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a b s t r a c t 

Protein-based vaccines are playing an increasingly important role in the COVID-19 pandemic. As late- 

stage clinical data are finalized and released, the number of protein-based vaccines expected to enter 

the market will increase significantly. Most protein-based COVID-19 vaccines are based on the SARS-CoV- 

2 spike protein (S-protein), which plays a major role in viral attachment to human cells and infection. 

As a result, in order to develop and manufacture quality vaccines consistently, it is imperative to have 

access to selective and efficient methods for the bioanalytical assessment of S-protein. In this study, sam- 

ples of recombinant S-protein (hexS-protein) and commercial S-protein were used to develop a selective 

reversed-phase HPLC (RP-HPLC) method that enabled elution of the intact S-protein monomer as a single 

peak on a wide pore, C8-bonded chromatographic column. The S-protein subunits, S1 and S2 subunits, 

were clearly separated from intact S-protein and identified. The results of this study set the foundation 

for reversed-phase HPLC method development and analysis for selective and efficient separation of S- 

protein monomer from its subunits. 

Crown Copyright © 2022 Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Within a year of the first COVID-19 cases, vaccines were de- 

eloped rapidly to combat the public health crisis. First-generation 

accines were based on nucleic acids and non-replicating viral vec- 

ors, which allowed novel technologies to debut effective vaccine 

andidates at the global scale [1 , 2] . However, as the SARS-CoV-2 

irus spread rapidly, the need for global immunization coverage 

ncreased dramatically [3] . As a result, conventional protein-based 

accines are expected to find a strong foothold in logistically diffi- 

ult regions as the pandemic develops [4] . The advantages of these 

accines include a strong history of triggering safe and robust im- 

une responses [5 , 6] along with significant flexibility in storage 

nd transportation. 

The vast majority of protein-based COVID-19 vaccines use full- 

ength or truncated forms of the SARS-CoV-2 virus spike pro- 

ein (S-protein) as the primary antigenic component [5 , 7] . The S- 

rotein is a heavily glycosylated fusion protein (140 kDa by amino 
∗ Corresponding author at: 251 Sir Frederick Banting Driveway, Ottawa, ON K1Y 
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cid sequence) that homotrimerizes on the virus surface and is 

ritical for membrane fusion and host cell receptor binding [8] . 

uring infection, the S-protein is activated by proteolytic cleavage 

nto its S1 and S2 subunits [9] by host-cell proteases. Importantly, 

iral surveillance show that mutations in the S-protein have the 

ighest impact on transmissibility and immune escape [10 , 11] . 

To date, a growing number of protein-based COVID-19 vac- 

ines are at the late stages of clinical trials and seeking approval 

7] . One highly anticipated candidate is the NVX-CoV2373 protein 

ubunit vaccine, which contains a cleavage-resistant full-length S- 

rotein stabilized in the prefusion conformation [12] . Another vac- 

ine in late-stage development, SCB-2019, also uses the full-length 

-protein but maintains the wild-type protease cleavage site, mak- 

ng it prone to cleavage by host-cell proteases during manufactur- 

ng [13] . Given the diversity of protein-based COVID-19 vaccines, 

he complexity of the S-protein, and the potential for variants in 

uture vaccine formulations, robust analytical techniques will be 

eeded to separate S-protein species and assess the critical qual- 

ty attributes which ensure product consistency and comparability 

hroughout its lifecycle. 

Reversed-phase (RP) high-performance liquid chromatography 

HPLC) is one such technique well-established for the separation 
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Table 1 

Commercial S-proteins used in this manuscript. 

catalog no. manufacturer protein name study protein name expression host 

40589-V27B-B S1 + S2 ECD-Avi-His comS-protein A Baculovirus-Insect Cells 

40589-V08B1 S1 + S2 ECD-His comS-protein B Baculovirus-Insect Cells 

40590-V08B S2-His comS2 Baculovirus-Insect Cells 

40591-V08H S1-His comS1 HEK293 Cells 

Table 2 

Gradient I conditions used in RP-HPLC method. 

Time(min) Flow rate(mL/min) %A %B 

0 1.0 95 5 

2 1.0 95 5 

4 1.0 65 35 

34 1.0 35 65 

37 1.0 5 95 

39 1.0 5 95 

40 1.0 95 5 

45 1.0 95 5 
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m

nd quality assessment of proteins. Compared to other techniques 

uch as SDS-PAGE, the advantages of RP-HPLC in resolving power, 

electivity, and sensitivity are significant, especially for complex 

nd heterogeneous biotherapeutics. Not only can antigens be sep- 

rated by sequence but also post-translational modifications. As a 

esult, RP-HPLC is a highly reproducible analytical tool widely used 

or a variety of biotherapeutics, such as purified protein, virus-like 

articles, and whole viruses [14–16] . However, as of this writing, 

nly one brief application note with limited detail on S-protein 

nalysis by RP-HPLC exists [17] and no published methods have 

haracterized intact S-protein with its major subunits, S1 and S2. 

To address this gap, we developed a selective, repeatable, and 

ersatile RP-HPLC method to characterize S-protein. Using an in- 

ouse purified, full-length S-protein variant called HexaPro S- 

rotein (hexS-protein) and a variety of commercial S-protein prod- 

cts, we identified clear and reproducible peak patterns associated 

ith full-length S-protein as well as its S1 and S2 subunit cleavage 

roducts. Finally, a preliminary method qualification is presented 

or additional direction in biotherapeutic applications. 

. Material and methods 

.1. Spike protein purification 

The plasmid encoding hexS-protein was purchased from Ad- 

gene (plasmid #154,754) [18] . Cells were transfected accord- 

ng to previously developed methods [19] . Briefly, FreeStyle 293- 

 cells (Invitrogen) were cultured at 37 °C, 8% CO 2 with Gibco TM 

reeStyle TM 293 Expression Medium (Fisher Scientific) and seeded 

t 1.12 ×10 6 cells/mL for transfection. The hexS-protein plasmid and 

olyethylenimine (25 kDa linear PEI, Polysciences) were diluted 

nd sterile filtered (0.22 μm) in Opti-MEM 

TM I Reduced Serum 

edium (Life Technologies). The plasmid/PEI mixture was added to 

ells at a final density of 1.0 × 10 6 cells/mL (final concentrations: 

.5 μg/mL plasmid, 1.5 μg/mL PEI). 

For protein purification, cell suspensions were centrifuged 4 

ays post-transfection, supplemented with 1 mM benzamidine HCl, 

nd purified on Ni-NTA Superflow resin (Qiagen) by FPLC (Bio- 

ad NGC Chromatography System). Resin was equilibrated with 

quilibration Buffer (10 mM Tris–HCl, 100 mM sodium phosphate, 

H 8.0). After loading the clarified supernatant, the column was 

ashed with Wash 1 (10 mM Tris–HCl, 100 mM sodium phosphate, 

0 mM imidazole), Wash 2 (10 mM Tris–HCl, 100 mM sodium 

hosphate, 60 mM imidazole), and eluted with Elution Buffer 

10 mM Tris–HCl, 100 mM sodium phosphate, 250 mM imidazole). 
2 
rotein size and purity were confirmed by gel electrophoresis. Fi- 

al samples were dialyzed against buffer (1.0 M Phosphate Buffer 

olution pH 7.4 from Sigma-Aldrich diluted to 5 mM phosphate, 

upplemented with 50 mM sodium chloride) at room temperature 

nd stored at 4 °C or −80 °C. 

.2. HPLC instrumentation and chemicals 

All chemicals used for HPLC assays were analytical reagent 

rade. Sodium chloride, sodium phosphate dibasic, polysorbate-80, 

nd trifluoroacetic acid (TFA) were purchased from Sigma-Aldrich 

St. Louis, MO, USA). Acetonitrile (ACN) and 2-propanol were pur- 

hased from Merck KGaA (Darmstadt, Germany). Distilled water 

dH2O) was deionized on a Nanopure Diamond 

TM system (Barn- 

tead International, Dubuque, IA, USA). Commercial reference S- 

roteins and related subunits were purchased from Sino Biological 

nc., summarized in Table 1 . 

The HPLC system consisted of a Waters Alliance 2695 chromato- 

raph equipped with a column heater and an auto-sampler with a 

ample cooling device. Fluorescence and UV spectroscopy detection 

as accomplished by coupling in-series a Waters 2475 Multichan- 

el Fluorescence Detector (8 μL flow cell, excitation wavelength of 

ex 280 nm and emission wavelength at λem 

335 nm) and a Wa- 

ers 2998 UV–VIS photodiode array detector (Waters, QC, Canada). 

ata acquisition and integration were performed with Empower 3 

hromatography Data Software. 

Additional details on LC-MS/MS analysis are provided in Sup- 

lemental Information. 

.3. RP-HPLC analysis 

The chromatographic column used for the optimized protocol 

as an Aeris Widepore XB-C8, 150 mm x 4.6 mm, 3.6 μm parti- 

les, 200 Å pore size (Phenomenex, Torrance, CA, USA). The op- 

imized separation method were carried out at 40 ºC with an AB 

radient elution of 45 min at a flow rate of 1.0 mL/min (Gradient 

, Table 2 ). Eluent A was 0.1% (v/v) aqueous TFA and eluent B was

.08% (v/v) TFA in 50% ACN and 50% 2-propanol. Prior to analysis, 

wo zero injections (no sample injected) are performed with Gra- 

ient I. Injection volume for full-length S-protein material was 20 

L at 50 μg/mL and 10 μL at 50 μg/mL for comS1 and comS2. 

For linearity assessment with polysorbate-80, final solutions 

ere diluted to 0.05 w/v polysorbate-80 using a 1% w/v stock so- 

ution. 

.4. Size-exclusion (SE) HPLC 

The chromatographic column used was a TSKgel G40 0 0SWXL, 

00 mm x 7.8 mm, 8 μm particles, 450 Å pore size (Tosoh Bio- 

cience, Philadelphia, PA, USA). Separations were carried out at 

oom temperature with isocratic elution at 0.5 mL/min phosphate 

uffer (0.1 M sodium phosphate, 0.2 M sodium chloride, pH 7). The 

obile phase was filtered through a 0.45 μm nylon filter (GVS, San- 

ord, ME, USA). The injection volume for hexS-protein was 20 μL at 

0 μg/mL. Molecular weight (MW) standards used were as follows: 

hyroglobulin (Sigma T1001), Apoferritin (Sigma A3660), Ovalbu- 

in (Sigma A2512), 4-Aminobenzoic acid (Sigma A9878). 
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Fig. 1. (A) SE-HPLC analysis of purified hexS-protein (bottom, black trace) superimposed with a thyroglobulin reference (bottom, dashed line). MW standards were used to 

estimate hexS-protein size (top trace). (B) RP-HPLC chromatograms showing the performance of different columns on comS-protein A under low TFA conditions. The solvent 

gradient used in development for all columns is shown by the dashed line. 
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. Results and discussion 

.1. Spike protein material used for method development 

To generate vaccine-relevant protein material for RP-HPLC 

ethod development, a modified full-length S-protein variant 

alled hexS-protein was purified from FreeStyle293-F cells [18] . As 

ne of the earliest published S-protein constructs available, many 

anufacturers have incorporated the features of hexS-protein into 

rotein-based COVID-19 vaccines such as NVX-CoV2373 (Supple- 

ental Figure S1) [5 , 12] . Some features enhance immunogenic- 

ty, originally established for a related betacoronavirus [20] , while 

ther features improve production yields [18] . 

As a quality check to confirm that in-house purified glycosy- 

ated hexS-protein formed the expected trimeric structure, samples 

ere analyzed by SE-HPLC using a TSKgel G40 0 0SWXL column, ap- 

ropriate for fractionating biomolecules up to 70 0 0 kDa. A com- 

arison to MW standards showed that the main hexS-protein peak 

luted at a MW app of 700 kDa ( Fig. 1 A), consistent with a previous

E-HPLC report on the size of trimeric glycosylated S-protein deter- 

ined by an Xbridge BEH200 column [21] . It is not clear whether 

he small group of unresolved peaks eluting before the major peak 

orrespond to higher order aggregates or alternate S-protein con- 

ormers, since both have been observed as earlier-eluting species 

y SE-HPLC [21 , 22] . However, it’s noted that column parameters 

n this study, such as particle size, could contribute to resolution 
p

3 
oss between species of similar hydrodynamic radius. Overall, the 

bserved size of the main hexS-protein was consistent with the 

rimeric form. 

In addition to in-house purified hexS-protein, commercial prod- 

cts available at the time of this study were used to represent vac- 

ines closer to the wild-type S-protein sequence. These include two 

ull-length wild-type S-proteins (comS-protein A and comS-protein 

) along with the S1 and S2 subunits alone (comS1 and comS2, 

espectively) ( Table 1 ). 

.2. Method development and optimization 

Under the organic and acidic solvent conditions of RP-HPLC, 

roteins are typically denatured and higher-order species dissoci- 

ted. As a result, RP-HPLC analysis will characterize the physio- 

hemical features of monomers (140 kDa for hexS-protein). 

Method development using hexS-protein and commercial S- 

rotein products began with a number of RP-HPLC columns es- 

ablished for bioanalytical characterization of viral membrane pro- 

eins, such as hemagglutinin ( Fig. 1 B) [16] . Under low TFA condi- 

ions, 0.04% TFA Eluent A and 0.03% TFA Eluent B, two MICRA®

PLC NPS-ODSI columns (33 mm × 4.6 mm with 1.5 μm par- 

icles, and 100 mm × 4.6 mm with 3 μm particles) were first 

ested with a separation gradient from 40% to 65% Eluent B over 

5 min. Both showed some peak resolution and acceptable back 

ressure, with the 3 μm particle column allowing for higher sam- 
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Fig. 2. RP-HPLC performance in high and low TFA% for (A) purified hexS-protein and (B) comS-protein A. (C) Comparison of fluorescence (dashed line) and absorbance 

detection in RP-HPLC analysis of comS-protein A. 
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le loading ( Fig. 1 B, top trace). Later, these columns were replaced 

ith the Aeris Widepore XB-C8 core-shell silica column (150 mm x 

.6 mm, 3.6 μm particles, 200 Å), also suitable for separating large 

ydrophobic proteins. This provided even lower back pressure, sig- 

ificantly improved near-baseline resolution between peaks, and 

omparable sample loading capacity ( Fig. 1 B, bottom trace). An 

eris Widepore XB-C18 column was also tested and showed similar 

erformance to the C8 version, except for the co-elution of an ap- 

arent S-protein peak with TFA impurities at 6 min ( Fig. 1 B, mid-

le trace). Due to this minor difference in performance, the Aeris 

idepore XB-C8 column was chosen for further evaluation. Adjust- 

ng column temperatures from 55 °C to 40 °C had no notable im- 

act on sample recovery or resolution. 

Interestingly, with a newly purchased Aeris Widepore XB-C8 

olumn and the gradient elution profile used in Fig. 1 B (40% to 

5% B over 25 min), TFA concentrations needed to be increased 

o 0.1% in Eluent A and 0.08% in Eluent B for similarly good peak 

esolution ( Fig. 2 A and B , high TFA traces). In contrast, the lower

FA concentrations used in development (0.04% TFA Eluent A and 

.03% TFA Eluent B) produced significant peak tailing and reduced 

esolution ( Fig. 2 A and B , low TFA traces). Later, the gradient was

xtended (35% to 65% Eluent B over 30 min) to prevent the co- 

lution of S1 peaks in comS-proteins with TFA impurity peaks 

 Table 2 , Gradient I). These results were reproducible across mul- 

iple recently (2021) manufactured columns. The difference in per- 

ormance between these newly purchased columns and the older 
2

4 
olumns used in method development could be due to unknown 

mpurities introduced in the column’s usage or manufacturing his- 

ory, which emphasizes the importance of interlaboratory studies 

or robustness assessment across equipment and environments. 

In all studies, both native fluorescence (ex/em: 280 nm/335 nm) 

nd absorbance (210 – 400 nm) were monitored, which showed 

omparable peak retention patterns using Gradient I ( Fig. 2 C). Na- 

ive fluorescence detection of aromatic residues, primarily trypto- 

han, is advantageous for low-abundance samples due to its sensi- 

ivity [23–25] . Since the hexS-protein sequence contains 12 tryp- 

ophan residues, fluorescence detection allowed for significantly 

ower injection volumes and improved resolution. 

The final method (Gradient I, using the Aeris Widepore XB-C8 

olumn) showed good peak resolution and was highly reproducible 

cross independent sample preparations (Supplemental Figure S2). 

nalysis of purified hexS-protein showed elution of a single ma- 

or peak at a retention time of 26.7 min ( Fig. 3 , second trace from

ottom), with a corresponding absorbance signal at 280 nm. Con- 

rmation of the S-protein identity (60% sequence coverage with 46 

nique peptide sequences identified) was obtained by MS/MS anal- 

sis of the collected HPLC peak (Supplemental Figure S3). 

.3. Separation of S1, S2, and full-length S-protein 

A potential quality issue for COVID-19 vaccines, such as SCB- 

019, is uncontrolled cleavage during production [26] . Since both 
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Fig. 3. RP-HPLC chromatograms with Gradient I comparing hexS-protein to commercial products: full-length S-protein (comS-protein A and comS-protein B), the S1 subunit 

(comS1), and the S2 subunit (comS2). No sample injected is in the zero injection and solvent gradient is shown by the dashed line. 
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omS-protein A and comS-protein B retain the native S1/S2 pro- 

ease cleavage site, the susceptibility to cleavage is increased 

9] , which can be assessed by RP-HPLC analysis with Gradient 

. Indeed, chromatograms of comS-protein A and comS-protein B 

howed the presence of multiple peaks ( Fig. 3 , top two traces). 

hese were identified by comparison to comS1 and comS2 subunit 

roducts ( Fig. 3 , third and fourth traces from the top respectively). 

oth comS-protein A and comS-protein B showed a peak eluting 

t around 29.4 min, which corresponded to the comS2 subunit re- 

ention time of 29.4 min. However, only comS-protein A showed 

 significant peak at 12.3 min, which corresponded roughly to 

he comS1 subunit retention time of 11.7 min. In contrast, no S1 

leavage product could be detected in the comS-protein B prod- 

ct, despite significant S2 presence. While not a quantitative anal- 

sis, which would require a calibration curve with a carefully se- 

ected reference standard, this relative difference in S1/S2 fluores- 

ence between comS-protein A and B cannot be solely explained 

y aromatic residue content. These results suggest significant dif- 

erences in subunit content between products, possibly caused by 

xpression or purification conditions impacting degradation or re- 

overy. 

It was noted that the full-length species of comS-protein A and 

omS-protein B both eluted at 27.7 min, which was shifted rela- 

ive to full-length hexS-protein at 26.7 min ( Fig. 3 , second trace 

rom bottom) and likely due to sequence or glycosylation differ- 

nces. An extraneous peak at 1.5 min in comS-protein B ( Fig. 3 , top

race) was determined non-proteinaceous from lack of absorbance. 

ll other S-protein and subunit peak identities were confirmed by 
5 
S/MS analysis of the corresponding fractions collected from HPLC 

Supplemental Figure S4). 

.4. Preliminary method qualification 

In a preliminary qualification assessment, the method’s linear- 

ty, limit of detection (LOD), limit of quantification (LOQ), and 

ntra-assay precision was assessed. 

Using hexS-protein, we confirmed linearity between 50 –

00 μg/mL using fluorescence (R 

2 = 0.995, 20 μL injections). 

his range was significantly improved with the addition of 0.05% 

/v polysorbate-80, a common ingredient in the final formulation 

f vaccines such as NVX-CoV2373, which likely prevented non- 

pecific protein adsorption to vial surfaces. With the polysorbate- 

0 detergent, method linearity was determined between 2.5 –

00 μg/mL using fluorescence (R 

2 = 1.000, 20 μL injections) with 

o impact on the retention time or shape of the hexS-protein peak. 

n both linearity assessments, with and without polysorbate-80, 3 

njections were analysed for each of 6 concentrations. 

The LOD, defined as the lowest protein amount injected to give 

 signal-to-noise ratio of 3:1, was determined with hexS-protein at 

5 ng for fluorescence detection and 500 ng for absorbance detec- 

ion at 280 nm. The LOQ, defined as the lowest protein amount 

njected to give a signal-to-noise ratio of 10:1, was determined 

ith hexS-protein at 50 ng for fluorescence detection and 1 μg for 

bsorbance detection at 280 nm. These results show that fluores- 

ence detection is significantly advantageous for low-concentration 

-protein samples. 
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[

[

[

[

[

Intra-assay precision was measured by 8 injections at 20 μL of 

0 μg/mL hexS-protein. For peak area, RSD% was 3.34%. For reten- 

ion time, RSD% was 0.05%. These results show acceptable intra- 

ssay precision. 

. Conclusions 

Protein-based vaccines, including those based on whole viruses 

nd recombinant protein, are some of the most well-established 

nd robust vaccine types [5] . Overall, these advantages in effi- 

acy and stability are significant, especially for areas without ac- 

ess to the stable cold-chain distribution system required for first- 

eneration mRNA vaccines [27] and for future endemic scenarios 

here addressing local needs will be priority. 

In this work, we show that RP-HPLC is a useful tool for assess- 

ng vaccine-relevant S-protein quality and consistency. The separa- 

ion and identification of full-length S-protein from its major cleav- 

ge subunits, S1 and S2, was consistently demonstrated for a va- 

iety of products. Preliminary method qualification suggests that 

he RP-HPLC method could be easily adapted to meet the strin- 

ent quality requirements of drug assessment. The observations re- 

orted here, such as the impact of TFA conditions and polysorbate- 

0 addition, will be informative for adapting the method to differ- 

nt systems. 

Historically, vaccines and their quality assays were developed 

nd standardized in parallel, slowly over decades [28] . However, in 

he COVID-19 era, a variety of modern techniques will need to be 

stablished rapidly. As a bioanalytical technique, RP-HPLC is one 

uch tool that provides the rapid results, reagent flexibility, and 

ethod adaptability well-suited for vaccine analysis. 
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