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ABSTRACT Chronic (long-lasting) infections are globally a major and rising cause
of morbidity and mortality. Unlike typical acute infections, chronic infections are
ecologically diverse, characterized by the presence of a polymicrobial mix of
opportunistic pathogens and human-associated commensals. To address the chal-
lenge of chronic infection microbiomes, we focus on a particularly well-character-
ized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for
decades despite frequent exposure to antibiotics. Epidemiological analyses point
to conflicting results on the benefits of antibiotic treatment yet are confounded by
the dependency of antibiotic exposures on prior pathogen presence, limiting their
ability to draw causal inferences on the relationships between antibiotic exposure
and pathogen dynamics. To address this limitation, we develop a synthetic infec-
tion microbiome model representing CF metacommunity diversity and benchmark
on clinical data. We show that in the absence of antibiotics, replicate microbiome
structures in a synthetic sputum medium are highly repeatable and dominated by
oral commensals. In contrast, challenge with physiologically relevant antibiotic
doses leads to substantial community perturbation characterized by multiple alter-
nate pathogen-dominant states and enrichment of drug-resistant species. These
results provide evidence that antibiotics can drive the expansion (via competitive
release) of previously rare opportunistic pathogens and offer a path toward micro-
biome-informed conditional treatment strategies.

IMPORTANCE We develop and clinically benchmark an experimental model of
the cystic fibrosis (CF) lung infection microbiome to investigate the impacts of
antibiotic exposures on chronic, polymicrobial infections. We show that a single
experimental model defined by metacommunity data can partially recapitulate
the diversity of individual microbiome states observed across a population of
people with CF. In the absence of antibiotics, we see highly repeatable commu-
nity structures, dominated by oral microbes. Under clinically relevant antibiotic
exposures, we see diverse and frequently pathogen-dominated communities,
and a nonevolutionary enrichment of antimicrobial resistance on the community
scale, mediated by competitive release. The results highlight the potential impor-
tance of nonevolutionary (community-ecological) processes in driving the grow-
ing global crisis of increasing antibiotic resistance.
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Physicians face two growing crises that impact their ability to treat bacterial infec-
tions. The first is widely recognized—the evolution of antibiotic resistance (1). The

second receives less attention—chronic (long-lasting) infections that are more difficult
to control (2–4). Chronic infections are globally a rising burden on health care systems
due to increases in populations at risk (e.g., the elderly, people with diabetes or other
diseases that can promote chronic wounds) (5). At-risk populations have deficits in
host-barrier defenses and/or immune function that provide an opening for the estab-
lishment of infections, and these chronic infections are further complicated by changes
in pathogen growth mode (e.g., formation of multicellular biofilm-like aggregates [6–8])
and development of complex multispecies communities (9).

To address the global challenge of chronic infections, we focus on a particularly
well-characterized disease, cystic fibrosis (CF), where bacterial infections can persist for
decades. CF is caused by mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR), an ion channel that conducts chloride and thiocyanate ions across
epithelial cell membranes, leading to defective mucociliary clearance and polymicro-
bial infection (10, 11), resulting in eventual pulmonary failure (12, 13).

Traditionally, CF research and patient care have focused on a small cohort of oppor-
tunistic pathogens, highlighting a distinct successional pattern (14) characterized by
peak prevalence of Haemophilus influenzae in childhood, Staphylococcus aureus during
adolescence, and Pseudomonas aeruginosa in adulthood. In addition to the core patho-
gen species, 16S rRNA-encoding gene amplicon sequencing of expectorated sputum
samples has revealed much more diverse communities including numerous bacteria
that are commonly considered nonpathogenic in CF and that are normally associated
with oral and upper-respiratory environments (15–19). The functional role of these
nonpathogenic taxa in CF lungs is currently disputed (20). Epidemiological analyses
have identified potentially positive roles, as higher lung function correlates with higher
relative abundance of oral bacteria in sputum samples from both cross-sectional (21–23)
and longitudinal studies (24). In contrast, in vitro experimental studies have suggested
health risks of specific oral bacteria in the lung, due to the potential facilitation of patho-
gen growth (25, 26). A third interpretation is that oral bacteria found in sputum are sim-
ply the result of sample contamination with oral microbes during expectoration (27, 28).
A number of approaches to address the sputum contamination issue have been taken,
including mouth cleaning and sputum rinsing (29), as well as more invasive sampling
techniques (subject to clinical need [28, 30–32]). Most recently, computational analysis of
paired sputum and saliva samples from adults with established CF lung disease has dem-
onstrated that saliva contamination during sample collection has a minimal quantitative
impact on the community profile (33).

As a result of long-term bacterial infection, people with CF are exposed to high lev-
els of antibiotics (34), both as maintenance therapy (35) and as treatment for exacerba-
tions. In the context of a critical health challenge (an acute pulmonary exacerbation),
health outcomes are variable; lung function can rapidly increase back to baseline val-
ues or remain at a new, lower baseline following antibiotic intervention. Unfortunately,
a recent systematic review of 25 articles indicated little correlation between these vari-
able clinical outcomes and antibiotic susceptibility test results for the target pathogen
(36). Several factors for this disconnect have been proposed, including differences in
bacterial physiology (37), nonrepresentative infection sampling (38, 39) and polymicro-
bial interactions (40). In a microbiome context, epidemiological studies indicate vari-
able outcomes of antibiotic treatment, ranging from minimal impact on microbiome
structure (15, 41, 42) to target pathogen declines, microbiome structural changes (43–46),
and risk of subsequent infection (47). However, there is a fundamental confounding factor
in these epidemiological studies, as antibiotic exposures are themselves dependent on the
microbiome state of the patient. Specifically, the detection of pathogens within the micro-
biome will dictate antibiotic choice (48).

Here, we seek to overcome this confounding impact of pathogen detection through
the development and clinical benchmarking of an experimental infection microbiome
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model. Using this model, we seek to address a number of broad and overlapping ques-
tions concerning the determinants of infection microbiome structure: (i) Can a single
experimental model generate multiple alternate infection microbiome states? (ii) What
are the impacts of independent pathogen and antibiotic manipulations on microbiome
structure? (iii) Can antibiotics drive pathogen expansion and community diversification,
via competitive release? (iv) Do antibiotics promote facilitatory species interactions?

While most experimental polymicrobial models of CF have focused on two-species
pathogen interactions (49–51), some studies have developed up to six-species models
(52, 53). These more complex models have demonstrated that species antibiotic sus-
ceptibility is not impacted by community context (53), but their use of rich media (to
facilitate single-species comparisons) raises the issue of relevance to the in vivo context
of growth in sputum (54). Our experimental approach begins with a “synthetic spu-
tum” that recreates the biochemical and physical conditions of the sputum found in CF
lungs (55, 56). We then add defined combinations of the 10 most abundant bacterial
species on the meta-community scale: 10 species that together account for over 85%
of the observed bacterial diversity within the CF lung in a 77-person cohort (57). Five
of these species are established human pathogens (S. aureus, P. aeruginosa, H. influen-
zae, Burkholderia cenocepacia, and Achromobacter xylosoxidans), while the rest are oral
microbes frequently found in CF lungs. To underline that our 10-bacterial species
model captures observed CF diversity at the meta-community (multipatient) scale, we
refer to this model as the CF meta-community model (see schematic in Fig. 1) and
view this model as representing the primary menu of organisms from which individual
patient microbiomes form. We hypothesize that this single experimental model can
self-organize into multiple alternate community states that approach the diversity of
microbiome states observed across individuals with CF. The existence of alternate com-
munity states has recently been quantified by epidemiological analyses identifying five
(58) or eight (59) distinct “pulmotypes” across cohorts of people with CF.

Replicate communities are cultured anaerobically to capture oxygen-depleted con-
ditions within mucus plugs (60–62). We show that under our in vitro model infection
conditions, oral bacteria form stable communities that suppress the growth of multiple
pathogen species, and this competitive suppression is reduced by controlled antibiotic
exposures, leading to multiple alternate pathogen-dominant outcomes, the emer-
gence of facilitatory species interactions, and the nonevolutionary enrichment of anti-
biotic resistance.

RESULTS
In the absence of antibiotics, commensal anaerobes dominate over CF patho-

gens. Experiments performed in the absence of antibiotics demonstrated a consistent
and reproducible community structure, characterized by population expansion during
the initial 48 h and a composition primarily consisting of Prevotella melaninogenica,
H. influenzae, and Veillonella parvula (Fig. 2). At 48 h, the total bacterial density averaged
about ;7.7 � 106 CFU/mL (6 2.0 � 106 standard deviation [SD]), which falls within the
broad range of reported bacterial densities in sputum in clinical studies (typically between

FIG 1 Schematic outline of the CF meta-community approach. All experiments are derived from a
10-species menu that captures the majority of CF microbiome diversity across a cohort of 77 people
with CF (57) and is consistent with microbiome content across the CF literature (15–19, 21–24). The
10-species meta-community is exposed to 10 treatments (in 5� replication) and propagated for 5
serial passages. The experimental design results in 250 individual synthetic microbiome observations.
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104 and 109 CFU/mL [57, 63, 64]). From passage 3 onward, each replicate showed a high
degree of stability through time, in terms of both total abundance and relative composi-
tion. Across replicates, we also see a striking convergence in microbiome structure. To
assess consistency across the 5 replicates, we calculated coefficients of variation (CV =
standard deviation/mean) for each species’ total abundance, all showing underdispersion
(i.e., standard deviation less than the mean, with an average species CV of 0.46 at the end
of the experiment; see Fig. S1 in the supplemental material), consistent with stabilizing ec-
ological forces limiting variation in species densities across replicates.

The results in Fig. 2 point to a robust community structure in the absence of pertur-
bations, consistent with the frequent dominance of oral bacteria in individuals with
higher lung function but far from capturing the diversity of microbiome structures
observed across the broader CF community; in particular, our results do not recapitu-
late the common observation of variably pathogen-dominated microbiomes (22, 24,
32, 57, 65). To assess the role of variable pathogen strain identity or presence/absence,
we repeated the experiments in Fig. 2 with manipulations of the two most prevalent
pathogens of people with CF, P. aeruginosa and S. aureus. Specifically, we manipulated
the biofilm-forming ability of P. aeruginosa (mucoid PDO300 versus wild-type, nonmu-
coid PAO1 versus no P. aeruginosa) and also the presence/absence of S. aureus. In light
of previous experimental work demonstrating that single-locus changes impacting

FIG 2 The 5-fold replicated synthetic CF microbiomes converge toward a single stable state in the absence of antibiotic
perturbations. Five replicate synthetic microbiomes were grown anaerobically in artificial sputum medium. The
community composition was estimated by 16S rRNA gene amplicon sequencing at time 0 and at every 2-day passage
(x axes) into fresh medium (10% transfer of 2 mL culture volume). The colored bars represent the relative abundance of
each species in the community (left y axis), while the black line represents the total bacterial abundance per mL (right y
axis, log scale). Each panel represents a separate replicate experiment. Strain information is provided in Table 1 (our
default P. aeruginosa strain is mucoid PDO300).
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biofilm phenotypes (such as mucoidy) can have dramatic community ecological
impacts exceeding the impact of species removal (66), we hypothesized that the pres-
ence/absence of mucoidy would generate substantial community shifts, exceeding re-
moval of S. aureus and/or P. aeruginosa. In contrast to this hypothesis, we found very
small quantitative variations in community structure under all pathogen manipulations
(Fig. 3) and no support for the prediction of a greater impact of mucoidy versus species
removal (Table S1). Across all pathogen treatments, we observed overall the same quali-
tative pattern as in Fig. 2 with consistent dominance by H. influenzae, P. melaninogenica,
and V. parvula (Fig. 3, Fig. S2).

Antibiotics skew community structure toward pathogen expansion and domi-
nance. Having established the repeatability and stability of the community in the ab-
sence of antibiotics, we then assessed the impact of antibiotic treatment on community
structure. To test our hypothesis that antibiotic exposure will induce substantial commu-
nity perturbations, communities were continually challenged with 3 individual antibiotics
and 2 pairs commonly used in the CF clinic (tobramycin, meropenem, ciprofloxacin, tobra-
mycin and meropenem, tobramycin and ciprofloxacin) (34, 67) using concentrations
observed in vivo during therapeutic administration (68–72). Consistent with our hypothe-
sis, antibiotic exposures resulted in dramatically different outcomes across treatments and
replicates, compared to the antibiotic-free communities (Fig. 4, Fig. S1). To quantify com-
munity-scale impacts of antibiotic perturbations (compared to the no antibiotic control
treatment, Fig. 2), we use the analysis of similarity (ANOSIM) Rmetric, revealing significant
impacts on community structure, exceeding the impacts of pathogen treatments (Fig. S3).
Antibiotic effect sizes range from modest impacts of tobramycin (mirroring clinical data
[46, 73]) to substantial impacts for treatments involving meropenem.

The compositional presentation in Fig. 4 highlights that the same antibiotic treat-
ment often leads to distinct pathogen dominance across replicates. For example, under
meropenem 4 out of 5 replicates result in persistent S. aureus dominance, while one

FIG 3 Varying the pathogen composition has minimal impact on community composition. Each panel represents
the average of 5 replicates in the absence of antibiotics; the mucoid PA with SA panel is the average from Fig. 1.
Figure details are the same as those described for Fig. 1. Data on individual replicates per treatment are presented
in Fig. S2. Mucoid and nonmucoid PA, P. aeruginosa strains PAO1 and PDO300, respectively. SA, S. aureus.
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replicate shows persistent B. cenocepacia dominance. One possibility is that these dis-
tinct endpoints represent alternative stable states, implying stabilizing ecological forces
sending separate replicates toward B. cenocepacia dominance (and S. aureus absence) or
S. aureus dominance (and B. cenocepacia absence), dependent on fluctuations in initial
conditions (74). To further investigate this claim, we turn to taxon absolute abundance
data to test the “alternative stable states” prediction of a negative correlation between
B. cenocepacia and S. aureus absolute abundances across replicates. Figure S4 presents
absolute abundance data for each taxon, treatment, and replicate through time. Under
the meropenem data (Fig. S4C) we can see substantial variation in the final abundance
of B. cenocepacia and S. aureus (see also Fig. S1). However, across final abundances of
these two taxa, there is no negative correlation between the absolute density of B. ceno-
cepacia and S. aureus (Pearson’s correlation coefficient [correl coeff] = 0.026, P = 0.967).
Under the meropenem/tobramycin treatment we see a similar pattern of variable domi-
nance between Achromobacter xylosidans and B. cenocepacia (see Fig. 4, Fig. S1 and S4F),
but again, no negative correlation across replicates in final absolute abundances
(Pearson’s correl coeff = 0.310, P = 0.611). In light of this analysis, our data rule against al-
ternative stable states. Given that our data do not reflect alternate stable states, one
potential explanation for the pattern of the variable dominance across replicates under

FIG 4 Antibiotic treatments produce large community fluctuations and alternative community states. Columns
represent distinct antibiotic treatments (the first “no antibiotics” control column is reproduced from Fig. 1), and
rows represent 5 replicates. The left axes measure community composition (bar charts); the right axes measure
total bacterial abundance per mL (black lines). Experimental procedures, sampling, and analysis were performed
as described for Fig. 1. Fresh antibiotics were resupplemented at each passage. Total abundance data by species
are presented for each treatment and time point in Fig. S3.
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drug exposure is relaxed ecological regulation resulting in increased cross-replicate vari-
ation in species abundance.

Figure 4 indicates large shifts in response to antibiotic treatments, but compositional
analysis alone cannot separate the relative importance of differential survival versus differ-
ential expansion. Using absolute abundances (Fig. S4), we can now test whether patho-
gens undergo competitive release (expansion, following removal of competitors [75–77])
in response to antibiotic exposure, by assessing whether the final pathogen density is
greater in the presence of antibiotic than in its absence (Fig. 5). Comparing densities in
the presence/absence of antibiotics, we find evidence for significant and substantial
(.100-fold in some replicates) antibiotic-dependent amplification via competitive release
of S. aureus, B. cenocepacia, and A. xylosoxidans under specific antibiotic exposures
(Fig. 5). In contrast, there is evidence of significant suppression of H. influenzae and P. aer-
uginosa in all antibiotic treatments (Fig. 5; two-tailed Wilcoxon test, P , 0.01), together
with Neisseria subflava in all treatments as well as V. parvula and P. melaninogenica in all
meropenem treatments (Fig. S5).

Antibiotic susceptibility explains community composition on a functional scale
but not on a taxon scale. The simplest hypothesis to account for the substantial
impacts of antibiotic exposures on community structure (Fig. 4 and 5, Fig. S3) is that anti-
biotics present a survival filter through which only resistant organisms can pass. Under

FIG 5 Absolute pathogen densities are variable and often increased under antibiotic exposures. Each
dot corresponds to the fold change difference of an individual replicate of species-specific final time
point absolute density under defined antibiotic treatments, compared to the mean value of the no-
antibiotic control (data redrawn from Fig. 3). Mer, meropenem; cip, ciprofloxacin; tob, tobramycin.
Asterisks denote significantly higher final densities in the presence of antibiotic compared to
antibiotic-free controls (competitive release; one-tailed Wilcoxon test; *, P , 0.05; **, P , 0.01).
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this model, the community structure after antibiotic treatment is simply the product of
whether or not each taxon can grow in the antibiotic(s) administered.

To assess the survival filter hypothesis, we derived antibiotic susceptibility measures
(MICs) under standard growth conditions that allowed the more fastidious strains to
grow independently (Table S2) and used these data to predict experimental responses
to defined antibiotic exposures (Fig. 6). Figure 6 illustrates that the drug-susceptible
P. aeruginosa lab strain PDO300 behaves as predicted by the survival filter hypothesis:
it is present in the absence of treatment but then absent (average relative abundance
is ,1%) in the presence of antibiotics. The same is true for H. influenzae.

However, for multiple examples the ability to resist antibiotics (in a standard clinical
assay [78, 79]) did not predict the presence/absence of the species after treatment. In
red, Fig. 6 displays cases where the species was predicted to be present (given MIC re-
sistance data, Table S2) but was nevertheless absent in the final community. This pat-
tern is suggestive of an additional role for microbe-microbe competitive interactions in
shaping community structure and was observed for 6 of the 10 taxa, and most often in
the absence of antibiotics. Conversely, blue regions in Fig. 6 identify cases where the
pathogen was predicted from MIC data to be unable to grow in the allocated antibiotic
and yet was present in the multispecies community experiment in at least 1 commu-
nity. This pattern is indicative of antibiotic-dependent faciliatory interactions, where
other species aid the focal species to survive under antibiotic insult, for example, via
antibiotic detoxification (80–85).

FIG 6 Antibiotic resistance testing does not consistently predict species presence/absence in a
community context. For each species-drug combination, we assessed predicted survival (MIC in rich
medium [Table S2] . experimental concentration) and observed survival (relative abundance of at least
1% averaged across all five replicates at the final time point [Fig. 4]). True-positive cases (predicted and
observed present) are coded in gray; true negatives (predicted and observed absent) are in white. False
positives (predicted present, observed absent; evidence for competition) are in red, and false negatives
(predicted absent, observed present; evidence for facilitation) are in blue. Species order was determined
through clustering via stringdist (118). In Discussion we address the caveat that single-species MIC
measures are taken under distinct growth conditions.
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To assess the role of antibiotic-dependent facilitation, we focus on the meropenem
treatment (far right column, Fig. 6), which indicates that the ability of S. aureus to grow
in an otherwise lethal dose of meropenem is due to facilitation by B. cenocepacia.
B. cenocepacia carries multiple b-lactamase enzymes (86) that are potentially capable
of degrading meropenem and therefore enable S. aureus to grow in this environment.
To test the facilitation hypothesis, we culture B. cenocepacia and S. aureus alone and in
coculture (using rich media to allow monoculture comparisons) in both the presence
and absence of meropenem (Fig. 7). In monoculture we find that S. aureus growth is
limited by meropenem (paired one-tailed t test on S. aureus final density 6 merope-
nem, P = 0.003), consistent with MIC data (Table S2). In contrast, in coculture we find
that S. aureus growth in meropenem is rescued by coculture with B. cenocepacia
(paired one-tailed t test on S. aureus final density in meropenem, 6 B. cenocepacia,
P = 0.020), consistent with antibiotic-dependent facilitation.

In light of the inability of antibiotic resistance data to reliably predict community
structure at the species scale (Fig. 6), we next asked whether the resistance data are
predictive at a broader, functional scale. Pooling drug-resistant pathogens together
(S. aureus, B. cenocepacia, and A. xylosoxidans), we find consistent enrichment (19- to
41-fold on average per treatment) across all drug exposures (Fig. 8), indicating a con-
sistent enrichment of more problematic organisms following antibiotic exposure.

FIG 7 S. aureus growth in meropenem is facilitated by coculture with B. cenocepacia. Experiments
were conducted in rich medium (Tryptone Soya Yeast Extract [TSYE] broth) in room air, in the presence
or absence of 10 mg/mL meropenem and for each species either grown alone (monococulture) or
together (coculture) in a 96-well plate with hourly shaking. At 0 and 48 h, cells were serially diluted
and plated at concentrations of 1022 to 1027 onto either mannitol salt agar (for S. aureus) or LB agar
with 500 mg/L gentamicin (for B. cenocepacia).

FIG 8 Drug-resistant pathogens are consistently enriched as a functional class across all drug treatments.
Fold change differences for the sum of drug-resistant pathogens (B. cenocepacia, A. xylosoxidans, and
S aureus) compared to no-antibiotic control; details as in Fig. 4. Asterisks mark significant competitive
release; one-tailed Wilcoxon test; *, P , 0.05; **, P , 0.01.
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In the discussion we explore potential contributing reasons other than community ec-
ological interactions for the disconnect between MIC predictions on the species scale
and observed community presences (Fig. 5).

Community compositions across all antibiotic treatments are consistent with
diversity across clinically observed in vivo communities. We finally ask, how do our
in vitro synthetic microbiomes compare with the diversity of microbiome structures
observed in people with CF? We begin with a principal-coordinate analysis (PCA) ordi-
nation plot to visualize experimental data (initial and final time points from Fig. 4)
alongside clinical data (Fig. 9).

Figure 9A illustrates that our initial 10-species inocula (colored squares) are not repre-
sentative of individual patient microbiome states (gray/black circles), reflecting their deri-
vation from the typical meta-community state of populations with CF (Fig. 1). Figure 9B

FIG 9 Antibiotics drive pathogen enrichment in experimental microbiomes, producing community structures that overlap
clinical sputum communities. PCA visualization of experimental microbiome data (colored triangles and squares, summarizing
data in Fig. 4) plus clinical microbiome data across a cohort of 77 people with CF (gray/black circles, black/severe signifies low
lung function [57]). (A) Squares illustrate experimental initial conditions. (B and C) Triangles are final compositions after 5
serial passages (10 days), in the absence (B) or presence (C) of antibiotics. Colors denote experimental condition (see key).
Each experimental treatment is replicated 5-fold, producing highly repeatable dynamics in the absence of antibiotics (blue
triangles, B) and variable pathogen enriched outcomes following antibiotic treatment (C). Antibiotics were supplemented at
each passage at clinically relevant concentrations (meropenem, 15 mg/mL; tobramycin, 5 mg/mL; ciprofloxacin, 2.5 mg/mL).
Each point is a single microbiome sample (species resolution for clinical samples via the DADA2 plugin in QIIME2 [57, 119]).
Ordination is the PCA of centered log-ratio transformed relative abundances.
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highlights the repeatable endpoint microbiomes in the absence of antibiotics (blue trian-
gles), approaching commonly observed oral microbe-dominated states (57). Figure 9C
illustrates the more divergent states resulting from antibiotic perturbations. Contrasting
clinical versus pooled experimental data, we see intermediate levels of community differ-
entiation (ANOSIM R = 0.28), intermediate between the impacts of pathogen (Fig. 3) and
antibiotic (Fig. 4) manipulations (Fig. S3).

Building on the overview provided by Fig. 9, we now look at a more granular level
and ask for each taxon whether species relative abundances in our experimental model
fall within the range of clinical variation from our previous clinical study (57). In Fig. 10
we first assess our metacommunity inoculum condition (time zero in Fig. 2 and 4)
against the yardstick of clinical variation and, unsurprisingly, see a substantial number of
taxon misses (5 out 10 species abundance in the inocula is distinct from clinical data;
Welch’s t test, P , 0.001), reflecting that our metacommunity initial conditions are not
well matched to the typical profiles of individual sputum samples (Fig. 1 and 9). We next
assess experimental community states after 5 serial passages (final time points across all
treatments) and find a better match with clinical data. Three of the five taxon misses
move within clinical variation, while one taxon (P. melaninogenica) moves outside clinical
variation, resulting in seven out of ten taxa where our experimental model produces
ranges of relative abundances that do not significantly differ from benchmark clinical
data (Fig. 10). We find that our model significantly overrepresents Prevotella and under-
represents Pseudomonas and Rothia. These misses provide an opportunity to improve
our model in future work, by pointing toward an environmental mismatch on oxygen-
ation (with the strict anaerobe P. melaninogenica benefitting and the facultative anae-
robes P. aeruginosa and Rothia mucilaginosa suffering from the anaerobic atmosphere).
This pattern of misses suggests that the distribution of oxygenation experienced clini-
cally by CF microbiomes is more oxygenated than that provided by our anaerobic cham-
bers with only brief exposures to oxygen every 48 h.

DISCUSSION

Our results show that in the absence of antibiotic perturbations, our defined 10-species
synthetic CF microbiome community follows a highly repeatable path to a stable commu-
nity composition (Fig. 2, 3, and 9B). In contrast, antibiotic treatments resulted in substantial
community shifts (Fig. 4), featuring both competitive release of previously rare pathogens
(Fig. 5) and emergent facilitatory interactions (Fig. 7). Under antibiotic treatment we
observed distinct trajectories across both drugs and replicates (Fig. S2 and S4), dispersed
through a broad range of observed CF community structures, including alternate patho-
gen-dominant states (Fig. 9). Table S3 summarizes our results in light of motivating
hypotheses.

FIG 10 Most endpoint experimental taxa fall within the range of clinically observed relative frequencies. The
relative abundances of taxa in synthetic microbiome inocula and endpoints (30 samples) compared to 77 clinical
cohort observations (57). The box represents the interquartile range (from 25% to 75% of samples), with the
horizonal line at the median. Outliers are represented as dots (two-tailed Welch’s t test versus clinical data with
Bonferroni multiple testing correction; *, corrected P , 0.001).
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Our results highlight that standard antibiotic resistance MIC data (Table S2) often fail
to predict individual species presence following antibiotic exposure (Fig. 6), with predic-
tions showing both false positives and false negatives. A simple general explanation for
departures from the ecological filter hypothesis is the presence of significant ecological
interactions among species. Under this framework, false positives are evidence for sup-
pressive interactions, suggesting that, for example, S. aureus fails to grow in the antibi-
otic-free environment because it is out-competed by one or more of the other taxa.
Conversely, false negatives are evidence of facilitation, suggesting for instance, that the
ability of S. aureus to grow in an otherwise lethal dose of meropenem is due to facilita-
tion from another species in the community. In agreement with this hypothesis, we find
that B. cenocepacia shows meropenem-dependent facilitation of S. aureus growth, of suf-
ficient magnitude to rescue S. aureus growth in superinhibitory concentrations of antibi-
otic (Fig. 7).

While the combination of antibiotic resistance and species interactions is a candi-
date explanation for our results (Fig. 7), other factors are potentially at play. First, we
again note the important caveat that the MIC estimates were derived using standard
growth-promoting rich culture assays, which are known to generate estimates that
tend to underestimate the resistance of cells under more physiologically relevant con-
ditions (87, 88). If our MICs are underestimates of resistance, then we would anticipate
more false-positive evidence of competition in our experimental community. A second
possibility for divergent results is the presence of physiological or evolutionary adapta-
tion to the community conditions, across the 10 days of serial passaging. The stability
and repeatability across replicates in Fig. 2 argue against a major role for genetic evolu-
tion in steering community dynamics—consistent with recent work on the suppressive
impact of community interactions on bacterial evolution (89).

In order to develop an experimentally tractable model, we made a number of
choices regarding specific experimental conditions (e.g., nutrients, initial community
structure, strain identity) that likely influenced our specific results. The healthy lung is
evidently an oxygen-rich environment; however, during the course of tissue degrada-
tion in the CF airways, the sputum environment can become oxygen deprived due to
the combined forces of mucus plugs, along with oxygen consumption by immune cells
and microbes (60, 61, 90). To capture an oxygen-stressed environment, we performed
our experiments under static anaerobic conditions that were only subjected to oxygen-
ation during bench passaging every 48 h. While all bacteria in the community are capa-
ble of either fermentation, anaerobic respiration, or both, the largely anaerobic condition
represents a potential to bias the results toward strictly anaerobic bacteria. Our clinical
benchmarking exercise indicates that the distribution of oxygen exposures in the clinic is
less biased toward anaerobic conditions, as our three endpoint taxon misses (Fig. 10)
consisted of overrepresentation of an anaerobe (P. melaninogenica) and underrepresen-
tation of two aerobes (P. aeruginosa, R. mucilaginosa). This pattern is also consistent with
recent transcriptomic analyses of P. aeruginosa from CF sputum, highlighting a transcrip-
tional response indicative of reduced oxygen, but not necessarily anaerobic conditions
(91). In future work we will investigate synthetic community dynamics in static commun-
ities with partial exposure to room air, following recent experimental ex vivo (patient
sputum) models (92, 93).

Turning to our choices regarding synthetic community composition, by focusing on
the most abundant bacterial taxa, we ignored the potential for rare keystone species
to shape community dynamics (94). We also overlooked the potential importance of
interactions among strains within each species (95, 96). Concerning specific strain
choices, Fig. 3 illustrates that replacing mucoid P. aeruginosa PDO300 with an otherwise
isogenic nonmucoid strain (PAO1) produces little dynamical change. However, other stud-
ies in different environmental contexts have demonstrated substantial dependency of
interactions on strain identity (97, 98), leaving open the importance of specific strain iden-
tities in governing community outcomes. More broadly, we did not include other poten-
tially critical players in the lung microbiome, spanning human epithelial and immune
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cells, fungal species, and viruses of all the above. We note that our experimental platform
is amenable to the addition of these players and additional manipulation of timing and
order of introductions in future controlled experiments.

Our results demonstrate the power of a model 10-species system for the study of
chronic lung infection dynamics. This model provides a platform to assess the commu-
nity ecological impacts of currently deployed antibiotic treatments (Fig. 4 and 8) and
novel treatments—from different compounds to different strategies of their imple-
mentation. Current practice is to hit hard with an antibiotic that is effective against a
target pathogen (99). In the context of our model community, detecting drug-suscepti-
ble P. aeruginosa would typically trigger combination treatments that lead in our exam-
ple to rapid emergence of more dominant and more resistant pathogen replacements
(Fig. 4 and 8) (100). One avenue to improve on this picture is to run community-scale re-
sistance diagnostics and, in turn, use this diagnostic information to optimize antibiotic
(and probiotic) choices (101). While simple in outline, identifying optimal treatment
choices in the context of complex multispecies communities poses a substantial compu-
tational and experimental challenge.

MATERIALS ANDMETHODS
Bacterial strains. Table 1 outlines the specific strains in our 10-species community. Species choices

were initially informed based on our previous study of a 77-person CF cohort with samples taken during
periods of clinical stability (57). Our 10 species represent the most abundant genera from our 16S rRNA
analyses (together accounting for over 85% of reads). Note that these species are collectively representa-
tive of the “metacommunity” (the community of communities [102]) of microbes across a population of
people with CF and are not necessarily representative of individual community states. We view this
metacommunity as the menu of organisms from which individual communities are sampled.

To guide our experimental species choices, we turned to existing CF metagenome sequencing data
(103), which provided high confidence for all but one of our species calls (Table 1). The exception is
Streptococcus, where reads are distributed across a range of species. We chose Streptococcus mitis because
it is present in sputum metagenomic profiles (103), and it is an experimentally tractable organism that is
typically considered to be nonpathogenic (104). Within each species, we focused on well-characterized ref-
erence strains, as far as these were available, including American Type Culture Collection (ATCC) strains.
For the dominant pathogen, P. aeruginosa (PA), we used both the reference strain PAO1 and its mucoid
derivative PDO300 (105). Our default experimental choice is PDO300, as this strain better reflects the
mucoid phenotype prevalent in chronic CF (105, 106).

Community growth medium. Our artificial sputum medium (ASM) is based on the benchmarked
synthetic CF sputum medium 2 (SCFM2 [55, 56]), but with differences in the preparation of the mucin
and DNA macromolecules. Specifically, mucins were ethanol washed and autoclaved (not UV sterilized,
due to larger volume requirements), and the entire medium was filter sterilized following addition of
DNA. Given the potential for differences in preparation methods to impact the results, we refer to our
medium under the more generic name of ASM to underline these differences from the reference recipe
for SCFM2 (55, 56).

Bacterial preculture and community construction. Before the experiment, all bacterial strains were
revived from frozen stocks by streaking on rich medium agar plates (chocolate or brain heart infusion
[BHI] agar, depending on the species; see Table S4) and cultured at 37°C for 48 h microaerophilically (for H.

TABLE 1 Experimental model organisms used in synthetic community experiments

Species Exptl strain
Relative abundance of the
genus in clinical samples (%)

Pseudomonas aeruginosa PDO300 (mucoid) PAO1 (wild type) 29.7
Veillonella parvula Clinicala 9.8
Rothia mucilaginosa ATCC 49042b 9.1
Prevotella melaninogenica ATCC 25845b 8.4
Streptococcus mitis ATCC 49456c 7.9
Haemophilus influenzae ATCC 10211 5.8
Staphylococcus aureus SAJE2 5.6
Achromobacter xylosoxidans ATCC 27061 4.8
Neisseria subflava ATCC 49275c 1.8
Burkholderia cenocepacia K56-2 1.1
aIsolate from Children’s Hospital of Atlanta. Collectively, these organisms represent over 85% of clinical sequence
reads across a 77-person CF lung microbiome study (57).

bPulmonary source.
cOral source. Bold font indicates established CF pathogen (14).
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influenzae and N. subflava) or anaerobically (for P. melaninogenica and V. parvula, in GasPak jars). Five colo-
nies were then picked from each plate and used to inoculate specific monoculture rich medium, which
was cultured for a further 48 h; specific culture conditions are detailed in Table S4.

The bacterial cultures were then washed in a defined ASM buffer base (ASM minus all carbon sour-
ces), and optical density at 600 nm (OD600) values were measured with a Hidex plate reader (Hidex Oy,
Finland) and adjusted to 0.5 for each species and diluted 10-fold in ASM. These standardized bacterial
dilutions of equal volume were mixed, and antibiotic stocks were added according to the experimental
design for each treatment. The bacterial mixtures (plus antibiotics, dependent on treatment) were ho-
mogenized with pipetting and then divided into five replicates of 2 mL each in 24-well plates. An addi-
tional 0.5 mL of the initial inoculum mixture was stored at 280°C to assess community composition at
time 0 by subsequent genomic analysis.

Treatments and passaging. To measure the impact of exposure to antibiotics, we tested three anti-
biotics that are widely used in CF therapy, tobramycin (5mg/mL), meropenem (15 mg/mL), and ciproflox-
acin (2.5 mg/mL), and two widely used combinations, tobramycin and meropenem and tobramycin and
ciprofloxacin (adding the concentrations above). The specific concentrations used reflect measurements
of antibiotic concentrations in CF sputum (68–72). Our choice of 5 mg/mL tobramycin is low compared
to peak concentrations measured immediately following inhaled therapy (107, 108). Even in this immedi-
ate posttreatment context, the concentrations we used are within the range of their reported measured
concentrations at 30 min posttreatment (108). Concentrations are not reported for any longer duration in
these studies. All experiments were performed with 5 replicates of 2-mL cultures in 24-well plates cultured
at 37°C in anaerobic GasPak jars. Every 48 h, bacterial cultures were mixed by pipetting, and 10% of the
volume was transferred to fresh ASM (with fresh antibiotics as defined by the treatment). Then, 0.5 mL of
the culture was stored at each passage at280°C for later DNA purification and amplicon sequencing. Each
experimental line was maintained for 5 passages (10 days).

To assess the role of pathogen characteristics, we conducted 5 pathogen manipulations (presence/
absence of P. aeruginosa mucoidy [PDO300 versus PAO1] � presence/absence of S. aureus, plus a no
P. aeruginosa 1 no S. aureus treatment). These experiments were done in the absence of antibiotics but
otherwise with the same conditions as described above.

16S rRNA sequencing and qPCR. DNA purification, sequencing, and quantitative PCR (qPCR) were
performed by MR DNA Lab (Shallowater, TX). Briefly, DNA was purified from sputum homogenate after
mechanical lysis with the power soil kit (MoBio, Carlsbad, CA). The 16S V4 region of the resulting DNA
was amplified with 515F and 806R primers incorporating the barcode in the forward primer and sub-
jected to Illumina sequencing (109). The sequence data were generated in a total of 6 MiSeq runs. Total
16S abundance in each sample was determined by qPCR using standard 515F/806R primers (109).

16S rRNA sequence analysis. To generate taxa counts from the sequence data, we processed each
run independently and combined the results. Across the 6 sequencing runs, a total of 15,347,658
sequence reads were generated, with a median of 59,686 sequences per sample (minimum 22,707, max-
imum 126,680). All sequence processing was done through QIIME2 2019.10.0. Unless otherwise noted,
we left parameters as defaults based on the Moving Pictures workflow. Samples were demultiplexed
using the cutadapt plugin in QIIME2. We found that some of the barcode sequences were also found in
the 16S region of several taxa. To mitigate this confounder, we removed from each metadata file the first
four nucleotides in the 515F primer and added them to the barcode. For example, the barcode
GAGATGTG was remapped as GAGATGTGGTGC and the primer became CAGCMG. . . .

Reads were denoised using the deblur plugin, and the resulting sequences were trimmed to 250 bp.
Taxonomic assignments were classified against the greengenes 16S database. Some assignments were
not possible at a level of genus resolution, so we interpreted reads mapping to “o__Lactobacillales” to
“g__Streptococcus,” “f__Burkholderiaceae” as “g__Burkholderia,” and “f__Pseudomonadaceae” as
“g_Pseudomonas.” Finally, for each sample we removed spurious (and rare) taxon calls that did not map
onto our experimentally defined communities.

Absolute abundances were determined by the proportion of the total 16S count and then normal-
ized to species-specific 16S rRNA copy counts (57, 110).

Data availability. Sequence data have been deposited to the SRA (accession project number
PRJNA752117). The analysis pipeline is available on GitHub (github.com/GaTechBrownLab/Varga-et-al
_CompetitiveAbxRelease_SRA-upload).

Statistical analyses. All analyses and plots used the R programming language (111, 112). Tables and
scripts can be found at (https://github.com/GaTechBrownLab/Varga-et-al_CompetitiveAbxRelease_SRA
-upload). A nonparametric Wilcoxon rank sum test was used to test for differences in absolute species
abundances across experimental conditions, using a two-tailed test for change in abundance and a one-
tailed test to assess competitive release (testing for increases only). A t test with a Bonferroni multiple
testing correction was performed to compare relative abundances of the 10 species under experimental
conditions with clinical samples from the 77-patient cohort. To compare experimental treatments (and
clinical benchmark data) at a community scale, we calculated ANOSIM R values on Bray-Curtis dissimilar-
ity matrices for each treatment using the vegan package (113–115). The R statistic is a ratio of within-
treatment differences to between-treatment differences on a scale of 21 to 1, where a value of 1 would
mean that all dissimilarity is between treatments, indicating completely different communities.

To visualize community-scale differences, we constructed ordination plots for combined clinical and
experimental compositional data. Clinical and experimental observations were center-log-transformed
first (116, 117) and then standardized before principal-component analysis (111, 117).
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