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Abstract

Estimation of influenza-like illness (ILI) using search trends activity was intended to supple-

ment traditional surveillance systems, and was a motivation behind the development of

Google Flu Trends (GFT). However, several studies have previously reported large errors in

GFT estimates of ILI in the US. Following recent release of time-stamped surveillance data,

which better reflects real-time operational scenarios, we reanalyzed GFT errors. Using

three data sources—GFT: an archive of weekly ILI estimates from Google Flu Trends; ILIf:

fully-observed ILI rates from ILINet; and, ILIp: ILI rates available in real-time based on partial

reporting—five influenza seasons were analyzed and mean square errors (MSE) of GFT

and ILIp as estimates of ILIf were computed. To correct GFT errors, a random forest regres-

sion model was built with ILI and GFT rates from the previous three weeks as predictors. An

overall reduction in error of 44% was observed and the errors of the corrected GFT are

lower than those of ILIp. An 80% reduction in error during 2012/13, when GFT had large

errors, shows that extreme failures of GFT could have been avoided. Using autoregressive

integrated moving average (ARIMA) models, one- to four-week ahead forecasts were gen-

erated with two separate data streams: ILIp alone, and with both ILIp and corrected GFT. At

all forecast targets and seasons, and for all but two regions, inclusion of GFT lowered MSE.

Results from two alternative error measures, mean absolute error and mean absolute pro-

portional error, were largely consistent with results from MSE. Taken together these findings

provide an error profile of GFT in the US, establish strong evidence for the adoption of

search trends based ’nowcasts’ in influenza forecast systems, and encourage reevaluation

of the utility of this data source in diverse domains.

Author summary

Google Flu Trends (GFT) was proposed as a method to estimate influenza-like illness (ILI)

in the general population and to be used in conjunction with traditional surveillance sys-

tems. Several previous studies have documented that GFT estimates were often overesti-

mates of ILI. In this study, using a recently released archive of data of provisional incidence

from a large surveillance system in the US (ILINet), we report errors in GFT alongside

errors from ILINet’s initial estimates of ILI. This comparison using information available in

real-time allows for a more nuanced assessment of GFT errors. Additionally, we describe a

method to correct errors in GFT and show that the corrected GFT estimates are at least as
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accurate as initial estimates from ILINet. Finally, we show that inclusion of corrected GFT

while forecasting ILI in the next four weeks considerably improves forecast accuracy. Taken

together, our results indicate that the GFT model could have added value to traditional sur-

veillance and forecasting systems, and a reevaluation of the utility of the underlying search

trends data, which is now more openly accessible, in fields beyond influenza is warranted.

This is a PLOS Computational Biology Methods paper.

Introduction

Surveillance of seasonal influenza and other respiratory illnesses deservedly receives significant

attention from public health agencies in the United States. To complement traditional surveil-

lance systems, both internet- [1–7] and non-internet-based [8–11] proxy indicators of inci-

dence have been developed. Among these, of note is Google Flu Trends (GFT) [1, 12], which

estimated influenza-like illness (ILI) from online search activity. GFT estimates from an initial

model and subsequent revisions to the model were publicly available until 2015, when the ser-

vice was discontinued [13]. Although Google has not offered reasons for the termination, one

contributing factor could well have been the widely reported propensity of GFT to over-esti-

mate ILI, which effectively morphed it in the public perception from a poster child for the

power and utility of big data to one of its hubris [14–20].

However, this perception is probably misplaced. The most comprehensive and commonly

cited study of GFT errors for locations in the United States was published by Lazer et al [14], fol-

lowing an anomalous season during which the errors were much larger than previously

observed. These findings were supported by several other studies that were smaller in scope but

reported errors of approximately the same magnitude at different locations and geographical res-

olutions [21, 22]. In this paper, using newly available surveillance data, we revisit GFT estimates

for locations in the US and show that its errors are less substantial than previously reported.

The severity of a respiratory viral infection in an individual depends on multiple factors,

and in most cases the symptoms are mild and do not require medical attention. As a conse-

quence, the more widely used surveillance systems in the US–the Centers for Disease Control

and Prevention (CDC)’s ILINet and FluSurv-NET systems, for example–only capture infec-

tions that are severe enough to precipitate a visit to a physician’s office or hospital. On the

other hand, the relationship between the severity of a respiratory infection and the likelihood

that an individual initiates an online search session for related information, is unknown;

hence, the signals that drive GFT and the surveillance systems are intrinsically different. None-

theless, as GFT used incidence data from ILINet as its response variable, it has been a common

practice, and one that we follow in this study, to use these rates as reference or ground truth

when reporting the accuracy of GFT estimates.

However, in reporting US national and regional errors, most previous studies, including

Lazer et al [14], did not account for delayed reporting to ILINet. The fully observed ILINet

rates (ILIf) are finalized no sooner than 2–3 weeks after the conclusion of a surveillance week,

as some of the surveillance network data are submitted late, and in some instances, revisions

can even occur several months later. The rates released in the interim are estimates based on

partial observations (ILIp) and the magnitude of difference between ILIp and ILIf, as we report

here, varies by location, influenza season and the phase of a season.
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Given these reporting delays and revisions, it is ILIp rather than ILIf that informs real-time

decisions. Thus, a more appropriate error analysis, one that better reflects an operational sce-

nario, should compare errors of GFT (ILIf—GFT) to errors of ILIp (ILIf—ILIp). An archive of

ILIp at US national and Health and Human Service (HHS)[23] regional levels for 6 seasons

has been made available [24] recently, and in this study we used this archive to recompute

GFT and ILIp errors[25, 26]. Additionally, we extended the analysis to finer geographical reso-

lutions as ILIf is now also available for US states. Finally, we report for the first time, errors

from the final GFT model, updated in fall 2014, before the service was discontinued.

Google’s recent initiative to provide access to its search trends through an API[13] supports

more open data sharing. This effectively decouples data from model and facilitates the devel-

opment of alternative models to GFT. Through the analysis described here, we hope to estab-

lish an error profile of GFT that can serve as a baseline for comparing these alternative models.

More importantly, although GFT was proposed by its developers as a supplement to tradi-

tional surveillance systems and not a replacement, the focus to date has been disproportion-

ately on evaluating GFT’s ability to mimic surveillance systems rather than on evaluating its

utility when deployed in conjunction with these systems in operational settings. Previous find-

ings suggest that the errors in GFT can be reduced by combining GFT estimates with lagged

surveillance rates [14, 27, 28]. Here we propose a similar remedial step with a parsimonious

regression model and show that the corrected GFT is more accurate than ILIp.

A natural extension is to assess whether GFT, its errors thus corrected, could have

improved longer term forecasts by providing more timely outbreak information than tradi-

tional surveillance systems. For this purpose, we generated forecasts of ILI one to four weeks

in the future using ILIp alone, and using both ILIp and error corrected GFT. We demonstrate

that the inclusion of GFT considerably improves the accuracy of near-term forecasts and thus

adds value to traditional surveillance systems.

Materials and methods

In this section we describe in detail the two data sources used—an outpatient surveillance sys-

tem and GFT—access information for the two sources, and the measures used to calculate

errors of these estimates. We then describe the autoregressive model framework used to gener-

ate near term forecasts, followed by details of the forecast generation and validation process.

US influenza outpatient surveillance network (ILINet)

The ILINet surveillance system [29], developed and supported by the CDC, collects data from

nearly 3000 healthcare providers in the US on outpatient visits for ILI, which is defined as

fever (temperature above 100°F) co-occurring with cough and/or sore throat. Weekly counts

of patients seen for ILI and for any reason are submitted to the system. These count data are

used to calculate the percentage of outpatient visits due to ILI. In this study, by ILI rate we

refer to population-weighted aggregates of ILI.

A Morbidity and Mortality Weekly Report (MMWR)[30] surveillance week runs from Sun-

day thru Saturday and aggregated ILI rates at US state-, HHS regional- and national levels are

publicly released through the FluView [31] website on Friday (6 days after a week concludes).

The system allows for delayed reporting from providers and the delayed data are included in

subsequent weekly releases. Hence, the ILI estimates for a week can change for multiple weeks

following initial release. We refer to the ILI rates calculated from incomplete reporting as par-

tially observed ILI rates, and in this paper denote the rates as per the first week of release as

ILIp. An archive of revisions for the 2009/10 season onwards has been recently made available
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[24, 32] and for the 2013/14 season and later, these data are also accessible through the DEL-

PHI group’s epidata API [33].

Although ILIf is available for the US, HHS regions and states, ILIp is not currently available

at the state level. ILI rates for the 2009/10 to 2014/15 seasons that were available on FluView at

the end of surveillance week 20 of the 2017/18 season (May 13–19, 2018) were considered to

be ILIf. This date is over two years after the end of the time period studied, and hence we

assume that it is very unlikely that these rates would be further revised. Note that both ILIp

and ILIf are rates, and ILIp can over or underestimate ILIf.

Google Flu Trends (GFT)

Originally developed in 2008, GFT estimated ILI rates in a population based on the frequency

of a selected set of queries to the Google search engine [1]. The 2008 model used 45 queries,

whose search frequencies were historically well correlated [34, 35] with ILI rates, as explana-

tory variables. To generate the estimates for the US, ILI rates were used as the response variable

in the model. In response to observed deficiencies in the predictions, revisions to the model,

including updates to the feature set, were made in 2009, August 2013 and August 2014. GFT

estimates that were published in real-time from September 2008 through August 2015, along

with estimates from revised models applied to past seasons continue to be hosted publicly [12].

Fig 1 shows the availability of GFT, ILIf and ILIp at different locations in the US. For US

and HHS regions, GFT, ILIf and ILIp are available for six seasons—2009/10 to 2014/15—and

for the states ILIf and GFT are available for the last 5 of these 6 seasons. The vertical lines indi-

cate the time points of revisions to the GFT model; therefore estimates for seasons 2009/10

thru 2012/13 seasons, season 2013/14, and season 2014/15 are from different models.

Unlike ILINet, GFT estimates for a week are finalized at the end of the week. Furthermore,

as the GFT estimates were completely automated, and computed in real-time, they did not

have the 6-day lag between the end of a week and the release of data as is the case with ILINet.

This translates to GFT providing weekly incidence estimates for at least one more week than

ILINet, at any given point of time. The estimate for this one additional week is sometimes

referred to as a nowcast.

Error measures

For each week and location, error is defined as y � ŷ, where y is the reference, ILIf, and ŷ the

estimate from GFT or ILIp. Aggregate error measures, Mean Squared Error (MSE), Mean

Absolute Error (MAE) and Mean Absolute Proportional Error (MAPE) are respectively the

mean of the square of errors, of the absolute error and of absolute error as a proportion of the

reference value, and are reported across all seasons and locations, or for each season (across all

location) and each location (across all seasons). During the study period, the reference value

was never zero, and hence MAPE was computable. Formally,

MSE ¼
1

n

Xn

i¼1

ðyi � ŷiÞ
2

MAE ¼
1

n

Xn

i¼1

jyi � ŷij

MAPE ¼
1

n

Xn

i¼1

jyi � ŷij

yi
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As the errors in 2012/13 are reportedly much larger than during the other seasons included

in the study, inclusion of this season could obscure overall results, and hence we report aggre-

gate measures both with and without this season.

Seasonal autoregressive integrated moving average (ARIMA) model

A non-seasonal ARIMA model is specified by three parameters—p, the order of the autore-

gressive component; q, the order of the moving average component; and d, the degree of

differencing required to make the given time series stationary. For a time series, Y, let y denote

the time series obtained by d degree differencing. Thus, an ARIMA(p, d, q) is a model of the

form:

yt ¼ cþ �1yt� 1 þ � � � þ �pyt� p þ y1εt� 1 þ � � � þ yqεt� q

Fig 1. Availability of GFT, ILIf, and ILIp at US national, regional and state levels in the US. At the regional level, GFT and ILIf were available from 2003, and ILIp

were available from 2009/10 season onwards, excluding off-season weeks. For states, ILIp were never available to the public, and ILIf is available from 2011/12 season

onwards. Updates to GFT model are indicated by the vertical lines.

https://doi.org/10.1371/journal.pcbi.1007258.g001
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where the elements, εi, represent the forecast errors at the ith time step. Elements c, ϕ1, . . ., ϕp,

θ1, . . .,θq can be estimated through maximum likelihood estimation. As influenza in the US

has strong yearly seasonality, a seasonal ARIMA model may often, though not always, be a bet-

ter fit. Seasonal ARIMA models are specified with three additional parameters P, D, Q where

D denotes seasonal differencing and P, Q are analogous to p, q, respectively, as defined above.

We used an implementation of an iterative method proposed by Hyndman and Khandakar

[36] from the R [37] forecast [38] package to find an appropriate order for the ARIMA models.

Briefly, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [39] and extended Canova-Han-

sen test [40] are used to determine an appropriate d and D respectively. To find values for the

remaining parameters, an iterative process is initiated with the model that has the lowest

Akaike’s Information Criterion (AIC) [41] amongst a small default set of models, as the candi-

date model. In each subsequent step, the parameters of the candidate model are varied by ±1

within a pre-specified parameter space (p, q: (0, 5); P, Q: (0, 2)) and the variant with the lowest

AIC becomes the new candidate model. The process is terminated when the parameter space

is exhausted or all variants of the candidate model result in a higher AIC.

Error correction and forecast generation

Retrospective near-term forecasts were generated for US National and the 10 HHS regions

during the 2010/11 to 2014/15 influenza seasons for MMWR weeks 41 through week 20. Tra-

ditionally an influenza season is considered to run from MMWR week 40 thru MMWR week

39 of the following calendar year. Late spring and summer weeks (MWWR week 20 onwards)

experience low incidence and hence were excluded in this study. Separate models were fit for

each location and week. Models for each location are isolated as they do not use observations

from any other location.

Let Xi and Zi denote the log transformed ILI rates and GFT estimates at week i respectively.

All ILI/GFT values less than 2 (per 100000) were rounded up to 2 before log transformation.

As described in a previous section, when forecasts are generated operationally at the end of

week t, X1,� � �,Xt and Z1,� � �,Zt+1 would be available; i = 1 indicates MMWR week 40 of 2009/10

season. For a given week w� t, Xw is ILIp if w and t belong to the same season, and ILIf other-

wise. Corrected GFT, Ẑ tþ1, is estimated using a random forest [41–44] regression model with

explanatory variables Xt,Xt−1,Xt−2,Zt+1,Zt,Zt−1,Zt−2 and response variable Xt+1. S4 Fig shows

corrected GFT at the US national level, and its error with respect to ILIf.

To generate near term forecasts, two models were developed: the first using ILIp only (ILIp),

and the second using ILIp and corrected GFT (ILIp+GFT). For a given week t, the ILIp models

were trained on the time series X1, . . ., Xt and used to forecast rates for weeks t+1, . . ., t+4, denoted

by X̂tþ1 . . . X̂tþ4. The corresponding ILIp+GFT ARIMA models were fit using the time series

X1; . . . ;Xt; Ẑ tþ1 and forecast rates for X̂tþ2 . . . X̂tþ4: Ẑ tþ1 doubles as the 1-week ahead forecast.

For both models MSE, MAE and MAPE, as defined above, were calculated with ILIf as reference.

For example, the ILIp models for week 46 of 2011/12 season were fit using ILIf from the

2009/10 and 2010/11 seasons and ILIp from weeks 40 to 46 of the 2011/12 season, and were

used to forecast rates for weeks 47 through 50. The GFT correction model for week 46 was fit

using training instances compiled with ILI and GFT through week 46 of 2011/12 season and

used to estimate, Ẑ47 with test instance (X46,X45,X44,Z47,Z46,Z45,Z44). ILIp+GFT models used

Ẑ47 as an additional observation, and forecast rates for weeks 48 to 50. Therefore, the week 50

forecast from ILIp ARIMA model was a 4-week ahead forecast but a 3-week ahead forecast for

the ILIp+GFT ARIMA model. Forecast errors for both model forms were then calculated using

ILIf for weeks 47 to 50 as reference.
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Results

GFT as an estimator of ILIf

Table 1 shows that the MSE of GFT is on average 2.5 times that of ILIp with considerable vari-

ability by location. Region 9, where the mean squared errors were nearly equal, had the small-

est difference between GFT and ILIp, whereas Region 4 had the largest difference, with GFT

error about 7.6 times as large as that of ILIp. Similar variability was observed across seasons,

with the largest difference by far occurring during the 2012/13 season, and the smallest during

2009/10. As previously reported [14], GFT estimates for weeks around the peak of the 2012/13

season were large over-estimates, which contributed considerably to the high mean errors.

The corresponding difference in MAPE (S1 Table) is slightly smaller overall (GFT error 1.8

times ILIp error), with the GFT error actually lower than that of ILIp for Region 9. In reporting

Table 1 (and S1 Table) we excluded season 2012/13 for Overall and regional aggregations; see

S2 Table for aggregations across all seasons.

Fig 2 shows MSE with the final version of the GFT system for the 2014/15 season and the

average GFT errors in all regions (denoted by the black triangle) are larger than corresponding

ILIp errors. But as indicated by the data points above the diagonal, ILIp does not consistently

have lower errors for all weeks. As supported by S2 Fig, during weeks very early (blue data

points) or towards the end (red data points) of the season, the difference between GFT and

ILIp is relatively small (data points closer to the diagonal). The larger errors for both ILIp and

GFT occur during weeks of increased ILI activity around the peak week (green and grey data

points). S1 Fig has the corresponding MAPE errors for the 2014/15 season. On the whole,

errors during the 2014/15 season are in line with some of the previous seasons, and the final

GFT model was not a marked improvement over previous models.

Looking at GFT errors at the state-level (Fig 3, S3 Fig), the errors are much larger than the

errors at the corresponding HHS regions (black horizontal mark). Overall (top left panel), states

Table 1. Aggregated squared error. Mean (standard deviation, [25th–75th percentile]) for the entire study period,

disaggregated by location and season. US national has ILIp has 11 fewer dates than the regions. Overall and location

aggregations exclude 2012/13 season.

GFT ILIp

Overall 0.364 (0.94, [.02–.35]) 0.143(0.4, [0–0.09])

National 0.138 (0.24, [0–.17]) 0.031 (0.05, [0–.04])

Region 1 0.101 (0.16, [.01–.14]) 0.04 (0.1, [0–.04])

Region 2 0.515 (0.76, [.06–.67]) 0.185 (0.39, [.01–.14])

Region 3 0.342 (0.4, [.07–.47]) 0.066 (0.11, [.01–.08])

Region 4 0.282 (0.58, [.02–.21]) 0.037 (0.1, [0–.03])

Region 5 0.147 (0.22, [.01–.19]) 0.024 (0.04, [0–.03])

Region 6 0.714 (2.18, [.03–.68]) 0.181 (0.38, [.01–.17])

Region 7 0.601 (1.43, [.02–.4]) 0.112 (0.29, [.01–.09])

Region 8 0.137 (0.31, [.01–.15]) 0.042 (0.07, [0–.07])

Region 9 0.695 (0.88, [.07–.9]) 0.681 (0.89, [.05–.92])

Region 10 0.337 (0.53, [.05–.39]) 0.17 (0.37, [0–.15])

2009/10 0.274 (0.47, [.03–.26]) 0.191 (0.45, [.01–.15])

2010/11 0.545 (0.97,[.03–.56]) 0.181 (0.44, [0–.12])

2011/12 0.353 (0.45, [.06–.45]) 0.158 (0.5, [0–0.07])

2012/13 5.847 (15.77, [.11–2.66]) 0.175 (0.6, [0–0.08])

2013/14 0.29 (0.59,[.01–.33]) 0.083 (0.21, [0–0.05])

2014/15 0.338 (1.54,[.01–.18]) 0.119 (0.33, [0–0.08])

https://doi.org/10.1371/journal.pcbi.1007258.t001
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with low (< 2 million) and medium (2–6 million) population sizes, tend to have larger GFT

errors than high population states. We know from previous work [5] with search trends from

Google’s Health Trends API, that terms/queries whose search frequencies do not meet a predeter-

mined threshold limit are reported as 0. If GFT used a dataset that was based on similar criteria,

low population states where search volumes are smaller, would have had sparser feature spaces.

Similar patterns were seen when the errors are disaggregated by season. It is interesting to

note that among all seasons studied, the season with the smallest differential in MSE between

state and regional errors was the anomalous 2012/13 season, where the large increase in GFT

regional errors was not accompanied by a proportionate increase in errors for states. In a few

cases, the errors for a state were smaller than the errors at the corresponding region.

Nowcast using lagged ILIp and GFT

As shown in Table 2 and S4 Fig, considerable reduction in GFT MSE was achieved through

regression on lagged data. An overall reduction of 44% was observed across the 11 locations

Fig 2. Squared errors from GFT and ILIp for HHS regions during the 2014/15 season. The green data points show the error during the week of maximum weekly

ILIf—the peak week—and the remaining data points are color coded by their distance from peak week. The black triangles show the mean error for the season. The

black line is the y = x line; points below this line have larger errors from GFT than from ILIp. In all regions, the mean error from GFT falls below the line.

https://doi.org/10.1371/journal.pcbi.1007258.g002
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and 4 seasons. The large reduction during 2012/13 reiterates the utility of this additional step

as a check against extreme failures of GFT. It is also interesting to note that this step reduces

GFT errors below that of ILIp i.e. the use of search trend data can not only provide an estimate

of incidence a week earlier than ILINet, but can do so more accurately than ILINet’s own ini-

tial estimate of incidence. S3 Table shows the corresponding overall reductions in MAE and

MAPE, and the findings noted with MSE hold.

There is considerable variability in the magnitude of improvement in nowcast quality

across locations and seasons, and with a few exceptions the decrease in errors was significant

(P< 0.05) per a paired Wilcoxon signed rank test [45–47].

Near-term forecasts using nowcasts

Table 3 shows the MSE for near-term forecasts generated with ILIp alone and using both ILIp

and corrected GFT (ILIp+GFT). At all targets (1- to 4-week ahead estimates) and seasons, and

for all but two regions (Fig 4), inclusion of GFT lowered MSE. The overall MAPE with the ILIp
+GFT models is also lower (S4 Table, S5 Fig), although the relative advantage over ILIp with

different regional or seasonal disaggregation criteria is more mixed. The overall reduction in

errors when aggregated by target or region is not limited to reduction from the anomalous

2012/13 season; ILIp+GFT errors continue to be lower and significant when the 2012/13 sea-

son is excluded (S5 Table).

For all three measures, the accuracy of the regression model’s nowcast either matches or

exceeds that of the 1-week ahead ARIMA forecast. Reduction of errors at longer horizons is

larger and this is quite likely due to the k week ahead forecast of the ILIp+GFT model being

lined up with the k+1 week ahead forecast of the ILIp model, as ARIMA errors tend to increase

with increasing horizon.

Discussion

The increasing availability of big data has naturally led to the development of experimental

applications in several domains, including those such as public health surveillance that have

traditionally relied on more robust, but also labor intensive, data collection processes. Google

Flu Trends was developed as an alternative method to measure ILI in the general population,

to be used in conjunction with traditional surveillance methods when and where they exist.

Given its prospects for use (and misuse) GFT appropriately received wide attention; but it is

our belief that it has been adjudged wanting against goals it was not designed to meet.

Reporting errors of ILIp rates alongside GFT errors, helps quantify the transient errors in

ILINet due to delayed reporting and provides a more appropriate baseline for comparing the

accuracy of GFT (and alternative nowcast models) in operational settings. The use of ILINet

rates as ground truth, here and in previous studies, is appropriate simply because these are the

targets GFT was designed to estimate and a more reliable system for estimating ILI broadly in

the US does not exist. However, when assessing the validity of alternatives methods for influ-

enza estimation, we must remain cognizant of the deficiencies of ILINet in capturing influenza

transmission at metapopulation scales–for instance, its passive data collection process, broad

symptom definition that is geared towards ILI rather than influenza, and estimation of inci-

dence from visit counts without a requirement for virologic confirmation.

The opening up of Google Trends API directly addresses one major obstacle in improving

nowcasts over the GFT models, namely, the non-availability of public search trends data.

Additionally, US state level ILINet rates were not available prior to the 2017/18 season, and

previously required some form of extrapolation from regional ILI rates to state ILI rates in

order to build state-level nowcast models. With these data now being released in real time,
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nowcast models for states should be able to identify more reliable predictor variables, and the

accuracy of these nowcast estimates can be expected to improve over GFT estimates. Further-

more, fine-grained nowcast estimates, say at city or county scales, or for large hospital settings,

are possible when reliable ILI rates exist.

Our results show that a regression model with lagged ILIp and GFT predictors can ade-

quately correct errors in search trend based nowcasts and thereby avoid catastrophic failures,

and the model estimated rates are at least as accurate as partially observed surveillance rates in

the US. Indeed, during the 2017/18 and 2018/19 influenza seasons, which saw atypical, large,

sustained outbreaks, our search trends based nowcasts did not exhibit large errors. Use of this

data source alongside other data sources like twitter, electronic medical records, Wikipedia

logs etc. [3, 4], can further reduce the risk of such failures by making the nowcasts less reliant

on any single source.

Fig 3. Mean squared error of GFT observed in US states. The top left panel, Overall, shows average errors across 5 seasons and each of the other panels is limited to

one season. The data points are color coded by population size and ordered by overall error (high to low). The black line shows the errors from corresponding HHS

regions.

https://doi.org/10.1371/journal.pcbi.1007258.g003

Reappraising the utility of Google Flu Trends

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007258 August 2, 2019 10 / 16

https://doi.org/10.1371/journal.pcbi.1007258.g003
https://doi.org/10.1371/journal.pcbi.1007258


Table 2. Mean squared error in one-week ahead estimates. Change column indicates percentage reduction in mean

error by regressing ILIf on lagged ILIp+GFT. 2012/13 was excluded while aggregating overall and by region. Paired

Wilcoxon signed rank tests for the hypothesis that the median of errors in GFT (Z) are greater than the median of

errors in corrected GFT (Ẑ) were performed; cases where p> .05 are denoted by an asterisk (�).

ILIp GFT

(Z)
Corrected GFT (Ẑ) Change,% ðZ � ẐÞ=Z

Overall .301 .382 .215 44

National .121 .148 .085 43

Region 1 .068 .116 .061 47

Region 2 .294 .603 .246 59

Region 3 .264 .378 .224 41

Region 4 .254 .306 .174 43

Region 5 .180 .147 .122 17

Region 6 .678 .804 .417 48

Region 7� .334 .600 .372 38

Region 8 .147 .151 .094 38

Region 9 .714 .601 .307 49

Region 10 .258 .354 .259 27

2010/11 .317 .546 .214 61

2011/12 .187 .355 .152 57

2012/13 .431 5.753 .617 89

2013/14 .273 .290 .221 24

2014/15� .420 .342 .268 22

https://doi.org/10.1371/journal.pcbi.1007258.t002

Table 3. Mean squared error of near-term forecasts. ILIp was generated with ILIp alone and ILIp+GFT by append-

ing corrected GFT to ILIp. The lower error in each row is underscored. P-values from a paired Wilcoxon signed rank

test that the median of error in ILIp forecasts are greater than the median of errors in ILIp+GFT forecasts are also

shown; cases where p> .05 are denoted by an asterisk (�).

ILIp ILIp + GFT p

Overall 0.761 0.605 < .001

1 week ahead 0.327 0.294 .01

2 week ahead 0.611 0.459 < .001

3 week ahead 0.907 0.700 < .001

4 week ahead 1.199 0.968 < .001

National 0.452 0.367 < .001

Region 1 0.248 0.221 < .001

Region 2 0.605 0.503 .01

Region 3� 0.857 0.764 .25

Region 4 0.969 0.685 .03

Region 5� 0.526 0.582 .67

Region 6 1.554 1.233 < .001

Region 7 1.013 0.810 < .001

Region 8 0.445 0.316 < .001

Region 9 1.149 0.608 < .001

Region 10� 0.553 0.568 .76

2010/11 0.747 0.549 < .001

2011/12 0.268 0.229 < .001

2012/13� 1.035 0.866 .24

2013/14 0.643 0.549 < .001

2014/15 1.091 0.819 < .001

https://doi.org/10.1371/journal.pcbi.1007258.t003
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Results with the near-term forecasts show that the provision of an additional week of obser-

vation to the ARIMA models considerably improves forecast quality. Forecasts generated with

ILIp and corrected GFT also improve over those generated with ILIp and uncorrected GFT

(S6 Table). Both the random forest and ARIMA models used here were standard implementa-

tions from open source statistical packages with no domain specific tailoring, and we have no

reason to believe that these improvements and the ensuant findings are specific to the models

used. Other mechanistic or time series models may offer similar improvements in accuracy,

and some recent results are suggestive of such improvements [48, 49]. Our choice of ARIMA

as the forecast model should not be construed as a vote in favor of its optimality in forecasting

ILI; on the contrary, as ARIMA is not informed by any of the transmission dynamics of ILI,

we include it as a non-naïve reference method. Researchers proposing alternative methods tai-

lored for ILI should be expected to show that they do at least as well as ARIMA.

Overall, we believe that the results presented here provide sufficient evidence to encourage

continued efforts to improve search trend based nowcasts for influenza and make a case for

Fig 4. Mean squared error of near term forecasts for ILIp and ILIp+GFT models. The data points are color coded by target. Points below the diagonal (broken black

line) indicate instances where forecast quality improved with the use of GFT. Each panel is for one of the locations.

https://doi.org/10.1371/journal.pcbi.1007258.g004
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their more wide-spread adoption in operational forecasting systems. At a minimum, they

show that reports of the failure of GFT are not unequivocal and they should not deter use of

Google Trends API in areas other than ILI estimation.

Supporting information

S1 Table. Aggregated absolute error and absolute Proportional Error. Mean (standard devi-

ation, [25th–75th percentile]) for the entire study period, disaggregated by location and sea-

son. US national has ILIp has 11 fewer dates than the regions. Overall and location

aggregations exclude 2012/13 season.

(DOCX)

S2 Table. Aggregated measures including 2012/13 season. Mean (SD) in Squared Error,

Absolute Proportional Error and Absolute Error for all locations. Unlike Table 1 and S1 Table,

this includes 2012/13 season.

(DOCX)

S3 Table. MAPE and MAE in one-week ahead estimates. Change column indicates percent-

age reduction in mean error by regressing GFT on lagged ILIp and lagged GFT. 2012/13 was

excluded while aggregating overall and by region. Paired Wilcoxon signed rank tests for the

hypothesis that errors in GFT (Z) are greater than errors in corrected GFT (Ẑ) were per-

formed; cases where p> .05 are denoted by � and † for MAPE and MAE respectively.

(DOCX)

S4 Table. MAPE and MAE of near-term forecasts. The lower error in each row is under-

scored. An asterisk (�) indicates P > .05 with a paired Wilcoxon signed rank test for MAPE

and † indicates P> .05 for MAE.

(DOCX)

S5 Table. MSE, MAPE and MAE of near-term forecasts generated for ILIp and ILIp+GFT.

The lower error in each row is underlined. Unlike Table 3 and S4 Table, this excludes 2012/13

season. Disaggregation by season is not shown as they are identical to errors reported in

Table 3 and S4 Table.

(DOCX)

S6 Table. MSE of near-term forecasts generated for ILIp and ILIp+uncorrGFT. The last two

columns show mean squared errors with the 2012/13 season excluded from the aggregations.

Due to the large errors in GFT during the 2012/13 season, in aggregations that include forecast

errors from this season all other forecasts are overwhelmed and ILIp models almost always

outperform. With 2012/13 excluded errors between ILIp and ILIp+ uncorrGFT are compara-

ble.

(DOCX)

S1 Fig. Absolute proportional errors from GFT (x-axis) and ILIp during the 2014/15 sea-

son. The green data point shows the error during week of maximum weekly ILIf—the peak

week—and the remaining data points are color coded by their distance from peak week. The

black triangle shows the mean error for the entire season. 2014/15 was the only season for

which GFT estimates were generated with the final version of the GFT model.

(TIF)

S2 Fig. Squared errors of GFT estimates and ILIp. x-axis shows week relative to peak, with

the negative sign indicating weeks preceding peak. The box shows the interquartile range, the
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horizontal line indicates the median.

(TIF)

S3 Fig. MAPE of GFT observed in US states. The top left panel, Overall, shows average errors

across 5 seasons and each of the other panels is limited to one season. The data points are color

coded by population size and ordered by overall error (high to low). The black line shows the

errors from corresponding HHS regions.

(TIF)

S4 Fig. Comparison of estimates and errors at US national during 5 seasons. A) Plot of esti-

mates from ILIf (in black), ILIp (in blue), GFT (in red) and Corrected GFT (in orange). The

vertical line indicates the week of peak ILIf; B) Corresponding errors relative to ILIf as refer-

ence.

(TIF)

S5 Fig. MAPE of near term forecasts for ILIp and ILIp+GFT models. The data points are

color coded by target. Points below the diagonal (broken black line) indicate instances where

forecast quality improved with the use of GFT. Each panel is for one of the locations.

(TIF)

S1 Data. An archive of near-term forecasts and corresponding errors ILIp and ILIp+GFT
models.

(RDATA)
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