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Abstract
Proteomic analysis of urinary extracellular vesicles (EVs) is a powerful approach to 
discover potential bladder cancer (BCa) biomarkers, however urine contains nu-
merous EVs derived from the kidney and normal urothelial epithelium, which can 
obfuscate information related to BCa cell-derived EVs. In this study, we combined 
proteomic analysis of urinary EVs and tissue-exudative EVs (Te-EVs), which were 
isolated from culture medium of freshly resected viable BCa tissues. Urinary EVs 
were isolated from urine samples of 11 individuals (7 BCa patients and 4 healthy 
individuals), and Te-EVs were isolated from 7 BCa tissues. We performed tandem 
mass tag (TMT)-labeling liquid chromatography (LC-MS/MS) analysis for both uri-
nary EVs and Te-EVs and identified 1960 proteins in urinary EVs and 1538 proteins 
in Te-EVs. Most of the proteins identified in Te-EVs were also present in urinary 
EVs (82.4%), with 55 of these proteins showing upregulated levels in the urine of 
BCa patients (fold change > 2.0; P <  .1). Among them, we selected 22 membrane 
proteins as BCa biomarker candidates for validation using selected reaction moni-
toring/multiple reaction monitoring (SRM/MRM) analysis on urine samples from 
70 individuals (40 BCa patients and 30 healthy individuals). Six urinary EV proteins 
(heat-shock protein 90, syndecan-1, myristoylated alanine-rich C-kinase substrate 
(MARCKS), MARCKS-related protein, tight junction protein ZO-2, and complement 
decay-accelerating factor) were quantified using SRM/MRM analysis and validated 
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1  | INTRODUC TION

Bladder cancer (BCa) is one of the most common malignant ep-
ithelial tumors, with an estimated 24  300 new cases and 9500 
deaths in Japan in 2020.1 At initial diagnosis, approximately 30% 
of the cases are diagnosed as muscle-invasive BCa (MIBCa), which 
are clinically aggressive, progress and metastasize rapidly, and are 
usually fatal, therefore screening for early detection of BCa is im-
portant. The remaining 70% cases are diagnosed as non-muscle-
invasive BCa (NMIBCa), which do not typically pose a threat to 
survival, although ~30% to 50% of cases show recurrence, ne-
cessitating lifelong surveillance, which is a burden on patients.2,3 
Cystoscopy remains the gold standard for diagnosing this malig-
nancy, but it is invasive and uncomfortable and has limited ability 
to detect flat lesions, such as carcinoma in situ. Moreover, urine 
cytology exhibits poor sensitivity for detecting low-grade BCa 
and depends on the level of expertise of the pathologist for ac-
curate interpretation.4 To date, urinary protein biomarkers, such 
as NMP22, BTA, and BFP, have been approved for diagnostic pur-
poses by the Japanese Ministry of Health, Labor, and Welfare. 
However, these markers are not widely adopted because of their 
limited sensitivity and/or specificity. Therefore, the development 
of accurate biomarkers for this disease is urgently needed.

EVs are lipid bilayer particles secreted by almost all cells into 
various bodily fluids; they play an important role in intercellular 
communication.5,6 EVs harbor various bioactive molecules, includ-
ing nucleic acids (miRNAs, RNAs, and DNA), proteins, and lipids that 
are characteristic of the host cells.6,7 In particular, EVs derived from 
cancer cells reportedly contain cancer-specific proteins capable of 
promoting tumor progression, survival, invasion, and angiogenesis.8 
The proteins in EVs are encapsulated in membrane vesicles, which 
protect them from proteases and are stable in biological fluids.5,9,10 
Urine is among the most accessible bodily fluids used for clinical di-
agnosis; it is consistently in contact with the bladder epithelial layer 
and can be collected noninvasively, making it an ideal specimen for 
detecting molecules associated with BCa.11-13 Recent developments 
in quantitative proteomic technology have enabled large-scale quan-
titation and validation of biomarker candidates.14,15 Therefore, pro-
teomic analysis of urinary EVs is a powerful approach to discover 
potential BCa biomarkers, with several reports focusing on urinary 
EV proteins.16-19

However, urine contains a large number of EVs from the renal 
epithelium and normal urothelial epithelium, which can obfuscate 
information on cancer-specific EVs, making proteomic analysis of 

urinary EVs cumbersome. To address this, we focused on tissue-
exudative extracellular vesicles (Te-EVs), secreted and isolated 
from freshly resected tissue following a brief incubation in serum-
free medium. In contrast with bodily fluid samples, Te-EVs harbor 
minimal contaminants, such as urine-abundant proteins and whole-
body-derived EVs.20

We performed combined proteomic analysis for urinary EVs and 
Te-EVs to identify potential urinary biomarker candidates for the di-
agnosis of BCa and then verified the candidate proteins.

2  | MATERIAL S AND METHODS

2.1 | Patients and biological sample collection

In the discovery phase for TMT-labeling liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis, voided urine sam-
ples (>50  mL each) were collected from 7 BCa patients (NMIBCa 
[n  =  3], MIBCa [n  =  4]) who were TURBT at Osaka University 
Hospital (Osaka, Japan) and 4 healthy individuals. Healthy individu-
als were defined as those without a current malignant disease and a 
medical history of urinary cancer. All BCa patients were histologi-
cally diagnosed. Collected urine samples were kept at 4°C for up to 
6 h before processing and then centrifuged at 2000 g for 30 min. 
After removing the pellets, the supernatants were stored at −80°C 
until subsequent processing. In addition to the urine samples, BCa 
tissue samples were also obtained following TURBT from the 7 BCa 
patients who provided urine samples.

In the validation phase for selected reaction monitoring/multi-
ple reaction monitoring (SRM/MRM) analysis, urine samples were 
collected from 30 healthy individuals and 40 BCa patients (NMIBCa 
[n = 20], MIBCa [n = 20]) at Osaka University Hospital and Osaka 
General Medical Center, Japan. Approval was obtained from the 
Institutional Review Board before initiating the study, and all pa-
tients provided written informed consent. All investigations were 
performed following relevant guidelines and regulations.

Histological diagnosis was determined based on standard hema-
toxylin and eosin-stained sections by experienced senior patholo-
gists. Patients were staged according to the 7th AJCC TNM staging 
system, and tumors were graded according to the 2016 World Health 
Organization criteria. The urine cytology was also evaluated by spe-
cialists according to our strict institutional criteria, in which negative 
urine cytology is defined to be no more than class III, and positive 
urine cytology is defined to be classes IV and V.

as significantly upregulated in BCa patients (P < .05). In conclusion, the novel strategy 
that combined proteomic analysis of urinary EVs and Te-EVs enabled selective detec-
tion of urinary BCa biomarkers.

K E Y W O R D S

bladder cancer, exosome, extracellular vesicle, proteomics, urinary biomarker
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2.2 | Urinary EV isolation using ultracentrifugation 
on a 30% sucrose/deuterium oxide (D2O) cushion

Ultracentrifugation on a 30% sucrose/D2O cushion was performed 
for urinary EV isolation as previously described.21 Details are pro-
vided in Materials and Methods (Supporting Information). The pro-
cedure for urinary EV isolation is shown in Figure 1A. The protein 
concentration of urinary EVs was measured using a Micro BCA pro-
tein assay kit (Thermo Fisher Scientific).

2.3 | Te-EV isolation

Following excision, BCa tissue samples were immediately immersed 
in 4 mL Dulbecco modified Eagle medium (Wako Pure Chemical Co.) 
without fetal bovine serum and stored at 4°C for 2  h. The tissue-
immersed medium was then centrifuged at 2000 g for 30 min at 4°C, 
and the collected supernatant was centrifuged at 17 000 g for 30 min 

at 4°C to remove cell debris and large EVs. The supernatant was filtered 
through a 0.22-μm filter and transferred to a 5-mL Ultra-Clear Tube 
(Beckman Coulter), followed using ultracentrifugation at 100 000 g for 
90 min at 4°C using an SW 55Ti rotor (ravg = 84.6 mm and adjusted 
k-factor = 139.1; Beckman Coulter). The pellet was then washed with 
PBS and ultracentrifuged at 100 000 g for 90 min at 4°C using an SW 
55Ti rotor (ravg = 84.6 mm and adjusted k-factor = 139.1; Beckman 
Coulter), and the final pellet was resuspended in 100 μL PBS and frozen 
at −80°C. The procedure for Te-EV secretion and isolation is shown 
in Figure 1B. The protein concentration of Te-EVs was also measured 
using a Micro BCA protein assay kit (Thermo Fisher Scientific).

2.4 | Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and western blotting

The identity of EVs was established by the presence of specific sur-
face proteins (CD9 and CD63), and the ability to remove the urinary 

F I G U R E  1   A, Isolation of urinary 
EVs using ultracentrifugation on a 30% 
sucrose/D2O cushion. B, Secretion and 
isolation of Te-EVs. C, Experimental 
design of the discovery and validation 
of bladder cancer biomarkers. D2O, 
deuterium oxide; EVs, extracellular 
vesicles; Te-EVs, tissue-exudative 
extracellular vesicles
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non-EV-associated proteins using ultracentrifugation with a 30% 
sucrose/D2O cushion, evaluated by the absence of THP. Details are 
provided in Materials and Methods (Supporting Information).

2.5 | NanoSight particle-tracking analysis

The size and concentration of the isolated urinary EVs and Te-EVs 
were analyzed using the NTA system (NanoSight). Details are pro-
vided in Materials and Methods (Supporting Information).

2.6 | Transmission electron microscopy

TEM was performed as previously reported.13,22 Details are pro-
vided in Materials and Methods (Supporting Information).

2.7 | Solubilization and digestion of proteins in EVs

EV proteins (20 µg) were solubilized and digested using a PTS pro-
tocol.23 Details are provided in Materials and Methods (Supporting 
Information).

2.8 | TMT-labeling

We used the TMT 10-plex system (Thermo Fisher Scientific) for 
TMT-labeling. Dried peptide samples were resuspended in 10 μL 
100  mmol/L tetraethylammonium bicarbonate buffer and labeled 
with 4 μL 10-plex TMT reagents for 1 h at room temperature. The 
reaction was quenched by adding 0.8 μL 5% hydroxylamine, and la-
beled samples were pooled and subjected to LC-MS/MS analysis.

2.9 | Shotgun proteomics

Digested and TMT-labeled peptides were separated into 7 fractions 
using a C18-SCX StageTip chromatography column according to a 
previously reported method,24,25 and analyzed using a Q-Exactive 
Plus mass spectrometer (Thermo Fisher Scientific) with an UltiMate 
3000 Nano-flow high-performance LC system (Dionex) and an HTC-
PAL autosampler (CTC Analytics). Details are provided in Materials 
and Methods (Supporting Information). The values of each urinary 
EV sample were normalized according to the values of CD9 for de-
viations in EV collection from urine.

2.10 | Selection of biomarker candidate 
proteins and target peptides for SRM/MRM analysis

We used the following criteria to select biomarker candidate proteins: 
(a) highly expressed proteins in urinary EVs from BCa patients (fold 

change > 2.0; P < .1); (b) proteins identified in Te-EVs; and (c) mem-
brane proteins reported in the UniProt Knowledgebase (UniProtKB). 
To verify candidate proteins as BCa biomarkers, we performed SRM/
MRM analysis. Target peptides of biomarker candidate proteins 
were selected according to the following criteria: (a) peptides with 
sequences not shared among multiple genes; (b) peptides that were 
completely cleaved and had no methionine; (c) peptides less than 20 
amino acids in length for higher sensitivities of SRM/MRM analysis. 
Stable isotope-labeled internal standard peptides (SI-peptide) with 
the same sequence as the selected peptide and a C-terminal 15N- 
and 13C-labeled arginine or lysine residue (isotopic purity  >  99%) 
were purchased from JPT Peptide Technologies GmbH.

2.11 | Target proteomics

SRM/MRM analyses were performed as previously described.22,23 
The digested peptides from 20 µg of EV proteins were dissolved in 
a 2% acetonitrile solution containing 0.1% trifluoroacetic acid and 
analyzed using a TSQ-Vantage triple quadrupole mass spectrometer 
(Thermo Fisher Scientific) with a nano-LC interface (AMR Alliance), 
Paradigm MS2 (Michrom BioResources), and an HTC-PAL autosa-
mpler (CTC Analytics). The analytical column was packed with a 
reversed-phase material (ReproSil-Pur C18-AQ; 1.9-μm resin; Dr 
Maisch HPLC GmbH) into a self-pulled needle (100-mm length × 75-
μm i.d.). The mobile phases comprised buffers A (0.1% formic acid 
and 2% acetonitrile) and B (0.1% formic acid and 90% acetonitrile). 
Digested peptides were dissolved in buffer A with the SI-peptide 
internal standard mixture before LC-MS measurements and loaded 
onto a trap column (Acclaim PepMap RSLC Nano-Trap column; 
0.075 × 20 mm; Thermo Fisher Scientific). The nano-LC gradient was 
delivered at 200 nL/min and comprised a linear gradient of buffer B 
developed from 5% to 35% over 75 min. The Instrument parameters 
were set as follows: 0.002 m/z scan width, 0.7 fwhm Q1 resolution, 
2.5 s cycle time, and 1.8 mTorr gas pressure. Transition settings (pairs 
of precursor m/z and product m/z) to monitor a target peptide in 
SRM/MRM analysis were optimized for target peptides by perform-
ing a test run using the SI-peptide mixture, as previously described.26 
The CE for each peptide was obtained using the following equations: 
CE = 0.034 × precursor m/z − 0.848 for double-charged precursor 
ions; and CE  =  0.022  ×  precursor m/z  +  5.953 for triple-charged 
precursor ions. Data acquisition was performed in scheduled SRM 
mode (time window: 10 min). The raw files acquired from SRM/MRM 
analyses were evaluated using Skyline software.27 SRM signal peaks 
corresponding to each target peptide were assigned using compari-
son with an SI-peptide internal standard for each counterpart. The 
quantitative values of the target peptides were obtained as ratios of 
the endogenous target peptides to the isotope-labeled-peptide in-
ternal standard using 1 transition per peptide with the highest signal. 
The obtained quantification values of each urinary EV sample were 
normalized according to the values of CD9 for deviations in EV col-
lection from urine. If a protein had multiple detectable peptides, the 
target sequence with the highest intensity was adopted.
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2.12 | Immunohistochemistry (IHC)

Immunohistochemical staining was performed as previously 
reported.28 Details are provided in Materials and Methods 
(Supporting Information). IHC score was evaluated by the percent-
age of stained tumor cells and staining intensity and was scored 
from 0 to 3+ (0: no staining, 1+: weak, 2+: moderate, 3+: strong). 
The average IHC score of the 3 randomly selected fields (400×) 
was evaluated as the final result. Twenty BCa tissues (NMIBCa 
[n = 10], MIBCa [n = 10]) in the validation cohort of this study were 
stained with anti-HSP90, anti-SDC1, and anti-MARCKS, and the 
IHC score of each protein was compared between NMIBCa and 
MIBCa samples.

2.13 | Survival analysis

We evaluated the association between the expression level of HSP 
90, SDC1, and MARCKS, and overall survival using BCa patients in 
TCGA cohort. Patients were divided into 2 groups (high-expression 
and low-expression groups) according to the expression level of each 
protein, and survival curves were compared.

2.14 | Statistical analysis

Identified EV proteins were analyzed using DAVID tools (https://david.
ncifc​rf.gov/) for GO annotation.29 Statistical analyses were performed 
using JMP Pro software (v.14.0.0; SAS Institute), and visualization 
quantification was performed using GraphPad Prism software (v.7.05; 
GraphPad Software). Patient characteristics were compared using 
Fisher exact test and Mann-Whitney U test. Univariate analysis was 
performed using Welch t test and Mann-Whitney U test. The survival 
rates were determined using the Kaplan-Meier method, and the log-
rank test was used for comparison. Differences were considered sta-
tistically significant at P < .05. The optimal cut-off value for each EV 

protein was determined from the ROC curve using Youden index, and 
the sensitivity and specificity for detecting BCa using each EV protein 
were calculated according to each optical cut-off value.

3  | RESULTS

3.1 | Isolation and characterization of urinary EVs 
and Te-EVs

Figure 1C shows the study design. To explore the urinary EV pro-
teome for detecting BCa biomarkers, we recruited a discovery 
cohort of 11 participants (4 healthy individuals and 7 BCa pa-
tients). Clinical and pathological information of patients is shown 
in Table 1.

The quality of the isolated EVs was evaluated using western 
blot (Figure 2A,B), NTA (Figure 2C), and TEM (Figure 2D). Figure 2A 
shows that urinary THP can be removed using a 30% sucrose/D2O 
cushion. Our results showed that EVs were successfully isolated 
from urine using ultracentrifugation on a 30% sucrose/D2O cush-
ion and from viable BCa tissues by short-term culture, followed by 
ultracentrifugation.

3.2 | TMT-labeling LC-MS/MS analysis of urinary 
EVs and Te-EVs

For BCa biomarker discovery, we performed TMT-labeling LC-MS/
MS analysis of urinary EV and Te-EV samples. We identified 1960 
proteins in urinary EVs and 1538 proteins in Te-EVs. GO analysis 
of cellular components revealed that the identified proteins in both 
urinary EVs and Te-EVs were enriched in the “extracellular exosome” 
term (Figure 3A,B). Additionally, 82.4% (1268/1538) of the proteins 
identified in Te-EVs were also detected in urinary EVs, and 64.7% 
(1268/1960) of those identified in urinary EVs were also detected in 
Te-EVs (Figure 3C).

HC (n = 4) NMIBCa (n = 3) MIBCa (n = 4)

Age (y), median (range) 67.5 (42-79) 75 (67-80) 73 (66-83)

Gender, n (%)

Male 3 (75.0) 2 (66.7) 4 (100)

Female 1 (25.0) 1 (33.3) 0 (0)

Pathological T stage – pTa pT2

Pathological grade, n (%)

Low grade – 2 (66.7) 0 (0)

High grade – 1 (33.3) 4 (100)

Te-EVs – + +

Abbreviations: HC, healthy control; MIBCa, muscle-invasive bladder cancer; NMIBCa, non-muscle-
invasive bladder cancer; Te-EVs, tissue-exudative extracellular vesicles.

TA B L E  1   Clinical and pathological 
information of patients in the discovery 
cohort

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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3.3 | Verification of biomarker candidate proteins 
using SRM/MRM analysis

According to the criteria for biomarker candidate-protein selection, we 
focused on highly expressed proteins in urinary EVs from BCa patients 
(fold change > 2.0; P < .1). Among them, 55 proteins, which were also 
identified in Te-EVs, were selected as candidate biomarker proteins 
(Table S1). Considering the development of EV-based clinical assays in 
the future, we focused on membrane proteins, with 22 of the 55 EV 
proteins identified as membrane proteins according to UniProtKB and 
subsequently selected as candidate biomarker proteins.

We then performed SRM/MRM analysis on the urinary EVs 
isolated from 70 individuals (30 healthy individuals and 40 BCa pa-
tients). Clinical and pathological information of patients is shown 
in Table 2. Target peptides of the 22 biomarker candidate proteins 
were then selected for SRM/MRM analysis, resulting in 21 target 
peptide sequences for 14 of the candidate proteins (Table S2). They 
were quantified in SRM/MRM analysis, and 13 target peptide se-
quences for 8 proteins were quantifiable. SRM/MRM transitions and 
quantified values of 13 peptides are shown in Tables S3 and S4.

SRM/MRM analysis revealed levels of 6 proteins (HSP90, SDC1, 
MARCKS, MARCKS-related protein [MARCKSL], tight junction protein 

F I G U R E  2   Verification of the quality of isolated urinary EVs and Te-EVs. A, Western blot showing levels of EV-specific proteins and THP 
in urinary EVs isolated using ultracentrifugation with or without a 30% sucrose/D2O cushion. B, Western blot showing levels of EV-specific 
proteins in Te-EVs. C, NTA revealing that almost all the extracted particles were <200 nm in size. D, Immunoelectron microscopy of urinary 
EVs and Te-EVs immunolabeled with the anti-CD9 antibody and secondary antibody conjugated to 20 nm of colloidal gold. BCa, bladder 
cancer; D2O, deuterium oxide; EVs, extracellular vesicles; NTA, NanoSight particle-tracking analysis; Te-EVs, tissue-exudative extracellular 
vesicles; THP, Tamm-Horsfall protein
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ZO-2 [TJP2], and complement decay-accelerating factor [CD55]) were 
significantly raised in urinary EVs from BCa patients compared 
with those from healthy individuals (P <  .05; Mann-Whitney U test) 
(Figure 4). ROC curve analysis indicated AUC values of these 6 urinary 

EV proteins for BCa diagnosis ranging from 0.706 to 0.813 (Figure 5). 
Among the 6 proteins, HSP90 had the highest AUC value (0.813, 95% 
confidence interval [CI]: 0.707-0.918), with a sensitivity of 82.5% and 
specificity of 70.0%. The second highest AUC value was for SDC1 
(0.785, 95% CI: 0.678-0.892), with a sensitivity of 82.5% and speci-
ficity of 63.3%, followed by MARCKS (0.772, 95% CI: 0.663-0.881), 
with a sensitivity of 65.0% and specificity of 80.0%. These urinary EV 
proteins showed better AUC values for BCa diagnosis than urine cy-
tology (AUC: 0.744, 95% CI: 0.628-0.859, with a sensitivity of 48.7% 
and specificity of 100%). The AUCs of HSP90, SDC1, and MARCKS 
were better for high-grade BCa diagnosis (n = 28) than for low-grade 
BCa diagnosis (n = 12) in SRM/MRM analysis (Figure S1). In addition, 
the levels of HSP90, SDC1, and MARCKS were significantly higher in 
urinary EVs from MIBCa patients than in those from NMIBCa patients 
(P <  .05; Mann-Whitney U test) (Figure S2). However, there was no 
association between overall survival and the expression levels of these 
proteins in BCa patients from the TCGA cohort (Figure S3).

3.4 | IHC analysis

Examples of strong (+3), moderate (+2), and weak (+1) staining 
for HSP90, SDC1, and MARCKS are shown in Figure  6A. Clinical 
and pathological information of patients is shown in Table S5. We 
evaluated the IHC scores and found no significant difference be-
tween NMIBCa and MIBCa samples in the IHC scores of HSP90, 
SDC1, and MARCKS (P = .222, P = .396, and P = .132, respectively; 

F I G U R E  3   GO annotation (cellular component) of identified proteins using shotgun proteomic analysis in (A) urinary EVs and (B) Te-EVs. 
C, Venn diagram showing the distribution of EV proteins identified using shotgun proteomic analysis. EVs, extracellular vesicles; GO, Gene 
Ontology; Te-EVs, tissue-exudative extracellular vesicles

TA B L E  2   Clinical and pathological information of patients in the 
validation cohort

HC (n = 30)
BCa patients 
(n = 40) P

Age (y), median 
(range)

57 (41-74) 71 (31-87) <.001

Gender, n (%)

Male 17 (56.7) 29 (72.5) .167

Female 13 (43.3) 11 (27.5)

Urine cytology, n (%)

Negative 30 (100) 20 (50.0) <.001

Positive 0 (0) 19 (47.5)

Unknown 1 (2.5)

Pathological T stage n, (%)

pTa – 20 (50.0)

pT2 ≤ – 20 (50.0)

Pathological grade, n (%)

Low grade – 12 (30.0)

High grade – 28 (70.0)

Abbreviations: BCa, bladder cancer; HC, healthy controls.
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F I G U R E  4   Relative quantitation data of identified BCa biomarker proteins in urinary EVs from HCs vs BCa patients using TMT-labeling 
LC-MS/MS and SRM/MRM analyses. FC is defined [median BCa]/[median HC]. BCa, bladder cancer; EVs, extracellular vesicles; FC, fold 
change; HC, healthy control; LC-MS/MS, liquid chromatography-tandem mass spectrometry; SRM/MRM, selected reaction monitoring/
multiple reaction monitoring; Te-EVs, tissue-exudative extracellular vesicles; TMT, tandem mass tag
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Mann-Whitney U test) (Figure 6B). IHC analysis of BCa samples es-
tablished that HSP90, SDC1, and MARCKS were present in BCa tis-
sues regardless of NMIBCa or MIBCa, suggesting that they could be 
the source of these proteins in urinary EVs from BCa patients.

4  | DISCUSSION

The presence of EVs in human urine was first demonstrated in 
2004.30 EVs are not only stable in urine but also harbor a potential 
wealth of diagnostic and prognostic information, therefore urinary 
EVs have recently garnered increased interest as a potential source 
of non-invasive biomarkers for urological malignancies.11,13,24,31

In this study, we performed an MS-based quantitative proteomic 
analysis of both urinary EVs and Te-EVs and identified reliable uri-
nary EV biomarker proteins for BCa detection. To date, several stud-
ies have performed comparative proteomic analysis of urinary EVs 
in search of BCa biomarkers.16,17,19,32 A study identified mucin-1, 
carcinoembryonic antigen, epidermal growth factor receptor kinase 
substrate 8-like protein 2, and moesin as BCa biomarkers according 
to comparative proteomic analysis results of urinary EVs from BCa 
patients and healthy individuals.16 Using the same approach, other 
studies identified potential protein biomarkers, however urinary EVs 

acquired in these reports were isolated using ultracentrifugation 
alone, which tends to co-isolate high levels of non-EV-associated 
proteins, such as THP.33-35 Contaminating proteins can compete 
with EV protein identification by LC-MS/MS analysis, thereby lim-
iting the detection of low-content EV proteins in urine and leading 
to false-negative identification of cancer-specific biomarkers.31,35 
Notably, it was reported that the proteomic profile differed signifi-
cantly between urinary EVs isolated using ultracentrifugation alone 
and urinary EVs isolated using density fractionation in prostate can-
cer patients.35 Therefore, in this study, we introduced an additional 
purification step using a sucrose/D2O cushion to isolate urinary EVs 
with minimal THP and other soluble protein contamination,8,36,37 
thereby increasing the reliability and integrity of the acquired pro-
teomic data for biomarker discovery. We quantified 1960 proteins 
using deep proteomic analysis, representing the largest number of 
EV proteins detected in urine from BCa patients reported to date.

It should be noted that EVs are also secreted by the renal epi-
thelium and normal urothelial epithelium,30,38 and that not all uri-
nary EVs necessarily reflect cancer-specific EVs. We previously 
reported that the number of urinary EVs is strongly associated 
with urinary creatinine levels and that no difference was seen in 
particle counts in urinary EVs between BCa patients and healthy 
individuals.13 These findings indicated that most urinary EVs were 

F I G U R E  5   ROC curves for the 6 urinary EV proteins identified as potential BCa biomarkers according to SRM/MRM analysis. AUC value 
is shown on each graph. AUC, area under the curve; BCa, bladder cancer; EV, extracellular vesicle; ROC, receiver operating characteristic; 
SRM/MRM, selected reaction monitoring/multiple reaction monitoring
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derived from the kidney and normal urothelial epithelium and that 
BCa-derived EVs represented a very small population. Therefore, 
in this study, we performed an MS-based quantitative proteomic 
analysis of both urinary EVs and Te-EVs, finding that the majority 
of proteins identified in Te-EVs was also present in urinary EVs 
(1268/1538; 82.4%), indicating urine as a suitable biofluid for de-
tecting BCa-specific EV proteins. In contrast, of the 1960 proteins 
identified in urinary EVs, only 1268 (64.7%) proteins were also 
present in Te-EVs, suggesting that urinary EVs contain proteins 

unrelated to cancer. Therefore, exploring cancer-specific EV pro-
teins from multiple sources appeared to be an excellent strategy 
for identifying reliable biomarkers. To date, several studies have 
reported the results of proteomic analysis of EVs derived from 
BCa cell lines for the detection of cancer-specific EVs, as well as 
their validation in urine samples.39-41 However, the biosynthesis 
of cancer-specific EVs is perhaps strongly influenced by the com-
plex interactions between cancer cells and their surroundings, 
suggesting that Te-EVs more accurately reflect the physiological 

F I G U R E  6   Immunohistochemical analysis of BCa. A, Typical patterns of strong (+3), moderate (+2), and weak (+1) staining of HSP90, 
SDC1, and MARCKS (scale bars, 100 μm). B, Comparison of IHC scores of HSP90, SDC1, and MARCKS between NMIBCa and MIBCa tissues. 
Data are presented as mean with SD. BCa, bladder cancer; HSP90, heat-shock protein 90; MIBCa, muscle-invasive bladder cancer; MARCKS, 
myristoylated alanine-rich C-kinase substrate; NMIBCa, non-muscle-invasive bladder cancer; SDC1, syndecan-1
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characteristics and behavior of EVs in the human body compared 
with EVs derived from cultured cancer cells.18 Therefore, the anal-
ysis of Te-EVs might be more advantageous for discovering EV 
biomarkers. Presumably, this is the first comprehensive proteomic 
analysis of both urinary EVs and Te-EVs for the discovery of BCa 
biomarkers.

During the verification phase, it is difficult to verify multiple 
biomarkers using antibody-based immunoassays (eg, western blot 
or ELISA) as a result of the limited amount of extractable EV pro-
teins from clinical urine samples. Recently, SRM/MRM analysis 
emerged as a powerful method for targeted protein quantification, 
enabling measurement of multiple proteins with high sensitivity 
and throughput without antibodies. Here, we identified the 6 uri-
nary EV proteins as significantly upregulated in BCa patients and 
further evaluated the 3 most upregulated proteins (HSP90, SDC1, 
and MARCKS).

HSP90 is among the most abundantly expressed proteins in 
almost all nucleated cells and historically characterized as a cyto-
plasmic chaperone protein.42,43 Intracellular HSP90 assists in the 
conformational activation of >200 client proteins under physiolog-
ical and stress conditions.44,45 Additionally, cancer cells use HSP90 
to protect an array of mutated and overexpressed oncoproteins 
from misfolding and degradation, thereby characterizing HSP90 as 
a crucial facilitator of oncogene addiction and cancer cell survival.43 
Recent studies indicated that HSP90 is not confined to the intra-
cellular environment but expressed on the surface of cancer cells46 
and secreted into the extracellular space as extracellular HSP90 
(eHSP90), which acts differently from its intracellular counterpart.47 
Recently, it has been shown that the majority of eHSP90 protein is 
associated with tumor-cell-secreted EVs.48 Moreover, highly meta-
static oral-cancer-derived EVs are enriched with HSP90 compared 
with those from low metastatic oral cancers,49 and they play an es-
sential role in cancer-malignancy properties, such as tumor invasion 
and metastasis.50 HSP90 in EVs derived from BCa cells can show 
cancer-promoting functions, thereby making it a potential therapeu-
tic target.

SDC1 (CD138) is a cell-surface proteoglycan expressed on var-
ious epithelial and vascular endothelial cells and involved in cell 
proliferation, adhesion, migration, epithelial morphogenesis, and 
angiogenesis.51,52 SDC1 reportedly plays a key role in survival and 
progression of urothelial carcinoma cells.53 Additionally, SDC1 is 
shed in a soluble form from cell surfaces through degradation of its 
extracellular domain by heparanases54 and is a marker of systemic 
inflammation.55 Moreover, soluble SDC1 reportedly exhibits tumor-
growth-promoting effects and correlates with poor prognosis in lung 
cancer.56 Because SDC1 was previously identified using proteomic 
analysis of EVs purified from cultured BCa cells,57 it is reliable to 
assume that SDC1 is an EV protein derived from BCa cells.

MARCKS, a major substrate of protein kinase C, is a ubiquitously 
expressed protein that plays a critical role in cancer development 
and progression.58 MARCKS shuttles between the membrane and 
the cytoplasm according to its phosphorylation status and affects 
the dynamics of membrane-actin interactions.59,60 Increases in 

MARCKS phosphorylation reportedly contribute to tumor-cell sur-
vival,58 with MARCKS identified as essential for tumor-cell survival 
and differentially expressed between healthy and tumor tissues. 
These findings suggest that MARCKS is a potential target for cancer 
therapy. Furthermore, MARCKS was previously identified in EVs pu-
rified from cultured BCa cells,56 supporting that MARCKS is a BCa-
specific EV protein.

This study has several limitations. First, ultracentrifugation 
is time consuming and SRM/MRM analysis requires expensive 
equipment, limiting its use beyond a scientific research setting. 
Therefore, it is necessary to develop a simple assay system with 
clinical value, such as ELISA or microfluidic chips capable of measur-
ing potential EV protein biomarkers in a high-throughput manner. 
Second, our cohort of non-BCa patients did not include hematuria 
and cystitis patients. It is necessary to validate the biomarkers in 
these patients, as they are expected in clinical practice. Third, BCa 
is a heterogeneous disease, and selection bias could exist in the 
discovery phase. Patients with large tumor volume were selected 
for the discovery cohort, and patients with low-grade BCa were 
not included, which might have excluded candidate biomarkers that 
were raised in low-grade tumors. Fourth, the biological significance 
of high amounts of EV proteins as BCa biomarkers in urine was not 
investigated.

In conclusion, proteomic analysis of urinary EVs and Te-EVs re-
vealed that most of the proteins identified in Te-EVs also present in 
urinary EVs. The novel strategy that combined proteomic analysis 
of urinary EVs and Te-EVs enabled the identification of reliable uri-
nary EV biomarker proteins (HSP90, SDC1, and MARCKS) for BCa 
detection. These BCa-specific EV proteins represent both potential 
biomarkers and therapeutic targets. Our future work will focus on 
the development of a high-throughput detection system of BCa bio-
marker EV proteins for clinical applications and the analysis of the 
function of these EV proteins.
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