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Abstract: In this article, a facile, one-step method for the formation of silver thin-film nanostructures
on the surface of Al2O3 substrates using the hydrothermal method is proposed. The dependence
of the SERS effect intensity of the formed films during the detection of methylene blue (MB) low
concentrations on the synthesis conditions, additional temperature treatment, and laser radiation
wavelength (532 and 780 nm) in comparison with similar dye films on commercial SERS substrates
is shown. The detection limit of the analyte used for the indicated lasers is estimated. The effect
of the synthesis temperature on the particle size, crystal structure, and microstructure features of
the obtained thin films based on silver nanoparticles is demonstrated. Using spreading resistance
microscopy, the interface between the substrate and Ag particles is studied, and the dependence
of the size of the corresponding gap between them and the nature of microstructural defects on
the parameters of hydrothermal treatment of reaction systems in the presence of Al2O3 substrates
is shown. As a result of the study, the factors associated with the properties of the obtained SERS
substrates and the parameters of recording the spectra, which affect the amplification factor of the
spectral lines intensity of the analyte, are revealed.

Keywords: Ag film; silver nanoparticles; hydrothermal synthesis; surface-enhanced Raman spec-
troscopy; methylene blue

1. Introduction

As is known, surface-enhanced Raman spectroscopy (SERS) has proven to be an
effective high-sensitivity method of chemical analysis since its discovery, as far as this
approach makes it possible to amplify Raman signals by several orders of magnitude
when implementing electromagnetic and chemical effects [1]. In this case, charge transfer
between the adsorbed analyte molecules and the surface of metal particles occurs, as well
as an amplification of the electromagnetic field with excitation of the localised plasmon
resonance on the metal surface. Signal amplification occurs when analyte molecules are
located in the spaces between neighbouring metal nanoparticles (so-called ‘hot spots’) [2].
SERS is used as a useful tool in various applications—analytical chemistry, atmospheric
monitoring, safety control, biodetection, biomedicine, etc. [2,3].

As a rule, surface-enhanced Raman spectroscopy uses substrates whose surface is
modified with silver, gold, or copper nanostructures with different microstructural char-
acteristics [4–12]. Recently, much of researchers’ attention has also been directed toward
studying the processes of obtaining composite SERS-active films—Ag@nanoAu [4], Ag
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nanocubes@poly(dimethylsiloxane) [13], Ag/TiO2 [14], MoO3-x/Ag [15], b-cyclodextrin-
modified Ag [16], Au/Ag and Au/Ni [7,17], Ag particles/Ag-Zr alloy [18], Mo-Ag [19],
Ag/AgBr/ZnO [20], ZnO/Ag 3D nanocomposites [21,22], ZnO/Au [23], MnO2/Au [24],
Au/ZrO2 [25], rGO-Ag [26], or Ag/C [27]. In some cases, metal-free SERS substrates,
particularly based on MoS2, are proposed [28]. Flexible substrates and membranes made of
polymeric materials such as poly(dimethylsiloxane), polyimide, polyacrylonitrile, polyvinyl
alcohol, etc. are also often used [13,17–19,29,30]. These nanostructures are obtained using
a wide range of different methods—in situ formation at interfaces [31], thermal evapora-
tion [32], solvent evaporation [33], one step galvanic displacement method which involves
dipping [34], the Langmuir–Blodgett (LB) technique [35], convective assembly [36], chemi-
cal deposition [2,4,37], layer-by-layer assembly [38], vapor-phase deposition [5,39], spin
casting [40], photochemical deposition [14,20]. Due to the wide variability and possi-
bility to optimise different parameters, liquid-phase methods are the most convenient
and simple for synthesising planar nanomaterials of different compositions of both metal
and oxide [2,41–43]. Anisotropic and hierarchically organized SERS nanostructures are
of particular interest today, since they often exhibit increased efficiency and selectivity
for certain analytes [2,6,7,13,30,39,44], and one of the most convenient approaches to the
synthesis of such planar nanomaterials with an ordered microstructure is the hydrothermal
method [45–51]. The main advantages of this method lie in the possibility to finely control
the morphology of the formed materials, as well as in ensuring reproducibility, uniformity,
and high adhesion of the grown coatings on substrates of different types. One of the dynam-
ically developing and promising approaches to the formation of coatings with an ordered
structure, including those based on metal nanoparticles, are printing technologies [52] that
improve the targeted application of the material and the reproducibility of the process,
which is very important in the fabrication of SERS-active nanostructures.

In this work, we proposed a simple, one-step method for obtaining thin-film Ag nanos-
tructures on the surface of Al2O3 substrates using a hydrothermal method and found that
they exhibit a more intense SERS signal, compared with commercial counterparts, when us-
ing methylene blue as an analyte and lasers with emission wavelengths of 532 and 780 nm.

2. Materials and Methods
2.1. Materials

Silver nitrate (AgNO3, 99.8%, Lenreactiv, Saint Petersburg, Russia), triethanolamine
(C6H15NO3, 99%, Chimmed, Moscow, Russia), acetic acid (C2H4O2, 70% aqueous solution,
Lenreactiv, Saint Petersburg, Russia), 2-propanol (C3H8O, 99.8%, Ekos-1, Moscow, Russia),
and 2-butanol (C4H10O, 99%, Ekos-1, Moscow, Russia) were used as reagents in this study.
Ag films were applied to the surface of Al2O3 substrates (VK-100, 99.6% Al2O3 content,
C-Component, Moscow, Russia). When studying the intensity of SERS signals from the
surface of hydrothermally grown Ag films, commercial analogs (Silver substrate ‘Randa S’,
SERS-AG-35-1, Ato ID, Vilnius, Lithuania) were used for comparison. Methylene blue dye
was used as an analyte in the SERS measurements.

2.2. Hydrothermal Synthesis of Ag Thin Films

Ag films were grown according to the scheme shown in Figure 1. The precursor
solution in a typical experiment was prepared by dissolving 0.250 g of silver nitrate in
20 mL of distilled water, after which 1.280 g of triethanolamine was added under stirring,
resulting in precipitation. Next, 0.4 mL of acetic acid solution was added to the reaction
system until the precipitate dissolved completely, followed by 20 mL of 2-propanol addition.
The concentration of silver cations (about 0.035 mol/L) and the content of other components
in the reaction system were chosen to prevent an excessive rate of silver particle formation
and immoderate amounts of solid phase formed. From the obtained solution of silver
heteroligand complexes, an aliquot (10 mL) was taken and placed in a steel autoclave
with a Teflon liner (a total vessel volume of 25 mL) where two pre-cleaned and degreased
Al2O3 substrates were mounted vertically. The autoclave was then hermetically sealed and
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subjected to heating in a muffle furnace to 100, 120, and 140 ◦C at a rate of 5◦/min, after
which it was kept at a given temperature for 1 h and then naturally cooled to 25 ◦C along
with the furnace. The heat treatment initiated the reduction of silver cations and the growth
of metal nanoparticles on the surface of ceramic substrates. After cooling the reaction
systems and extracting the substrates with the applied Ag films, the formed materials
were washed with distilled water and 2-propanol, followed by drying at 50 ◦C for 2 h. For
SERS measurements, the samples were additionally heat-treated at 100 ◦C to minimise the
amount of residual organic components on their surface.
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2.3. Application of Analyte Solutions to Substrates

The obtained films consisting of silver nanoparticles were investigated for the possi-
bility of surface-enhanced Raman scattering using methylene blue as a test analyte. For
this purpose, solutions with concentrations of this compound 10−4, 10−5, and 10−6 mol/L
were prepared. A 4:1 mixture of 2-butanol and distilled water was used as a solvent. To
detect the SERS effect and find the factors affecting the spectral line intensity gain, 0.1 µL
solutions of the analyte with the concentration of 10−4 mol/L were applied to the sam-
ples of investigated coatings and ceramic substrate of aluminium oxide using a pipette
dispenser. To evaluate the detection limit achieved through the SERS effect, solutions with
a concentration of methylene blue 10−4, 10−5, and 10−6 mol/L were applied to the coating
samples in a similar manner. The solvent contained in the solutions was then completely
evaporated for 10 min, resulting in the formation of a solid phase of the analyte distributed
in the structure of the metal coating.

2.4. Instrumentation

The thermal behaviour of the precursor solution was analysed using a combined
DSC/DTA/TG analyser SDT-Q600 (TA Instruments, New Castle, DE, USA) in Al2O3 micro
crucible (airflow 250 mL/min; sample weight 44 mg; 1st step—heating to 100 ◦C, 10◦/min,
holding at 100 ◦C for 15 min; 2nd step—heating to 1000 ◦C, 10◦/min).

X-ray diffraction analysis of the obtained films and the used Al2O3 substrates was
performed on a D8-Advance diffractometer in the range of 2θ 20–80◦ (Bruker, Bremen,
Germany, CuKα = 1.5418 Å, Ni-filter, E = 40 keV, I = 40 mA, integration time = 0.3 s/point,
step = 0.02◦). Analysis of the XRD spectra was carried out with the use of the Rietveld
refinement method, implemented in X’Pert HighScore Plus software (PANalytical B.V.,
Almelo, The Netherlands).

The microstructure of as-grown Ag films was studied by scanning electron microscopy
(Carl Zeiss NVision 40, Oberkochen, Germany) using secondary and backscattered electron
detectors (accelerating voltage was 1 kV).

The surface of the obtained films was also studied by atomic force microscopy (AFM).
As a result, data on the microstructure of the film surface as well as local electrophysical
properties (electron work function and current–voltage curves) were obtained. These
studies were performed on a Solver Pro-M scanning probe microscope (NT-MDT LLC,
Zelenograd, Russia) in ambient conditions in semi-contact AFM, Kelvin probe force mi-
croscopy (KPSM) using ETALON HA-HR probes with a conductive coating based on W2C
(resonance frequency ~366 kHz, spherical radius <35 nm) and in contact AFM and scanning
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spreading resistance microscopy modes using ETALON HA-C probes with a W2C-based
conductive coating (force constant ~0. 26 N/m, spherical radius <35 nm). Grounding of the
samples for measurements in the KPFM mode and applying a voltage to it for spreading
resistance imaging was carried out as described in another study [53].

Raman spectroscopy was performed using a DXR Raman microscope (Thermo Fisher,
Waltham, MA, USA). To work with the samples, a 10× objective was used, since it allowed
the greatest reduction in the energy density of laser radiation falling on the investigated
area. This made it possible to reduce the destruction of chemical bonds of the dye, which
helped to slow down the reduction in the signal during measurements. Laser power,
aperture width, exposure duration, and the number of shots were selected in such a way as
to obtain the best signal amplification and signal-to-noise ratio. For a laser with a radiation
wavelength of 532 nm, the power was 1 mW, the aperture was 25 mkm pinhole, the number
of shots was 20, and the exposure was 1 s. For the 780 nm laser, the power was 20 mW,
the aperture was 25 mkm pinhole, the number of shots was 30, and the exposure was 2 s.
During the recording of the spectra, the result for all images was automatically averaged,
and processing was immediately carried out to reduce the influence of fluorescence on the
measurement result.

3. Results and Discussion
3.1. Characterisation of the Precursor Solution

The precursor solution used for the hydrothermal synthesis of Ag films was studied
using synchronous thermal analysis under stage heating. In the first step (heating to 100 ◦C
and holding at this temperature for 15 min), weight loss due to solvent evaporation was
83%. At further heating (Figure 2) there was a two-step weight loss—in the temperature
intervals 100–230 ◦C (80.3%) and 230–400 ◦C (7.8%). During further heating, the change in
the sample weight was insignificant, indicating complete removal of liquid components
and decomposition of precursors up to 400 ◦C. In this case, the total weight loss of ink
during heating in the temperature range of 25–400 ◦C was 99.49%. Thus, heat treatment of
precursor solution film, applied to any substrate, can allow obtaining metal coatings, but at
atmospheric pressure, in order to avoid admixture of organic components, heat treatment
should be carried out in oxidising atmosphere at temperatures of about 350–400 ◦C, which
can lead to significant coarsening of silver particles. The use of this precursor solution for
the growth of Ag films under hydrothermal conditions can lead to a substantial reduction
in the synthesis temperature while minimising the number of organic impurities in metal
coatings and increasing the dispersity of the silver particles composing them.
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3.2. Crystal Structure of As-Grown Ag Films

As can be seen from X-ray diffraction patterns (Figure 3) of metal films grown in
hydrothermal conditions on the surface of Al2O3 substrates under various conditions, in
all cases, silver coatings were formed, having a characteristic set of reflexes corresponding
to the cubic crystal lattice (space group Fm-3m), which agrees well with the literature
data (PDF #87-0717). Sufficiently high intensity of reflexes of the substrate material (Al2O3,
rhombohedral crystal lattice, space group R-3c, PDF #71-1126) indicates a thin-film structure
of the formed Ag films. Full-profile analysis of patterns made it possible to estimate the
average size of the coherent scattering region (CSR) of silver particles composing the films,
which was 70 ± 7, 86 ± 8, and 81 ± 8 nm at synthesis temperatures of 100, 120, and 140 ◦C,
respectively. As can be seen, the dependence of the average CSR size on the synthesis
temperature had an extreme nature, and the most highly dispersed film, according to XRD,
was formed at a temperature of hydrothermal treatment of 100 ◦C. The calculated values of
the crystal lattice parameters also had extreme dependence on the synthesis temperature
(100 ◦C: a = b = c = 4.088(1) Å, 120 ◦C: a = 4.089(1) Å, 140 ◦C: a = 4.088(1) Å). The results
also indicate that the grown Ag films did not contain any crystalline impurities (reagents,
precursors, or by-products).
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3.3. Microstructure of the Studied Ag Films

The microstructure of the Ag films grown under hydrothermal conditions was studied
by scanning electron microscopy. As can be seen from the micrographs of the obtained metal
films (Figure 4), they consist of particles with a bimodal size distribution. The average size of
both small (100→ 110→ 130 nm) and large particles (620→ 700→ 1350 nm) increased with
increasing synthesis temperature (100→ 120→ 140 ◦C). According to the backscattered
electron detector data, gaps between silver particles were well observed, the average
size of which increased significantly (30→ 40→ 80 nm) as the hydrothermal treatment
temperature increased. As can be seen, when increasing the synthesis temperature from
120 to 140 ◦C, there was a sharp (twofold) jump in the average value of the gap between
the silver particles. In addition, for the Ag film obtained at 140 ◦C, a significant number
of defects in the form of its delamination from the surface of the Al2O3 substrate was
observed—probably, the adhesion deteriorated due to a sharp increase in the gaps between
the metal particles. Thus, it can be assumed that at the first stage, films of nanoscale
particles were grown on the surface of Al2O3 substrates, which agglomerated and enlarged
at increasing temperature with the formation of microscale structures, which led to the
appearance of appropriate gaps and defects in the form of delamination.
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When studying the obtained Ag films using optical microscopy (in particular, during
SERS measurements), it was discerned that there were a few dark regions with sizes of
about several tens of micrometres on their surface. A more detailed study of these areas
using scanning electron microscopy showed (Figure 5) that these areas were clusters of
relatively small particles with an average size of about 150 nm, organised into highly
porous agglomerates.
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The microstructure of the grown Ag films was also studied using AFM in the contact
and semi-contact modes. From the micrographs showing the surface topography of the
materials (Figure 6), it is clear that the AFM results agree well with the SEM data. Bimodal
particle size distribution was observed for all samples: both arrays of particles between 250
and 400 nm in size and particles from 1 micrometre and larger (but no larger than 3 µm)
were observed. It can be seen that as the synthesis temperature increased, there was a
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tendency for the number of larger particles to increase. A study of the microstructure of the
dark areas showed that even though there were still large particles in these areas, in the
case of hydrothermal treatment temperatures of 100 and 120 ◦C, they were almost entirely
formed by smaller particles sized 250–400 nm. However, in the case of the film grown
at 140 ◦C, a noticeable number of microsized particles were found in the dark regions,
which is further evidence of the trend toward an increasing proportion of large formations
with increasing synthesis temperature. Additionally, in the topographic images for the Ag
film formed at 140 ◦C, areas corresponding in their microstructure to the Al2O3 substrate
were observed.
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In order to study Ag particles distribution on the surface of ceramic substrates in
more detail, we used scanning spreading resistance microscopy, through which a potential
difference was created between the studied sample and the probe, and the intensity of
the resulting current was measured. Due to the large differences in the electrophysical
properties of silver and aluminium oxide, this technique makes it possible to obtain high-
contrast maps of the mutual distribution of these materials. From the topographic images
and maps of current distribution over the surface of the materials studied (Figure 7), it is
clearly seen that an increase in the synthesis temperature led to an increase in the area of
the Al2O3 substrate, where there were no silver particles (dark areas on the maps of current
distribution). If, in the case of Ag film formed at 100 ◦C, individual small areas up to 1 µm
long (and much less than 1 µm2 in area) could be found, for the film grown at 120 ◦C,
such areas were about 1–2 µm2 in area. In the case of the film obtained in hydrothermal
conditions at 140 ◦C, the area of regions uncovered by silver particles became higher than
10 µm2. This confirms the tendency revealed when studying the microstructure of Ag
films using scanning electron microscopy. In addition, typical current–voltage curves were
recorded in the spreading resistance microscopy mode at the indicated points on the surface
of silver coatings. It should be noted that at current strengths of about 15–20 nA, even ohmic
contacts often begin to show nonlinearity, which is associated with the design features
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of the atomic force microscope. The maximum detectable current value, in this case, is
50 nA. In our case, for all investigated silver films at current strengths below 10 nA, direct
dependence of current strength on voltage typical of ohmic contact was observed, and for
materials obtained at temperatures of 100 ◦C and 140 ◦C, this dependence continued to
behave this way at higher currents (for Ag film obtained at 140 ◦C, only the slope angle
changed). Moreover, for this film, even in the linear section, the slope angle of the straight
line was much lower than for the other samples. This fact, as well as the significantly lower
value of the achieved current strength, indicates that this coating has significantly lower
electrical conductivity, although it is metallic.
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Figure 7. AFM microphotographs of Ag films grown at different temperatures (top—surface relief
of the films; bottom—the corresponding current distribution maps; inset—current–voltage curves
obtained at the specified points).

In addition to spreading resistance microscopy, Kelvin probe force microscopy was
used to study the local electrophysical properties of the grown Ag films. From the obtained
maps of the surface potential distribution (Figure 8), it can be seen that despite quite large
height differences (up to 500 nm) between the silver particles, the distribution of the surface
charge was quite uniform. An area on the scan for the sample obtained at 140 ◦C was
noticeable, where the surface potential was almost 200 mV higher than for other areas on
the scanned surface. Additionally, the topographic image shows that this area differed
greatly in morphology from the rest of the scanned area, suggesting that it refers to the
uncovered surface of the Al2O3 substrate, where the static charge accumulates. Using
images obtained by scanning in KPFM mode, the values of electron work function were
calculated to be 4.831, 4.941, and 5.015 eV for Ag films grown at 100, 120, and 140 ◦C,
respectively. In all cases, the values of the electron work are higher than the reference
values for silver, which can be explained by the high dispersity of metal particles. These
values indicate that the intrinsic conductivity of the material may decrease with increasing
synthesis temperature due to an increase in the Fermi energy.
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3.4. Study of the SERS Effect When Detecting Methylene Blue

The films formed under hydrothermal conditions were further studied for surface-
enhanced Raman scattering when detecting methylene blue. The results of preliminary
measurements showed that the silver films grown at 120 ◦C contained in their structure
a sufficiently large number of organic components, which agrees with the results of the
spreading resistance microscopy and significantly complicates their application in the detec-
tion of the analyte at low concentrations. Metal films obtained at 140 ◦C were characterised
by a fairly low amplification factor of the intensity of methylene blue spectral lines, which
is probably due to the peculiarities of the microstructure of this material (larger particles
and the presence of defects in the form of silver film delamination). At the same time, the
Ag film grown at the minimum temperature (100 ◦C) in the range under consideration
exhibited the most intense SERS effect. As can be seen from the Raman spectra (Figure 9a)
recorded using a laser with an emission wavelength of 532 nm, additional heat treatment of
this film at 100 ◦C in air led to a significant reduction in the number of residual organic com-
ponents contained on its surface after synthesis, washing, and drying at 50 ◦C. A significant
enhancement of spectral lines was observed for the methylene blue applied to the Ag-film
surface at a concentration of 10−4 mol/L in comparison with both this substance in powder
form and similar dye films on the surface of pure Al2O3 substrate and commercial SERS
substrate. When the SERS effect was studied using a 780 nm laser (Figure 9b), there was
also a significant increase in the intensity of spectral lines, compared with the signal from
the powder and dye film on the surface of pure Al2O3 substrate. At the same time, the
signal from the dark areas on the surface of the Ag film grown at 100 ◦C was also more
intense, compared with the commercial substrate. Thus, the presence of porous clusters of
small silver particles on the substrate surface led to an additional significant enhancement
of the SERS effect when detecting methylene blue also using a laser with an emission
wavelength of 780 nm.
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Figure 9. Raman and SERS spectra of the materials studied, obtained using lasers with an emission
wavelength of 532 (a) and 780 nm (b); the indicated temperature values refer to the conditions of
additional heat treatment of the Ag film in air.

Further, the Ag film formed under hydrothermal conditions at 100 ◦C and subjected
to additional heat treatment at 100 ◦C in the air was used to estimate the detection limit of
methylene blue achieved through the SERS effect. For this purpose, SERS spectra of this
analyte at concentrations of 10−4, 10−5, and 10−6 mol/L from the main surface (Figure 10a,b)
and from the dark areas of the indicated silver film (Figure 10c) were obtained using lasers
with different wavelengths of radiation. As can be seen from the results obtained, using a
532 nm laser, the minimum detection concentration of methylene blue was 10−5 mol/L. In
contrast, when a laser with a wavelength of 780 nm was used, the detection limit of the
indicated analyte for the main surface of the Ag film was also 10−5 mol/L, while for the
dark areas, characterised by the presence of highly porous agglomerates of highly disperse
silver particles, the minimum dye detection concentration was at 10−6 mol/L.
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Figure 10. Raman spectra of Ag film (synthesis temperature—100 ◦C, additional heat treatment—
100 ◦C) and SERS spectra of methylene blue deposited on its surface at different concentrations
recorded from the main surface (a,b) and from the dark region of Ag film (c) using lasers with
wavelengths of 532 and 780 nm.
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Thus, the observed more intense SERS effect upon the detection of methylene blue at
low concentrations for an Ag film grown under hydrothermal conditions at 100 ◦C was
due to a more uniform microstructure, smaller particle and CSR sizes, and a lower content
of residual organic components.

We estimated the SERS enhancement factor (EF) for the methylene blue adsorbed on
particles forming dark areas of Ag films under study based on the following most widely
used definition for the average SERS EF [54].

EF = (ISERS/Nsurf)/(IRS/Nvol), (1)

where ISERS and IRS are the intensities of a particular line of an analyte in the SERS and
normal Raman (non-SERS) spectra measured under the same conditions, Nsurf is the
average number of adsorbed molecules in the scattering volume for the SERS experiment,
and Nvol is the average number of molecules in the scattering volume for the non-SERS
experiment. In calculations, we considered spectra of methylene blue measured by using a
laser with an emission wavelength of 780 nm. To estimate the number of methylene blue
molecules probed in the SERS experiment (i.e., Nsurf), the laser spot size, surface density of
particles producing the enhancement, and surface density of molecules adsorbed on the
metal must be known. In the performed experiments, the laser spot size was about 3.0 µm.
Assuming the surface density of fine particles on the substrate to be about 2 × 109 cm–2 (as
estimated from SEM images of dark areas), the surface density of methylene blue molecules
in the monolayer to be 1014 cm–2 [55], and around 7% surface coverage of the metal [54],
approximately 6.7 × 105 molecules (Nsurf) were probed in the SERS experiment. For the
non-SERS experiment, the number of molecules (Nvol) within the probed volume of a
methylene blue solution (10–3 mol/L) dispensed on an alumina substrate was estimated at
4.2 × 108. Substitution of Nsurf, Nvol, and the intensities of methylene blue line located at
about 1625 cm–1 (taken from the typical SERS spectrum acquired in the dark area of Ag
film and the Raman spectrum of methylene blue solution) to Equation (1) yielded an EF
value equal to about 1.8·105.

4. Conclusions

A facile, one-step method of forming Ag thin-film nanostructures on the surface of
Al2O3 substrates using a hydrothermal method was proposed. It was demonstrated that
the silver films formed at 100 ◦C exhibited a more intense SERS effect when detecting low
concentrations of methylene blue using 532 and 780 nm lasers, compared with both this
substance in powder form and similar dye films on the surface of pure Al2O3 substrate and
commercial SERS substrates. Using the 532 nm laser, the minimum detection concentration
of methylene blue was 10−5 mol/L. In the case of the 780 nm laser, the detection limit
of the analyte for the main surface of the Ag film was also 10−5 mol/L, and for the
dark areas, whose microstructure was characterised by the presence of highly porous
agglomerates of highly disperse silver particles, the minimum dye detection concentration
was at 10−6 mol/L. It was found that under hydrothermal conditions Ag films with
bimodal particle size distribution were formed. When the synthesis temperature was
increased to 120 and 140 ◦C, both an increase in the size of silver particles and the size
of the gap between them were observed. The more intense SERS effect in the detection
of methylene blue at low concentrations for Ag films grown in hydrothermal conditions
at 100 ◦C was due to a more uniform microstructure, smaller particle and CSR sizes, as
well as lower content of residual organic components. Thus, the obtained Ag thin-film
nanostructures can be effectively used as SERS substrates for low concentrations detection
of methylene blue and other analytes.
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