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Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J
recombination in developing B lymphocytes and class switch recombination (CSR) inmature B cells. Repair of these
DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral
immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune
deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations.
In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J
recombination, but themechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in
the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing,
DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal
translocations.
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Introduction
DNA double-strand breaks (DSBs) are the most lethal form of DNA
damages that can occur to our genome, as a single unrepaired or
misrepaired DSB can lead to the activation of cell cycle checkpoint
arrest and cell death. DSBs can arise from constant assaults by en-
vironmental factors and cellular metabolites, and from programmed
cellular processes during antigen receptor gene diversification in
developing B and T lymphocytes in the context of V(D)J re-
combination and class switch recombination (CSR) [1]. The timely
and proper repairs of these DSBs in developing B/T cells are abso-
lutely essential for the generation of a diverse repertoire of antigen
receptors, and prevention of lymphoidmalignancies in the form of B
and T cell leukemias and lymphomas. As such, much of our
knowledge of general DSB repair mechanisms has come from
studying the DSB processes in lymphocyte development.
Eukaryotic cells repair DSBs mainly by two major pathways: non-

homologous end-joining (NHEJ) and homologous recombination
(HR). The repair by HR requires DNA templates homologous to
sequences around the DSB ends. HR is initiated by the 5′-3′ nu-
cleolytic degradation of both broken ends, a process termed DSB

end resection, to expose single-stranded DNA (ssDNA) overhangs
[2]. The ensuing strand invasion by base-paring between ssDNA
and template DNA sequences leads to the formation of the three-
stranded D-loop structure that migrates along and copies the tem-
plate information. As a result, HR often leads to an error-free repair
of DSBs using available sister chromatids in the S and G2 phase of
the cell cycle [3]. On the contrary, DSB repair by NHEJ simply re-
ligates broken DNA ends with minimal sequence deletion or in-
sertion, and thus is error-prone and can operate in all phases of the
cell cycle [4] (Figure 1).
Recent years had witnessed the discovery of a different DSB end-

joining pathway (or pathways) called alternative end-joining (A-EJ)
in various model systems (Figure 1). A-EJ products usually exhibit
increased deletion of sequences around the break sites and higher
usage of short homology sequences termedmicrohomology (MH) in
the junctions. This feature often leads to a spontaneous equation of
A-EJ to microhomology-mediated end-joining (MMEJ). However,
although A-EJ is biased toward heavier use of MH, MH is not an
exclusive feature of A-EJ, as c-NHEJ proficient cells also utilize
certain amounts of MH (e.g., B cells undergoing class switching)
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[5,6], and c-NHEJ-deficient B cells also contain direct end-joining.
Thus, MMEJ only represents a portion of, but does not overlap
entirely with A-EJ [7]. It is thus more appropriate to define A-EJ as
end-joining events occurring independent of classical NHEJ factors.
Recent studies revealed that A-EJ shares certain steps and features
with HR [4,8], and several factors have been shown to be uniquely
required for A-EJ but not c-NHEJ.
In this review, we introduce these recent insights into the major

steps of A-EJ with a specific focus on lymphocyte development and
oncogenic chromosomal translocations.

V(D)J Recombination and CSR during B Cell
Development
B cell development is divided into two separate stages that take
place in distant lymphoid organs. The early development in the
bone marrow in the absence of foreign antigen encounter generates
a diverse naïve B cell receptor (BCR) pool by the process of V(D)J
recombination. BCR, the membrane-bound form of an antibody,
comprises two identical heavy chains and light chains that are en-
coded by the immunoglobulin heavy chain gene (IgH) and the light

chain genes (IgL), respectively. The 5′ portion of the mouse IgH
locus is composed of variable (V), diversity (D) and joining (J)
exons, and a successful V(D)J recombination brings together one of
V, D and J exons each and recombines them in a cut-and-paste
fashion to encode the variable region of the heavy chain of an an-
tibody (Figure 2A). Similarly, V-J recombination on the IgL loci
generates the light chain of an antibody [9]. V(D)J recombination is
initiated by the RAG recombinase complex (Rag1 and Rag2) that
generates site-specific DSBs at unique sequences adjacent to V, D
and J exons termed recombination signal sequences (RSS). Re-
cognition of RSS by Rag and accessory proteins facilitate the sy-
napsis between remote V and D, J sequences for coordinated
cleavage of DNA right at the border of exon and RSS [9]. Rag1 nicks
the RSS and leaves a free 3′-OH that subsequently attacks the
phosphodiester bond on the opposing strand to form a hairpin
structure. Endonuclease Artemis is then activated through phos-
phorylation by the catalytic subunit of DNA-dependent protein ki-
nase (DNA-PKcs) to cleave the hairpin structure, enabling non-
templated nucleotide additions by terminal deoxynucleotidyl
transferase (TdT) [9]. The modified ends are ligated by the DNA

Figure 1. The DSB repair pathways in eukaryotic cells NHEJ re-ligates broken DNA ends with the help of DDR factors binding to and protecting
ends from nucleolytic degradation. NHEJ operates in all phases of the cell cycle. On the contrary, HR is only active in S/G2 phase of the cell cycle
due to requirement for DSB end resection-generated ssDNA for homology searching and invasion. SSA and A-EJ also require DSB end resection
and homology sequence annealing. SSA and A-EJ mainly differ by homology length requirement and likely in essential components after
annealing.
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Lig4/XRCC4 complex with the help of Ku70/Ku80 complex [10] (see
detail below).
Class switch recombination takes place when mature B cells are

activated by foreign antigens in the germinal center or in vitro by
mitogens and cytokines. CSR diversifies the effector function of an
antibody through replacing the originally expressed IgM constant
gene with a different one without altering its antigen binding spe-
cificity [11]. The 3′ side of mouse and human IgH loci contains
several genes encoding constant regions for IgM, IgD, IgG, IgE and
IgA isotypes. Except IgD each gene is independently transcribed
from an (I) promoter that is followed by a long and repetitive in-
tronic region called switch (S) region. When activated, B cells in-
itiate the expression of activation-induced cytidine deaminase (AID)
that recognizes the R(A/G)GY(C/T)W(A/T) motifs (most favorably,
the AGCT motif) within specific S regions. Deamination of cytosine
in these motifs by AID leads to its conversion to uracil and thus
introduces a U-G mismatch. Subsequent actions by uracil DNA

glycosylase (UNG) to remove the mismatched uracil, and by class II
apurinic/apyrimidinic endonuclease (APE) to cleave the phospho-
diester bond 5′- to the AP site generate a nick at the DNA backbone
[11]. Because RGYWmotifs are so dense in the switch IgM (Sμ) and
downstream switch regions, the combined actions by AID/UNG/
APE result in proximate DNA nicks that resemble double-strand
breaks. Finally, the joining of Sμ and downstream S region DSBs by
the classical NHEJ pathway in a deletion-preferred fashion [12]
juxtaposes the downstream constant region with the assembled V
(D)J region, leading to the expression of an antibody with altered
effector functions (Figure 2B) [11,13]. AID-initiated S region DSBs
also trigger activation of the master DNA damage response (DDR)
kinase Ataxia telangiectasia-mutated (ATM), which phosphorylates
a series of downstream targets (histone variant H2AX, MDC1,
53BP1, etc.) that assemble into macromolecular foci surrounding
DSBs to amplify damage signals and tether DSB ends for efficient
repair [1]. Rif1 has been recently identified as a phospho-53BP1-

Figure 2. BCR gene rearrangements by V(D)J recombination and class switch recombination (A) Overview of V(D)J recombination. The mouse
IgH locus contains multiple V, D, and J exons, and RSS is located adjacent to each coding segment. RAG1/2 initiates cleavage right at the RSS that
is converted into DSBs on the coding end, and joining D to J followed by V- to DJ assembles a full exon for the variable region of an antibody. (B)
Overview of mouse IgH class switch recombination. Stimulation of mature B cells by cytokines and ligands turns on AID expression and germline
transcription of specific S regions, which facilitates targeting of AID to initiate S region DSBs. End-joining of the donor Sμ DSB and downstream S
region DSB juxtaposes downstream constant exons to the assembled VDJ exon to express a different isotype of antibody without altering its
specificity.
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associating effector protein that plays a crucial role in CSR by sup-
pressing DSB resection [14,15] (see details in following sections).
Later studies have identified a series of Rif1 downstream effector
proteins for resection inhibition including Rev7 [16,17], the Shieldin
and CST complex [18–21] that are all required for efficient class
switching.

Classical End-joining and Lymphocyte Development
c-NHEJ in mammalian cells is catalyzed by Ku70/Ku80 and XRCC4/
DNA ligase IV (Lig4) complexes, and DNA-PKcs and Artemis in
certain circumstances [4,10]. Briefly, this reaction is initiated by the
binding of Ku to the broken DNA ends. A ring-shaped heterodimer
complex that encircles the free ends, Ku recruits other components
of the c-NHEJ machinery including DNA-PKcs, with which it com-
prises the DNA-PK holoenzyme, and the DNA ligase complex Lig4/
XRCC4 [4,10]. Besides its role in activating Artemis that is abso-
lutely required for hairpin end opening in V(D)J recombination,
DNA-PKcs may also tether broken DNA ends that do not require
further processing for efficient repair [22]. Additional c-NHEJ fac-
tors have been identified, including XLF, PAXX and ERCC6L2 [23].
c-NHEJ dominates the repair of programmed DSBs in V(D)J re-
combination and CSR. Mice deficient in these factors exhibit
marked growth defect and immunodeficiency phenotypes, and cells
deficient in these factors show significant radio-sensitivity and DSB
repair defect to various degrees. V(D)J recombination is nearly
completely abolished in the absence of either Ku, XRCC4 or Lig4
[10]. This constraint appears to be related to the ability of Rag
proteins to limit alternative end-joining, as a Rag2 mutant that lost
chromatin binding (Rag2-core) permits A-EJ mediated V(D)J re-
combination and causes genome instabilities [24,25]. XLF physi-
cally interacts with XRCC4 and stimulates the ligase activity of Lig4
[26,27]. However, it appears that XLF is largely dispensable for V
(D)J recombination in developing mouse B and T cells [28], al-
though mutations in human XLF that cause primary im-
munodeficiencies have been identified [27,29]. XLF has been shown
to function redundantly with the DSB response kinase ATM and its
downstream factors such as 53BP1 at least in part by suppressing
end degradation [30–32]. PAXX has been identified as a c-NHEJ
factor in recent years by structure similarity with XRCC4 and phy-
sical interaction with the Ku complex [33,34]. In vitro, PAXX pro-
motes Ku-dependent DSB ligation and the assembly of c-NHEJ
proteins on damaged chromatin. However, PAXX-deficient mice
develop normal T and B cells, and exhibit embryonic lethality and
apparent defect in V(D)J recombination when combined with XLF
deficiency, indicating redundant roles for these two factors in c-
NHEJ repair [35–38]. MRI is another XLF-like molecule identified
recently that promotes c-NHEJ [39]. Mechanistically, MRI physi-
cally interacts with and promotes the retention of DDR and c-NHEJ
proteins at the break site, and is required for c-NHEJ-mediated DSB
repair in XLF-deficient lymphocytes. In addition, MRI-deficient mice
are embryonic lethal when XLF is also absent, suggesting redundant
roles for MRI and XLF in mediating c-NHEJ repair [39]. ERCC6L2 is
another recently identified factor for optimal c-NHEJ [40,41].
ERCC6L2 physically interacts with c-NHEJ factors and are rapidly
recruited to DNA damage site, and functions redundantly with XLF
in mediating V(D)J recombination by c-NHEJ [40]. Taken together,
multiple XRCC4/XLF paralogs perform redundant/overlapping
roles in mediating c-NHEJ repair for V(D)J recombination during
lymphocyte development [42].

Mounting evidence has clearly revealed that c-NHEJ is required
for efficient CSR in mature B cells. Unlike c-NHEJ deficiency leading
to nearly null V(D)J recombination, significant residual class
switching still occurs in c-NHEJ-deficient mature B cells. XRCC4/
Lig4, Ku70/80 or both-deleted mature mouse B cells have reduced
CSR to all downstream isotypes at ~30%–50% of the correspond-
ing wild-type levels, with concomitant unrepaired IgH and general
DNA breaks [5,43,44], indicating that c-NHEJ promotes class
switching and suppresses genome instability in mature B cells.
Likewise, Lig4 mutations in human B cells greatly impair but do not
completely abolish CSR [45]. DNA-PKcs is recruited to DSBs by Ku
and in turn activates endo/exonuclease Artemis by phosphorylation
to process complex ends before joining [4]. While DNA-PKcs is
required for CSR to most isotypes other than IgG1 [46], Artemis
plays a rather minor role in CSR, as Artemis-deficient B cells exhibit
normal class switching and antibody production to most Ig isotypes
[47,48], indicating that end processing of S region DSBs by Artemis
is not a prerequisite for c-NHEJ in CSR. Deletion of XLF in mouse
mature B cells shows substantial reduction in CSR and accumula-
tion of IgH breaks [28], reflecting different roles for XLF in CSR and
V(D)J recombination. On the contrary, MRI ablation only modestly
affects class switching whereas PAXX is largely dispensable for CSR
[49], likely suggesting functional redundancies of these XRCC4/XLF
paralogs in mediating c-NHEJ in class switching as they do in V(D)J
recombination. The precise roles for these factors in CSR need
further dissection. ERCC6L2, however, plays an entirely different
role in class switching, as ERCC6L2-deficient B cells show profound
CSR defect and accumulation of inversional joins between Sμ and
downstream S region DSBs that leads to nonproductive IgH re-
arrangement [40].

Alternative End-joining-mediated Class Switching in B
Cells
Alternative end-joining was first reported in budding yeast with
reporter assays to recover restriction enzyme-linearized plasmid in
Ku80-deficient S. cerevisiae cells [50]. Similar c-NHEJ-independent
joining was later discovered in other model organisms [51–54].
Junction profiles of Ku/Lig4-independent joins exhibit deletion of
sequences around the DSBs and a strong bias towards MH, im-
plicating the involvement of DSB resection in A-EJ. It is noteworthy
that Ku-deficient or Ku/Lig4 double-deficient cells still contain
substantial direct CSR joins [5], and there are also a significant
portion of MH CSR junctions in wild-type B cells. Thus it appears
that MH is neither a requirement, nor an exclusive defining factor
for A-EJ. Rather, A-EJ shall be more accurately defined as any DSB
end-joining occurring independent of classical NHEJ. Based on this
definition, measuring end-joining efficiency in the absence of both
target genes and c-NHEJ is needed to functionally define an A-EJ
factor. To date, routine assays for end-joining may include radia-
tion/drug sensitivity, nuclease (I-SceI or Cas9)-mediated reporter
joining, V(D)J substrate recombination and CSR including S-S
junction analysis, and cytogenetics experiments (IgH FISH, telo-
mere FISH, etc.). With these assays, several genes uniquely re-
quired for A-EJ but not c-NHEJ have been identified. Functional
studies of these factors indicate that they are involved in the fol-
lowing steps in A-EJ: (1) tethering broken ends; (2) end processing
especially resection to generate 3′ ssDNA; (3) trimming off non-
homologous flaps formed by MH annealing; (4) DNA fill-in synth-
esis; and (5) end ligation by DNA ligases other than Lig4. The fol-
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lowing sections will introduce recent findings on the roles of these
factors in A-EJ.

DSB end-tethering
A role for Ku in c-NHEJ is to hold broken ends for efficient repair. In
the absence of Ku, other protein(s) must exist in place of Ku to
tether DSBs for A-EJ repair. Parp1 has been proposed by multiple
studies to serve this role. As a member of the poly(ADP-ribose)
polymerase (PARP) family, Parp1 catalyzes the covalent attachment
of poly(ADP-ribose) (PAR) on amino acid residues of target proteins
with β-NAD+ as substrates [55]. Poly ADP-ribosylation of target
proteins is involved in essential cellular processes, including tran-
scription, replication, and DNA repair [55]. Parp1 has been shown
to be activated by DNA breaks and serves as a DNA damage sensor
[56]. Following laser microirradiation, Parp1 colocalizes with DDR
kinases ATM and γ-H2AX, and is recruited to I-SceI-generated site-
specific DSBs to promote the accumulation of MRN complex
through physical interaction with Mre11 [57]. Biochemical experi-
ments showed that Parp1 competes with Ku for DNA ends, albeit
with lower affinity, and Ku efficiently counteracts the binding of
Parp1 and MRN complex to damaged chromatin. In Ku or DNA
Lig4-deficient cells, end-joining of EGFP reporter plasmids was
significantly diminished upon Parp1 ablation [58]. In addition,
Parp1 can recruit the XRCC1/Lig3 ligation complex to promote end-
joining repair [59], and promote DNA synapsis in a dose-dependent
manner, an activity that is independent of XRCC1/Lig3 [60]. Col-
lectively, these studies suggest that Parp1 promotes A-EJ repair
likely through DSB end-tethering and recruitment of downstream
repair factors.
The potential role of Parp1 in A-EJ mediated CSR in activated B

cells has been investigated. Pharmacological inhibition of Parp1
activities by a commercial small chemical surprisingly increased IgA
switching on the mouse mature B cell line CH12F3, whereas this
inhibitor, or the genetic deletion of Parp1 did not appear to affect the
class switching efficiency to IgG in primary mouse B cells [61]. Sμ-
Sγ3 junctions in Parp1-deficient sequences indeed display a shift
towards less MH compared withWT cells. These observations led to
a model that Parp1 mediates A-EJ in CSR by competing with c-NHEJ
and promoting MH usage [61]. However, this study did not examine
the CSR phenotype of B cells deficient in both Ku and Parp1 to
definitively prove the A-EJ status of Parp1. It is also not clear
whether the poly ADP-ribosylation activity of Parp1 plays any role
in A-EJ-mediated CSR, and which downstream targets it modifies if
it does.

DSB end resection
Sequencing remnant S-S junctions in c-NHEJ-deficient or DDR-de-
ficient cells revealed frequent deletions and a strong bias to MH
[6,12,62], implicating that S region DSBs in these cells are subject to
nucleolytic end resection to expose 3′ ssDNA [2]. It has been well
documented that 5′–3′ DSB end resection is required for homo-
logous recombination (HR) and MMEJ in yeast and higher eu-
karyotes [2], and MMEJ and HR essentially share the same initial
end resection mechanism [8]. DSB resection is initiated by the co-
ordinated action of the DNA nuclease complex MRN and CtIP. In
addition to endonuclease activity, the Mre11 protein in the MRN
complex also possesses a 3′–5′ exonuclease activity, an opposite
polarity to the ongoing resection. It turns out that Mre11 nicks DNA
3′ downstream to DSB with its endonuclease activity, and further

degrades DNA using its exo-activity in a 3′-to-5′ orientation towards
the break to expose 3′ ssDNA [63,64]. Human CtIP functions in
resection initiation by stimulating Mre11’s endonuclease activity
[65,66], and CtIP phosphorylation at T859 is critical for its role in
resection [67,68]. The identified exonuclease EXD2 has been shown
to functionally interact with MRN to accelerate DSB resection and is
required for efficient HR [69]. After the initial about hundred nu-
cleotides DNA degradation, helicase BLM/WRN and endonuclease
DNA2 switch on to carry out long-range resection up to tens of
kilobases away from the break, and this activity appears redundant
with exonuclease Exo1 [2].
The role for DSB resection in A-EJ has been a topic under ex-

tensive investigation. Depletion of Mre11 in wild-type cells reduces
the use of MH, andMre11 inhibition in XRCC4-deficient cells further
suppresses end resection, decreases frequencies of joining adjacent
I-SceI breaks in reporter systems, revealing specific roles for Mre11
in both classical and alternative NHEJ [70,71]. Mre11+/– B cells or
cells carrying Mre11H129N, the nuclease-dead mutant form of Mre11,
both show severely impaired CSR. Analysis of S-S junction profile in
the residual joining revealed that the overall patterns (direct vs MH)
in Mre11 mutant cells are not significantly altered, consistent with
the roles of Mre11 in both the c-NHEJ and A-EJ pathways [72].
Previous studies with high-throughput sequencing of S-S junctions
revealed that Mre11 knock-down in wild-type B cells exhibits
slightly but significantly increased MH usage while reducing CSR
efficiency, further confirming Mre11’s role in promoting c-NHEJ
likely through activation of ATM-dependent DDR [73,74]. Mre11
knockdown in Lig4–/– B cells significantly further reduces class
switching. Moreover, inhibiting either the exonuclease or the en-
donuclease activity of Mre11 by small chemicals renders severe CSR
defect to Lig4–/– cells, implicating that both activities of Mre11 are
required for A-EJ-mediated CSR [74]. In line with the functional
interaction of Exd2 with Mre11 in resection initiation [69], Exd2
knockout in Lig4–/– cells but not wild-type cells conferred further
CSR defect [74].
CtIP and MRN complex are required for several DNA repair

pathways including HR and A-EJ. Silencing CtIP reduces joining
frequency of I-SceI DSBs to a similar extent as Mre11 inhibition or
Mre11/CtIP double-inhibition, indicating that Mre11 and CtIP are
involved in the same pathway [70]. Previous studies with an I-SceI
reporter system showed that A-EJ efficiency is significantly reduced
in CtIP-depleted cells, while the absolute level of total-NHEJ was
slightly increased in CtIP-depleted cells. Thus, CtIP promotes A-EJ,
but is dispensable for the absolute levels of total-NHEJ [75,76]. It
has also been shown that robust end-to-end chromosome fusions in
Lig4–/– MEFs mediated by the A-EJ pathway is dependent upon CtIP
[77]. In mouse ES cells, chromosomal translocations of I-SceI-
mediated DSBs by A-EJ were significantly lower in CtIP-depleted
cells than in control cells. Sequencing translocation junctions re-
vealed significantly shorter MH and deletions in CtIP-depleted cells
[78]. These studies support a role for CtIP-mediated resection in A-
EJ and chromosomal translocations. However, the role of CtIP in
CSR has been less clear [79–81]. Previous studies showed that CtIP
knockdown in CH12F3 cells resulted in CSR deficiency with reduced
MH length at the Sμ-Sα junctions [80]. The CSR defect in CtIP-
deficient cells has been attributed to impaired proliferation or AID
expression [80,81], although other possibility such as DSB end-
bridging independent of resection initiation cannot be excluded
[82]. It has been shown recently by high-throughput sequencing
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that CtIP deletion in CH12 cells does not change the MH profile of
the remaining junctions [74,81], implicating an Mre11-independent
role of CtIP. Knocking down CtIP in Ku70-deficient, or Lig4–/– CH12
cells further reduced CSR, supporting an A-EJ role for CSR of CtIP in
c-NHEJ-deficient cells [80]. Prior reports indicated that phosphor-
ylation of CtIP at T859 by ATM or ATR kinase is essential for its role
in resection initiation [67,68]. Treating CtIP knockdown with ATM
inhibitors, or deletion of ATM in combination with CtIP knockdown
in Lig4–/– B cells resulted in even a greater CSR defect than ATM
inhibition or CtIP silencing alone [74]. While this observation is not
necessarily conflicting with prior reports [83], suggesting that ATM
might also activate other downstream targets essential for A-EJ
other than CtIP.
The involvement of long-range resection in A-EJ-mediated CSR

has also been investigated. Although BLM has been shown to be
dispensable for resection initiation for MMEJ [8], high-throughput
sequencing of S-S junctions and Cas9-mediated CSR assays de-
monstrate that BLM, together with its interaction partner Dna2, is
required for CSR in Lig4–/– cells, and BLM knockout significantly
diminishes CSR joins involving long DSB resection [74]. Surpris-
ingly, the other resection factor Exo1, when only the resection but
not mismatch repair-related function (essential for AID-induced
DSB formation in activated B cells) is mutated, does not impact A-EJ
at all [74]. Taken together, these recent findings demonstrated that
both short-range and long-range resection play essential roles in
mediating A-EJ repair in c-NHEJ-deficient cells.

Annealing of microhomologies
Following DSB resection in c-NHEJ-deficient cells, exposed ssDNA
around broken ends is annealed to each other using embedded in-
ternal MH sequences for the ensuing DNA synthesis and ligation.
Thus proteins mediating MH annealing serve as A-EJ factors by
definition. It has been proposed that single-strand annealing protein
Rad52 may perform such a role [84]. Rad52 is generally considered
as a HR/SSA protein that mediates the displacement of ssDNA-
bound RPA with Rad51 recombinase for homology invasion and
homologous ssDNA annealing. However, mammalian Rad52 also
binds directly to DNA ends, protects them from nuclease degrada-
tion, and promotes end-to-end interaction [85]. Zan et al. [84]
showed that Rad52 is recruited to S region and competes with Ku for
DSB binding in wild-type B cells. Rad52-deleted B cells show ele-
vated CSR both in vitro and in vivo with reduced MH usage at S-S
junctions, and ectopic expression of Rad52 in wild-type cells sig-
nificantly inhibits CSR. In addition, Rad52 appears to promote intra-
Sμ DSB joining that has a higher chance for MH paring. Importantly,
knockdown of Ku86 in Rad52–/– B cells essentially ablates IgG
switching [84]. This study implied that Rad52 could potentially
regulate CSR in two scenario-specific modes: in wild-type cells it
competes with Ku for S region DSB binding with a different synapsis
configuration [84] that favors intra-S joining, which inhibits IgG-
producing long-range Sμ-Sγ joining; in Ku-deficient cells, however,
Rad52 mediates annealing of resection-generated Sμ and Sγ ssDNA
for A-EJ CSR. How exactly the different functions of Rad52 are
regulated in these scenarios is an interesting question for future
investigation.
A recent study identified a protein called HMCES (5-Hydro-

xymethylcytosine Binding, ES Cell Specific) as a novel MH an-
nealing factor for A-EJ [86]. HMCES-deficient B cells exhibit a mild
CSR defect to IgA, IgG1 and IgE with reduced MH and elevated

direct joins in S-S junctions. In addition, double-deficiency in
HMCES and c-NHEJ factor Ku or Lig4, but not CtIP, nearly com-
pletely abolish CSR in CH12F3 cells. In support of a role in A-EJ,
HMCES-deficient cells exhibit marked reduction in A-EJ efficiency
in the EJ2-GFP reporter assay [86]. Mechanistically, HMCES can
bind 3′ and 5′ ssDNA overhangs to facilitate their annealing for A-EJ,
while at the same time protect ssDNA ends from excessive resection
by Exo1 [49,86]. As both Rad52 and HMCES are crucial for A-EJ-
mediated CSR in Ku-deficient cells [84], how these two proteins
function in relation to each other in the context of A-EJ is of interest
for further study.
It should be noted that MH in A-EJ can be as low as 1 deox-

ynucleotide (nt) in mammalian cells, whereas in yeast it usually
requires longer homologous sequences [87,88]. In addition, the
RPA complex binds to ssDNA ends to prevent spontaneous an-
nealing and thus impede A-EJ in yeast [89]. The lower MH length
requirement for stable base pairing in mammalian cells implicates
additional proteins in synapsis or elongation of annealedMH. In this
regard, the A-family DNA polymerase Polθ has recently been shown
to possess the activity to anneal 3′ ssDNA overhangs with imbedded
MH in addition to extending DNA templates (see details below).

Removal of nonhomologous flaps
Annealing of MH imbedded in resection-generated ssDNA between
Sμ and downstream S regions produces 3′ terminal ssDNA flaps
beyond the duplex region that must be removed prior to DNA
synthesis. It is conceivable that such 3′-flap removal proteins would
represent valid A-EJ factors. The structure-specific endonuclease
XPF/ERCC1 complex specifically cleaves the junction between a
single strand and duplex DNA where ssDNA moves away 5′ to 3′
from the duplex [90,91], and this polarity permits XPF/ERCC1 to
take important parts in various DNA repair pathways, including
nucleotide excision repair [91], inter-strand crosslink repair [92,93],
and replication fork re-establishment [94]. Furthermore, XPF/
ERCC1 has been implicated in telomere maintenance. Upon loss of
telomere-repeat binding factor TRF2, telomeres are resected as
single-ended DSBs to expose 3′ G-rich overhangs, and XPF/ERCC1
serves to cleave such overhang DNA to prevent telomeric re-
combination and shortening [95]. In addition, mammalian XPF/
ERCC1 is essential for the repair of DSBs by homology-dependent
gene conversion and SSA pathways, and is synergistic in IR sensi-
tivity with Ku [96,97]. The homolog of XPF/ERCC1 in budding
yeast, Rad1/Rad10 heterodimer, plays critical roles in DSB repair by
single-strand annealing (SSA) by using its 3′-flap endonuclease ac-
tivity [98] that highly resembles A-EJ in mammals and also requires
interaction partner SLX4 [99,100]. A previous study using an EJ2-
GFP reporter indicated that ERCC1 plays a mild role in A-EJ [75].
However, this study was carried out in cells proficient for c-NHEJ
that had limited resection. Discrepancies in the role for XPF/ERCC1
in DSB repair during B cell class switching exist; reports of normal
antibody production in XPF-deficient mouse B cells [101], in
Ercc1–/– B cells [102], or reduced CSR to IgG and IgA in B cells from
an independent Ercc1–/– mouse line have emerged [103]. A recent
study investigated the role for XPF, ERCC1 and SLX4 in CSR in
CH12F3 cells. Deficiency in any of these proteins in wild-type cells
does not confer any CSR defect; instead, depletion of either XPF/
ERCC1 or SLX4 results in a significant reduction in class switching
in Lig4–/– or 53bp1–/– cells [104]. On the other hand, complementing
Ercc1–/–Lig4–/– cells with an ERCC1 mutant that specifically loses 3′-

787Alternative end-joining in BCR gene rearrangements and translocations

Bai et al. Acta Biochim Biophys Sin 2022



flap removal but not NER activity fails to rescue the switching
phenotype. More importantly, high-throughput sequencing of re-
sidual Sμ-Sα junctions demonstrated joining to “long” resected Sα
breaks are diminished in Ercc1–/–Lig4–/– cells compared to that of
Lig4–/– cells, confirming a role for XPF/ERCC1 in mediating A-EJ
CSR through 3′ flap removal activity [104].
It is noteworthy that there are residual CSR and joining to long

resected Sα DSBs in Lig4–/–Ercc1–/– cells, suggesting functional re-
dundancy with XPF/ERCC1 in flap removal that may stem from
different sources. The Mus81-EME complex can be such a plausible
candidate. Mus81 belongs to the XPF/Mus81 family of structure-
specific endonuclease with specificity on double-Holliday junctions,
stalled replication forks and 3′-flaps [91]. However, Arabidopsis
thaliana Mus81 only plays a very minor role in SSA that absolutely
requires 3′-flap removal [105]. It is thus of interest to test whether
the Mus81-EME1/2 complexes indeed play any role in A-EJ-medi-
ated CSR. Second, some DNA polymerases may use intrinsic
proofreading 3′-to-5′ exonuclease activity to remove short flaps.
Yeast Rad1/Rad10 has been shown to be critical for removing 3′-
flaps longer than 30 nt in length, and XPF/ERCC1 binds to single-
stranded overhang 15 nt or longer with maximal affinity [106,107].
Owing to dense AID targets in S regions, the exact location of AID-
initiated DSBs and accurate length of resection are difficult to
measure. S region DSBs undergoing short range resection, or MH
annealing near the end of ssDNA can leave short or no 3′-flaps that
are suitable substrates for proofreading DNA polymerases. In this
regard, budding yeast Polδ and Pol4 (Polλ homolog) are required for
MMEJ repair [88,108,109]. Additionally, mammalian translesion
synthesis polymerase Polθ is capable of extending mismatched
termini by endonucleolytic end-trimming of 3′-ends [110,111], and
has recently been shown to be required for A-EJ and translocations
[112–114] (see details below).
Several reports have shown that the 5′ flap endonuclease FEN1

plays a role in MMEJ using reporter assays and cell extracts
[115,116]. It is speculated that FEN1 is responsible for cleaving off
the 5’ flaps generated by Polθ-mediated gap filling during MMEJ
[117]. Mouse B cells with nuclease-dead FEN1, E160D, exhibit
normal CSR and somatic hyper-mutation [118], precluding a role for
FEN1’s endonuclease activity in c-NHEJ. Another report suggested
that FEN1, when recruited through interaction with UNG, acts as a
BER factor to introduce mutation into IgH locus [119]. Given the
staggering nature of clustered S region breaks, a portion of them
may contain 5′ overhang that could be enlarged by the resection of
adjacent breaks. The annealing of ssDNA containing such 5′-over-
hang produces 5′ flaps, and FEN1 could likely cleave such 5′-flaps
before gap fill-in synthesis to facilitate A-EJ repair. As FEN1 is
crucial for processing 5′ ends of Okazaki fragments during lagging
strand replication and BER, two essential processes for CSR, proper
separation-of-function mutants of FEN1 that distinguish these
functionalities are required in order to dissect FEN1’s potential role
for A-EJ during class switching.

Fill-in DNA synthesis
Recent studies have identified several DNA polymerases including
Polθ (encode by Polq gene) and Polδ as required for microhomology
annealing and/or gap fill-in synthesis during MMEJ. Polθ was
identified by sensitivity screening to interstrand cross-linking agents
in Drosophila, and was associated with A-EJ during p-element
transposition [120,121]. Polθ possesses polymerase activity that can

effectively extend single-stranded DNA as well as duplex DNA with
either protruding or mismatched 3′-OH termini [110,122]. Purified
human Polθ protein executes MMEJ on DNA containing 3′ ssDNA
overhangs with ≥2 bp of microhomology. Mechanistically, Polθ
promotes annealing of MH sequences and then uses the opposing
overhang as a template to extend the DNA, an action that further
stabilizes the DNA synapse [113,123]. Interestingly, Polθ also har-
bors a robust end-trimming activity for nonhomologous overhangs
that is intrinsic to its polymerase domain [111,124]. This en-
donucleolytic cleavage specific for the 3′-end allows a quick switch
to its intrinsic DNA polymerase mode to extend the 3′-end at the
microhomology annealing site. Besides the polymerase domain,
Polθ also has an N-terminal helicase domain that promotes MH
annealing [121,125], an activity that would likely stimulates A-EJ
[123]. Polθ deficiency sensitizes mouse cells to DNA double-strand
breaking agents such as etoposide and camptothecin. Moreover,
Polθ promotes A-EJ and suppresses HR through physical interaction
with Rad51 to expel RPA from ssDNA filaments; In this regard, Polθ
inhibition confers synthetic lethality with HR-deficient cells [112].
Meanwhile, inhibition of Polθ inhibits MMEJ at dysfunctional tel-
omeres [114]. Nonetheless, B cells from Polθ-defective mice exhibit
overall normal CSR to different isotypes. Sequencing S-S junction in
Polθ–/– B cells showed greatly diminished A-EJ-dependent insertions
of >1 bp at the CSR junctions in Polθ-deficient cells compared with
that of wild-type cells, suggesting that Polθ is involved in A-EJ-
mediated CSR by promoting templated nucleotide (T-nucleotide)
insertion [84,126]. Taken together, these studies support a role for
Polθ in promoting MH-mediated joining.
Two other DNA polymerases have been shown to play important

roles in A-EJ, especially in mediating MH-mediated DSB repair and
translocations. In budding yeast, Pol32 (components of replicating
polymerase Polδ in eukaryotes) and Pol4 (related to Polλ in mam-
malian cells) promotes both MH-mediated DSB repair and chro-
mosomal translocations as gap fill-in polymerases that may
introduce T-nucleotide insertions into junctions [88,100,108]. The
action mode of Pol4 in T-nucleotide insertion resembles Polθ in flies
and vertebrates that involve initial MH annealing, followed by ex-
tension through error-prone polymerase activity, and ensuing dis-
sociation of nascent DNA from its template for re-annealing to
regions with secondary microhomologous sequences. In human
cells, RNAi-mediated knock-down of POLD2, the accessory subunit
of Polδ, reduces MH-mediated joining in the EJ5-GFP reporter assay,
and additive Lig4- or 53BP1-knockout inhibits CRISPR/Cas9 breaks-
mediated chromosomal translocations [127]. Together, these find-
ings are consistent with prior reports that yeast Polδ can promote 3′
end processing, MH-mediated end-joining, and translocations
[108,128]. The role of these polymerases in lymphocyte develop-
ment, especially in c-NHEJ-deficient background, awaits more fu-
ture investigations.

DNA ligases in A-EJ
There are three ATP-dependent DNA ligases, namely Lig1, Lig3 and
Lig4 in vertebrates. Lig4 plays an exclusive role in c-NHEJ, while
Lig1 is the major DNA replication ligase [129]. Therefore, it should
be either Lig1 or Lig3 for ligation in A-EJ in the absence of Lig4.
XRCC1 forms a stable complex with and stabilizes Lig3 [130,131].
Human and mouse Lig3 are present in both the nucleus and mi-
tochondria [132], with the latter being essential for mitochondrial
function and cell viability [133]. Previous biochemical experiments
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with nuclear extracts or recombinant proteins in a plasmid-rejoining
assay indicated that A-EJ requires the XRCC1/Lig3 complex
[60,134]. Depleting Lig1 or Lig3 in human HTD114 cell nuclear
extracts can significantly reduce MMEJ, and siRNA-mediated
knockdown of Lig1 or Lig3 reduced the usage of MH [135], sug-
gesting the redundant role for Lig1/Lig3 in A-EJ. However, it has
been recently proposed that Lig3 may play a greater role in A-EJ
than Lig1 does [136,137]. Kinetic analyses showed that Lig3 has
greater affinity for DNA than Lig1 [138]. The study in chicken DT40
cells also implicated that Lig1 functions in A-EJ as a backup for Lig3
[139]. Knockdown of Lig1 did not change the use of MH and
translocation formation by zinc finger endonucleases-generated
DSBs, and nuclear Lig3 deficiency reduces translocation frequency
[136]. These observations together suggest that while both Lig1 and
Lig3 are involved in A-EJ, the Lig3-dependent pathway plays a
major role in the repair of IR and Cas9-generated breaks.
Several studies have explored the potential roles for Lig1 and Lig3

in A-EJ-mediated CSR in B cells. Conditional inactivation of XRCC1
in wild-type or XRCC4-deficient primary B cells did not affect CSR or
impact IgH/c-myc translocation formation. In addition, conditional
knockdown of Lig3 in wild-type or Lig4-deficient primary B cells or
CH12F3 B cell line did not affect A-EJ-mediated switching to IgA and
IgH/c-myc translocation formation [140], indicating that XRCC1/
Lig3 is not essential for A-EJ-mediated CSR. As Lig3 exists in non-
essential nuclear form and essential mitochondrial form, to further
definitively address the involvement of DNA ligases in A-EJ, two
independent groups deleted either Lig1 or the nuclear form of Lig3
in wild-type and Lig4–/– CH12F3 cells and tested them for switching.
Similar results were obtained that neither Lig1 nor nuclear Lig3 is
indispensable for CSR in wild-type and Lig4–/– cells [141,142]. Ta-
ken together, these studies strongly demonstrate that Lig1 and nu-
clear Lig3 are functionally interchangeable to support robust A-EJ-
mediated class switching.

A-EJ in the Context of V(D)J Recombination
It was initially believed that early B cell development does not allow
alternative end-joining, as V(D)J recombination is nearly com-
pletely nonexistent in XRCC4-, Lig4- or DNA-PKcs-deficient mice
[10], and Ku70–/– mice can display a severely impaired but also
leaky SCID phenotype [143]. An early study of IgH-c-myc translo-
cations in pro-B cell lymphomas recovered from XRCC4- or Lig4-
deficient mice that also lack p53 discovered junctions with char-
acteristics of end-joining and MH usage [144], indicating that
translocation-prone A-EJ can occur in c-NHEJ-deficient B cells
during V(D)J recombination. A recent report revealed with high-
throughput sequencing that Ku proteins suppress A-EJ-mediated V
(D)J recombination in G1-arrested Lig4–/– v-Abl pro-B cells.
Knockout of Ku70 in Lig4–/– cells rescues V(D)J recombination level
that is comparable to Ku70-deficient cells, as well as A-EJ repair of
DSBs generated by other engineered nucleases [145]. This study
also nicely explains the differential impacts of Ku and XRCC4/Lig4
on the early lymphocytes and embryonic development [145]. An-
other recent report implicated that Polθ promotes A-EJ for V(D)J
recombination in XRCC4-deficient pro-B cells that undergo ex-
tensive resection in S/G2 phase of the cell cycle. Such A-EJ gen-
erates products with long sequence deletion and MH usage, and
chromosomal translocations [146].
It has been shown that RAG proteins strongly suppress A-EJ

during V(D)J recombination, as a Rag2 C-terminal truncation mu-

tation (termed Rag2-core) allows substantial level of A-EJ of plas-
mid V(D)J recombination in c-NHEJ-deficient cells and in
developing lymphocytes [24,147]. The repair products in Rag2-core
cells show a marked preference to deletion and MH usage in both
coding and signal joints. This phenomenon was also observed in
wild-type cells expressing the Rag2-core mutant [24]. These data
help to explain previously confusing observations that Rag2-core
knock-in mice bear excessive deletions and short sequence micro-
homologies in the coding and signal joints in addition to the im-
munodeficiency phenotype [148,149]. Mechanistically, Rag2-core
destabilizes the RAG post-cleavage complex to allow translocation-
like A-EJ-mediated V(D)J recombination [25]. Suppressing A-EJ by
RAG benefits the production of a diverse immune receptor re-
pertoire, as frequent deletions generated by A-EJ in Rag-core-har-
boring cells would disrupt the coding sequence of antibody genes,
and more deleteriously, introduce oncogenic chromosomal trans-
locations. The substantial amount of mature T cells in the thymus
and spleen of Rag2-core mice indicate that similar A-EJ pathways
can also operate in T cells. A later study revealed that an acidic
hinge region within the C-terminal of Rag2 protein permits A-EJ-
mediated V(D)J recombination and translocations [150]. Taken
together, these studies suggest that RAG recombinases efficiently
suppress A-EJ events during V(D)J recombination that would
otherwise generate rare aberrant products or chromosomal trans-
locations that are selected against by p53-dependent mechanisms. It
is of interest to further dissect the molecular components that pro-
mote A-EJ in Rag2-core-bearing mice and lymphocytes.

A-EJ and Oncogenic Chromosomal Translocations
It has been well documented that in mice deficiency in c-NHEJ
factors Ku, Xrcc4, or Lig4, significantly increases chromosomal
translocations in Pro-B [144], mature B [44,151,152] and ES cells
[153]. These translocations predominantly harbor short MHs, sug-
gesting that they are generated by MH-mediated end-joining. This
notion has been confirmed by a study with high-throughput se-
quencing of genome-wide translocations, which showed that
translocations joining c-myc DSBs to genome-wide DSBs in 53BP1-
deficient cells, and to a lesser extent in ATM- or Rif1-deficient cells,
display similarly MH-biased profile [6]. As extensive resection of S
region breaks and c-myc breaks have been observed in these cells
[12], these data suggest that DSB resection promotes chromosomal
translocations through potentiating A-EJ, although other possibi-
lities such as loss of DSB tethering and chromatin synapsis cannot
be excluded [12]. In line with a role for DSB resection in promoting
translocations, inhibition of CtIP [78] greatly diminishes I-SceI-in-
duced chromosomal translocations in wild-type and Ku70-deficient
mouse ES cells.
Recent studies have identified additional factors that regulate

chromosomal translocations via the A-EJ/MH pathways. Parp3, a
member of the PARP family of enzymes, has recently been shown to
promote I-SceI-induced translocations in wild-type and Ku70–/–

mouse ES cells. Although Parp3 deletion appears not to impact the
MH profile in the remaining translocation junctions, it does reduce
the average length of deletion [154]. Two possible explanations
have been proposed for this phenomenon: first, Parp3–/– cells have
less deposition of RPA at DSBs, indicating that Parp3 promotes DSB
processing to generate ssDNA. Second, Parp3 may negatively reg-
ulate the binding of Ku to DSBs [154]. But as the Parp3 deletion also
reduces translocations in Ku70–/– cells, there exist other mechan-
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isms for Parp3-dependent promotion of translocations. Moreover,
an earlier study reported conflicting results that Parp3 negatively
regulates CSR without affecting c-myc-IgH translocations [155].
Although this discrepancy has been attributed to difference in
mouse genetic background [154], the exact roles of Parp3 in reg-
ulating CSR and chromosomal translocations need more clarifica-
tion.
A recent study showed that XPF/ERCC1 endonuclease complex

promotes c-myc-IgH translocations and does so only in Lig4-defi-
cient but not in wild-type B cells, supporting an A-EJ-specific role
for XPF/ERCC1 in translocation [104]. As XPF/ERCC1 promotes A-
EJ-mediated CSR via the intrinsic 3′ flap removal activity following
MH annealing, it is conceivable that XPF/ERCC1 also facilitates
chromosomal translocations by flap removal to allow subsequent
DNA synthesis and ligation. It is of interest to examine whether
other enzymes potentially involved in flap removal play any role in
promoting A-EJ-mediated translocation.
The discovery of the role of Polθ in translocation regulation has

drawn much attention. Polθ appears to promote Cas9-induced
translocations and nucleotide insertions at the junctions, and Polθ
knockdown in MEFs also inhibits MMEJ-mediated fusion of dys-
functional telomeres [114]. Co-localization of Polθ with γ-H2AX is
decreased after knockdown of PARP1 via siRNA or chemical in-
hibitors, suggesting that PARP1 facilitates the recruitment of Polθ to
DSBs [114]. A later study revealed that both the polymerase and
helicase domains of Polθ are required for Cas9-mediated chromo-
somal translocations in mouse ES cells. In vitro experiments
showed that Polθ helicase activity facilitates the removal of RPA
from resected DSBs, enabling subsequent MH annealing and joining
by A-EJ [156]. However, conflicting results over the role of Polθ in
translocation have been reported. In activated spleen Polθ–/– B cells,
the frequency of c-myc-IgH translocation was 4-fold higher than the
corresponding wild-type B cells [126]. Polθ knockout in Ku70–/– but
not in wild-type mouse MEFs also further increases Cas9-induced
translocations [125]. It is likely that differences in the type or feature
of DSB ends and the primary sequence and/or the genome location
of the breaks would be attributable to these discrepancies, as the
frequency of chromosomal translocation is proposed to be posi-
tively correlated with the probability of the synapsis frequency of
the two DSBs [1]. Nonetheless, the exact role of Polθ in chromo-
somal translocation needs further clarification.
Lastly, Lig3 has been shown to be a positive regulator of chro-

mosomal translocation, in line with its role in A-EJ. Frequency of
translocations induced by zinc finger nuclease in nuclear Lig3-de-
pleted mouse ES cells is about half-reduced comparing to wild-type
cells, whereas a Lig4 deletion increases translocation frequency by
2–3 folds. Lig1 can serve as a backup ligase to mediate these
translocations [136]. Consistently, deletion of nuclear Lig3 sig-
nificantly reduces but not completely abolishes Cas9-induced
translocations in Lig4–/– CH12 cells. Interestingly, the junctions in
the remaining translocations utilize even more MH than that of
Lig4–/– cells, reflecting a unique preference for longer MH by Lig1 in
mediating translocation [142]. Collectively, these results clearly
indicate that A-EJ by mouse Lig3 and Lig1 promotes chromosomal
translocations.
It is noteworthy that although mounting evidence has clearly

demonstrated that A-EJ but not c-NHEJ promotes chromosomal
translocation in mouse ES cells, MEFs and B cells, a recent study
indicated that in human cells XRCC4/Lig4 but not Lig3 is primarily

responsible for chromosomal translocations induced by engineered
nucleases, including ZFNs, TALENs and Cas9, with the residual
junctions showing greatly increased large deletions and MH usage
[157]. A similar observation was made with hypomorphic Lig4
mutations identified from human patients [157]. Thus it appears
that human and mouse cells utilize very different mechanisms to
mediate translocations that can be likely attributed to the differ-
ential requirement for c-NHEJ proteins such as DNA-PKcs and Ku in
humans and rodents [157]. As the residual translocations in
XRCC4/Lig4-deficient human cells still display features of A-EJ with
significantly increased deletions and MH usage, it is likely that re-
duced translocations in these cells result from refractoriness to in-
itiate or undergo DSB resection that is required for A-EJ.

Conclusions and Perspectives
Recent years have witnessed remarkable progress in the under-
standing of A-EJ not simply as a backup pathway(s) to c-NHEJ, but
a pathway(s) that can potentially compete with c-NHEJ for DSB
repair. A-EJ is distinct from c-NHEJ in both participating compo-
nents and repair kinetics, and shares with HR early steps of DSB
resection (Figure 3). The discoveries of specific factors in the sub-
sequent ssDNA annealing, nonhomologous flap removal, gap
synthesis and ligation make A-EJ unique in a way prone to onco-
genic chromosomal translocations. Thus, studying the molecular
mechanisms of A-EJ will potentially benefit the identification of
cancer therapeutic drug targets. To further elucidate A-EJ me-
chanisms, future studies should focus on the unsolved questions
including: (1) the relative contributions of c-NHEJ versus A-EJ in
wild-type cells; (2) whether A-EJ represents a single pathway or
multiple pathways; (3) how the cells choose DSB repair pathway: A-
EJ versus c-NHEJ or HR? (4) the cell cycle regulation of A-EJ; (5)
why human and murine cells adopt seemingly different mechan-
isms for chromosomal translocations; and (6) the contribution of
individual A-EJ factors for lymphocyte development and malig-
nancies, and many other exciting ones.
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