain, as well as the highly
dendritic features of the water system, allow this region to be one of the three areas with the
highest biodiversity in China. Therefore, Shennongjia Mountain presents an ideal location
to study the elevational patterns of biodiversity [39]. In addition, Shennongjia Nature
Reserve is located in the north subtropical monsoon climate zone, showing a vertical zonal
climate from the foot to the top of the mountain. The annual average precipitation is from
800 to 2500 mm, and there are obvious seasonal changes in precipitation, with the most
rainfall in summer (June, July, and August) and the least rainfall in winter (December,
January, and February). The annual precipitation is concentrated in July, August, and
September, accounting for about 40% to 45% of the annual precipitation. There are also
significant differences in precipitation at different elevations. The higher the elevation, the
greater the annual precipitation. The highest precipitation in the low altitude areas occurs in
May, and the highest precipitation in the high mountain areas occurs in September [40,41].
Under the influence of monsoons, the regional climate is characterized by dry (January–
March and October–December) and wet (April–September) seasons. This study conducted
monthly sampling at five sites from July 2011 to June 2012 (Figure 1). During our study
period, the sampling reaches did not dry up at the five sites. Based on the annual average
temperature and annual precipitation data of the Shennongjia area from 1982 to 2021 from
Worldclim (http://www.worldclim.com/) (accessed on 18 January 2022) (Figure S1), the
sampling period was a normal climate year. The annual average temperature and annual
precipitation were in the normal range, and there were no abnormal or extreme values.

2.2. Macroinvertebrates’ Sampling and Identification

The macroinvertebrates were collected using Surber net (30 × 30 cm2, mesh size = 500 µm).
Each sampling site was set with five replicates. The macroinvertebrates were preserved in
95% alcohol for sorting and identification in the laboratory. Most macroinvertebrates were
identified to the generic levels, but Chironomidae was identified to subfamily levels. Other
taxa, such as Oligochaeta and Turbellaria, were identified to the class levels.

http://www.worldclim.com/
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Figure 1. Distribution of the sampling sites in the Shennongjia area of central China.

2.3. Environmental Variables

Stream width was measured along three representative cross transects. Depth and
velocity were measured at 50 cm intervals across a transect using a digital water velocity
meter (Global Water FP201, Global Water Instrumentation, Sacramento, CA, USA). The
mean values of stream width, depth, and flow velocity were used to calculate streamflow
discharge. A 350 mL water sample was collected simultaneously with the macroinvertebrate
sampling and preserved by adding sulfuric acid to regulate pH < 2 in the field. The
concentrations of total phosphorus (TP) and total nitrogen (TN) were measured in the
laboratory using a segmented flow analyzer (Skalar San++ Skalar, Delft, The Netherlands).
Monthly average data of air temperature from July 2011 to June 2012 were downloaded
from Worldclim (http://www.worldclim.com/) (accessed on 15 October 2021).

2.4. Biodiversity Indices

Two taxonomic diversities (the species richness index and Shannon—Wiener index)
were calculated using the vegan package [42] in the R3.6.1 software [43]. Species abundance
data were used to calculate the Shannon–Wiener index. The calculation of functional diver-
sity was based on the description of Poff et al. [44] by selecting 20 functional traits. These
traits are sensitive to environmental changes (including adult flying strength, swimming
ability, attachment, armoring, shape, respiration, rheophily, trophic habit, etc.). Trait data
for each taxon were obtained from various sources, including information published in the
literature [44–46]. These characteristics of the individual taxa were determined according
to the description of the specimen or classification data. According to Colzani et al. [47],
discrete numbers (i.e., 1, 2, and 3) were used to assign ordered characters, 0 and 1 were used
to assign binary characters, and factor characters were retained as the original character
description for the subsequent analysis (Table S1).

The functional richness (FRic) [48], functional evenness (FEve), and functional diver-
gence (FDiv) are calculated as follows:

FRic =
SFci
Rc

(1)

http://www.worldclim.com/
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where SFci is the niche space occupied by species in the community i, and Rc is the absolute
value range of character c.

FEve =
∑s−1

i=1 cmin
(

PEWi
1

S−1

)
− 1

S−1

1 − 1
S−1

(2)

FDiv = 2/π arctan

[
5 ×

N

∑
i=1

[(
lnCi −

(
lnx
) )2

× Ai

]]
(3)

where Ci is the value of the i functional trait, Ai is the relative abundance of the i functional
character, and lnx is the weighted average of the natural logarithm of the characteristic
values of the taxon.

Rao’s Quadratic (RaoQ) index combines the relative abundance of taxon and paired
functional differences between taxon, expressing the average difference in traits between
any two randomly selected individuals [49]. RaoQ index can be regarded as the extension
of the Simpson diversity index in the functional diversity dimension [50]. When there are
no shared traits among all species, the value of the Simpson diversity index represents the
maximum value that the RaoQ index can reach [51]. The above functional diversity index
was calculated by using the dbFD function of the R3.6.1 software with the FD function
package [52].

2.5. Generalized Additive Model

Using the generalized additive model (GAM), we studied the changes of taxonom-
ical or functional diversity with the elevational gradient and seasonal influences on the
elevational patterns of functional diversity. In addition to the seasons and elevations, the
diversity of macroinvertebrates is affected by the combined effects of physical and chemical
factors in the water body, and we also assessed the elevational patterns of environmental
factors in different seasons. The dynamic relationship between them is complex, nonlinear,
and uncertain. Therefore, GAM can reflect the essential connection between the response
and explanatory variables rather than the parameter form, and it is suitable for explaining
nonlinear or nonmonotonic data analysis [53]. In this study, the ‘mgcv’ package [54] of the
R Programming Language platform was used to analyze the generalized additive model. In
the GAM, we used the different distributions to the environmental factors and taxonomic
and functional diversity indices (Table 1).

Table 1. Distributions used for the biodiversity indices and environmental factors in the generalized
additive models.

Variable Distribution Data Type and Range

Air temperature Gaussian −INF~INF

Total phosphorus (TP);
Total nitrogen (TN) Gamma 0~INF

Water flow;
Functional richness (FRic);

Functional evenness (FEve);
Shannon–Wiener index

Tweedie ≥0

Functional divergence (FDiv) Quasi-binomial 0~1

Functional dispersion (FDis);
Rao’s Quadratic (RaoQ) Beta 0~1

Species richness Poisson Positive integers
Note: INF means infinity.
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3. Results
3.1. Assemblages of Macroinvertebrates

A total of 88 taxa of macroinvertebrates were identified, belonging to 43 families
and 84 genera. Among them, Alloperla sp. (Insecta: Plecoptera), Baties sp. (Insecta:
Ephemeroptera), Heptagenia sp. (Insecta: Ephemeroptera), Chironomus sp. (Insecta: Diptera),
Drunella sp. (Insecta: Ephemeroptera), Nemoura sp. (Insecta: Plecoptera), Epeorus sp. (In-
secta: Ephemeroptera), Iron sp. (Insecta: Ephemeroptera) were the dominant taxa, with
relative abundance of 13.99%, 12.43%, 11.29%, 9.47%, 8.79%, 7.69%, 7.51%, and 5.52%,
respectively (Table S2).

3.2. Environmental Factors along the Elevational Gradient

In both the dry and wet seasons, elevation had a significant effect on discharge
(p < 0.05), while elevation had no significant effect on total nitrogen, total phosphorus,
and air temperature (Table 2). The air temperature and streamflow discharge decreased
monotonously with the increase of elevation both in the dry and wet seasons (Figure 2).
In addition, the total nitrogen had no significant change with the increase of elevational
gradient in the dry season but showed a monotonically decreasing pattern in the wet season.
The total phosphorus showed a monotonically decreasing pattern with the elevational
gradient in the dry season but had no significant change in the wet season.

Table 2. GAM results of the relationships between environmental factors and elevational and seasonal
predictor variables.

Season
Temperature Total Phosphorus (TP) Total Nitrogen (TN) Flow

p Adjusted R2 p Adjusted R2 p Adjusted R2 p Adjusted R2

Dry season 0.28 0.74 0.24 0.11 0.89 0.06 <0.01 * 0.13
Wet season 0.22 0.98 0.13 0.03 *

Note: * means significant difference (p < 0.05).
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3.3. Taxonomic Diversity along the Elevational Gradient

According to the results of GAM in Table 3, in the dry season, elevation had a signif-
icant effect (p < 0.05) on Shannon–Wiener index. However, elevation had no significant
effect (p > 0.05) on the species richness index. In the wet season, elevation had no significant
effect on Shannon–Wiener index and species richness index.

Table 3. GAM results of the relationships between the taxonomic diversities and elevational and
seasonal predictor variables.

Season
Richness Shannon

p Adjusted R2 P Adjusted R2

Dry season 0.55 0.11 <0.01 * 0.29
Wet season 0.14 0.43

Note: * means significant difference (p < 0.05).

Species richness was decreased monotonically with the elevational gradient in the dry
season; in the wet season, the general fluctuation trend was monotonously decreasing until
around 1900 m, and then the richness achieved a peak at around 2200 m (Figure 3a). In
the dry season, the overall fluctuation of Shannon–Wiener index showed a monotonous
decrease until around 1900 m, which was followed by a peak at around 2200 m; in the
wet season, it shows a monotonously decreasing pattern with the elevational gradient
(Figure 3b).
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3.4. Functional Diversity along the Elevational Gradient

According to the results of GAM in Table 4, in the dry season, elevation had a sig-
nificant effect (p < 0.05) on functional divergence (FDiv), Rao’s Quadratic (RaoQ) index,
and functional dispersion (FDis). However, elevation had no significant effect (p > 0.05) on
functional richness (FRic) and functional evenness (FEve). In the wet season, elevation had
a significant effect (all but Feve were significant at p < 0.05) on the FDiv, FRic, RaoQ, and
FDis but no significant effect on FEve.
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Table 4. GAM results of the relationships between the functional diversities and elevational and
seasonal predictor variables.

Season
FDiv FRic RaoQ FEve FDis

p Adjusted R2 p Adjusted R2 p Adjusted R2 p Adjusted R2 p Adjusted R2

Dry
season <0.01 * 0.58 0.06 0.21 <0.01 * 0.39 0.07 0.02 <0.01 * 0.30

Wet
season <0.01 * <0.01 * <0.01 * 0.93 <0.01 *

Note: * means significant difference (p < 0.05). FDiv: functional divergence; FRic: functional richness; RaoQ: Rao’s
Quadratic; FEve: functional evenness; FDis: functional dispersion.

FDis, FDiv, and RaoQ all presented a single peak pattern in the dry and wet seasons
(Figure 4a,b,e, respectively). The FDis increased with the elevational gradient and then
reached a summit at an elevation of about 2100 m. FDiv also showed the similar pattern
with the change of elevation and reached its peak at an elevation of 2000 m in the dry
season, while the peak at an elevation of 2100 m in the wet season was higher than that
in the dry season. The peak of RaoQ in the wet season was about 2000 m above sea level.
The elevation of the peak in the dry season was higher than that in the dry season, which
is about 2100 m. FEve decreased monotonically with the elevational gradient in the dry
season (Figure 4c) but did not change significantly in the wet season. FRic showed a
monotonically decreasing pattern with the elevational gradient in both the dry and wet
seasons (Figure 4d).
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4. Discussion

We believe that the current study is the first to explore seasonal influences on the
elevational patterns of functional diversity. The spatial pattern of taxonomic diversity of
the macroinvertebrates in Shennongjia along the elevational gradient showed a general
decreasing distribution, and the spatial pattern of functional diversity mainly conformed to
the unimodal pattern or monotonically decreasing distribution. Moreover, the regularity of
taxonomic diversity was not as clear as that of functional diversity. The season had no sig-
nificant effect on the distribution pattern of functional diversity of the macroinvertebrates.
The four indices (FDis, FDiv, FRic, and RaoQ) varied with the elevational gradient both in
the dry and wet seasons. However, the seasons, divided according to rainfall variations, did
not affect the elevational patterns of these functional diversity indices of the communities
of macroinvertebrates. The streamflow discharge was most significantly affected by the
change of elevational gradient. Total nitrogen (TN) and total phosphorus (TP) did not vary
significantly along the elevation gradient in the dry season, and both values were lower in
the dry season than in the wet season.

4.1. Elevational Patterns of Functional Diversity

Previous studies have found that the elevational changes in the taxonomic and func-
tional diversities of macroinvertebrates mainly conform to the unimodal [19,55] and mono-
tonically decreasing patterns [20,21]. Our results showed that the elevational patterns of
functional diversity of macroinvertebrates were in line with the general hypothesis. How-
ever, taxonomic diversities usually showed unexpectedly high values at the low elevations.
With the general mechanisms, the elevational pattern should be the unimodal or mono-
tonically decreasing pattern. Based on the monotonically decreased pattern, the unimodal
pattern is additionally formed with the diversity reduction caused by human disturbances
in areas at lower elevations. In our cases, the functional diversity was decreased, but
the number of species with similar functions was increased at low elevations. Based on
biological traits, functional diversity describes community composition, species’ demands
and responses to ecological processes, and their ecological functions [56]. The results of
this study also showed that functional diversity is more in line with the response of species
to the ecological impacts, but taxonomic diversity could not reflect it in our area.

In harsh and constantly disturbed environments, environmental filtering may be
particularly important and may limit the functional composition of local communities
to taxa with similar biological characteristics, thereby reducing the functional diversity.
On the contrary, the competitive exclusion may reduce the functional similarity and then
increase the functional diversity under stable conditions [22]. With the rising elevation, the
natural environments may limit the distribution of the most generalist species due to low
temperatures and limited food resources [57]. The environmental filtration continues to
increase, resulting in a decrease in the niche suitable for species survival, which might be a
mechanism of the monotonically decreasing patterns in our study.

This harsh environment also restricts human activities to areas with lower elevation
where human disturbances result in changes in riparian vegetation, river morphology,
and the river environment, such as water quality river sediment composition [58]. These
changes have harmful effects on the macroinvertebrates. Therefore, areas with higher
elevation have milder physical environments (e.g., dense vegetation compared with areas
at high elevation), and there are almost no human influences. Thus, there are more species at
mid-elevations than at higher and lower elevations. In terms of the mid-domain effects, the
range of species is randomly distributed in the geographic areas where species richness has
the largest overlap in the center of the domain [59]. This effect may be another mechanism
of the unimodal pattern of large invertebrate diversity [55,57]. The present study confirms
that even in mountains with lower elevations, elevation had a strong impact on community
structure, ecosystem function, and environmental characteristics.
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4.2. Seasonal Influences

Under the influence of the monsoonal climate, there are seasonal fluctuations in
rainfall and hydrology in Asia (or areas under Mediterranean climate conditions). The
elevational gradient combines the shifted effects of various environmental factors (such as
temperature, precipitation, and light) [60] and, thus, is an important factor, affecting the
species composition, the construction of the biome, and spatial patterns of diversity [2].
With the increase of elevation, air temperature is expected to decline, while, at the same time,
regulate the water temperature and increase the snow cover [61]. In particular, when the
relevant environmental gradients and ecological characteristics are concerned, latitude and
elevational gradients can be regarded as analogs [62,63]. Different elevations and seasons
receive varying amounts of solar radiation and precipitation [64,65]. In turn, this directly
affects important instream variables, such as water temperature and streamflow [64,66].
By analyzing the elevational patterns of environmental factors in different seasons, the
streamflow discharge was most significantly affected by the change of elevational gradient
in our study.

Thakur & Chawla’s [28] results showed that the gradients of aridity (aspect) and
decreasing temperature (elevation) on species distribution and functional diversity suggest
that the functioning of high altitude communities will be affected in the future. This
highlights the function and stability of plant communities at high elevations that are more
vulnerable to the effects of climate change.

Our study showed that seasonal influences did not affect the elevational patterns of
the functional diversity of macroinvertebrates. The possible reasons include the following:
(1) The study system is a river with gravel sediments. During periods of low flow, aquatic
insects can still find suitable refuges to survive; (2) The effect of temperature on the
macroinvertebrates masked the effects of high flow in summer. The existing temporal and
spatial patterns of water resources cause a high degree of heterogeneity of river habitats,
but if the flow is reduced, the physical and chemical characteristics of the river (such as
water temperature, nutrients, suspended solids, etc.) will tend to be similar [67]. Total
nitrogen and total phosphorus did not vary significantly along the elevation gradient
during the dry season. Total nitrogen and total phosphorus levels reflect the nutrient
inputs to the river ecosystem and, particularly, affect the photosynthetic productivity of the
watershed ecosystem.

4.3. Functional Diversity Indices

The study showed that the five indices had different patterns in response to elevational
gradients. In extreme cases, the northward movement of the subtropical monsoonal climate
may cause some tributaries to dry up or form seasonal rivers, which will strongly affect
the biodiversity of the Shennongjia area [68]. However, there was an impact on functional
uniformity, which was manifested as the declining pattern with increasing elevation in
the dry season but no obvious change in the wet season. The possible reasons include the
following: in the dry season, when rainfall and streamflow are small, the impact of the mon-
soonal climate reduces the types of functional characteristics of the species. The dry season
(January–March and October–December) has a lower average temperature compared to
the wet season (April–September). Cold-tolerant species are more dominant in the dry
season. The reduction in riparian vegetation during the dry season also resulted in limited
nutrient input to the river. As can be seen from the results of this study, in the dry season,
total nitrogen and total phosphorus are significantly lower than the wet season values. In
addition, the life history patterns of macroinvertebrates are important [69]. High tempera-
tures in the wet season, especially in summer, resulted in fast macroinvertebrate growth. In
addition, Ephemeroptera is most dominant macroinvertebrates in the Shennongjia area and
spawns during the wet season. The species characteristics resulted in a large increase in
Ephemeroptera numbers during this period compared to other populations. Thus, changes
in the community structure over time affect functional uniformity [70,71].
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In the wet season, rainfall was sufficient and the most important streamflow has mostly
met the hydrological requirements of the macroinvertebrates in our system. Temperature
and light were also more suitable in this area. Abundant macroinvertebrate species might
contribute to the higher biological diversity. In turn, various functional characteristics of the
macroinvertebrates are also abundant. Therefore, in the wet season, the functional evenness
was not affected significantly with the elevational gradient. Community structuring is
mainly caused by two potential mechanisms, i.e., environmental filtering and restricted
similarity [7]. Environmental filtering would select species with the shared traits to coexist
in similar environments, while restricting similarity, achieved through their interactions
(i.e., through competition) among species, might decrease the coexistence of species.

4.4. Unconsidered Aspects

This study explored the influence of the season on the functional diversity of macroin-
vertebrates for the first time and achieves a breakthrough from zero to one, but it is still not
perfect, and the unconsidered aspects need to be solved in future research. The elevational
gradient of the Shennongjia area is 420~3105 m. Because there is no stream distribution
at certain elevations and the terrain is complex and difficult to sample, this study only
explored streams between 1500 and 2300 m. In the follow-up study, more streams with
different elevations or other areas with more suitable elevations can be considered for
future studies. In addition, future efforts can address multiple years to accurately reveal
the potential mechanism of seasons on the elevational patterns of functional diversity. The
variation of species diversity on broad elevation gradients largely depends on the sampling
effect [72]. In addition, although the ecological environment is an important driving factor
for the elevation pattern of species richness, the history of lineage and the internal diversity
in the tree of life is the basis for understanding the diversity of the elevation pattern and
the shape of elevation slope. In addition to exploring the elevation pattern of functional
diversity, phylogenetic diversity can also be considered in the future exploration direction.

The density and richness of macroinvertebrates are mainly determined by the con-
ditions of hatching, growth, survival rate, emergence, and symbiotic community under
the influences of multiple environmental factors, e.g., heat [66,73]. For example, with
the increase of temperature, the number of predatory fish and other organisms feeding
on macroinvertebrates will increase [74], while the decomposition rate of litters will in-
crease [75] and, thus, reduce the number of macroinvertebrates [68]. Future studies, such
as comparative studies covering multiple rivers and mountains, are needed to clarify the
underlying mechanisms that drive the spatial pattern of biota elevation in alpine rivers.

5. Conclusions

Understanding the underlying mechanisms of the spatial changes of biodiversity
patterns can provide the scientific basis for biological monitoring, protection, and restora-
tion [76,77]. This study analyzed the patterns of functional diversity of macroinvertebrate
communities with the elevational gradient under the seasonal influences. The results
showed that the riverine communities at an elevation of about 2100 m might make the
best use of the niche space and resources in the Shennongjia area of central China in the
normal climate year. The seasonal influences did not affect the elevational patterns of
macroinvertebrates. Multiple ecological processes and environmental conditions (such as
environmental filtration, diffusion, and species interactions) [78,79] are possible explana-
tory factors for affecting the elevational patterns. Analysis of the elevational patterns
in different seasons can confirm the importance of the temporal factor, especially when
seasonal influences are generally considered to be one of the key drivers. This step is a
critical basis for understanding the status of functional diversity and formulating strategies
for biodiversity conservations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology11020208/s1, Figure S1: Annual average temperature and annual precipitation from
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1982 to 2021 in Shennongjia Area, Table S1: classification table of functional traits of riverine macroin-
vertebrates communities in Shennongjia, Table S2: the dominant taxa of riverine macroinvertebrates
communities in Shennongjia.
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