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ABSTRACT UniFrac is an important tool in microbiome research that is used for phy-
logenetically comparing microbiome profiles to one another (beta diversity). Striped
UniFrac recently added the ability to split the problem into many independent subpro-
blems, exhibiting nearly linear scaling but suffering from memory contention. Here, we
adapt UniFrac to graphics processing units using OpenACC, enabling greater than
1,000� computational improvement, and apply it to 307,237 samples, the largest 16S
rRNA V4 uniformly preprocessed microbiome data set analyzed to date.

IMPORTANCE UniFrac is an important tool in microbiome research that is used for phy-
logenetically comparing microbiome profiles to one another. Here, we adapt UniFrac to
operate on graphics processing units, enabling a 1,000� computational improvement.
To highlight this advance, we perform what may be the largest microbiome analysis to
date, applying UniFrac to 307,237 16S rRNA V4 microbiome samples preprocessed with
Deblur. These scaling improvements turn UniFrac into a real-time tool for common
data sets and unlock new research questions as more microbiome data are collected.
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The study of microbiomes has rapidly expanded over the past decade. One commonly
used method in microbiome analyses is UniFrac (1), a phylogenetic measure of beta-

diversity, which allows researchers to assess differences between pairs of microbiome
profiles. UniFrac is particularly useful for microbial community analysis, because the dis-
tance computed accounts for the evolutionary relationships between microbes present
within a sample. Other distance metrics, such as Euclidean distance, Bray-Curtis, and
Jaccard, make the unrealistic implicit assumption that all organisms are equally related,
which can lead to statistical artifacts (2, 3). These artifacts are worsened with sparse data
matrices (4, 5), typical of real-world microbiome data sets, because most kinds of
microbes are not found in most samples. UniFrac, being able to exploit phylogenetic rela-
tionships among features (e.g., 16S rRNA sequences, although it can be used on any data
yielding a tree), can produce meaningful comparisons between samples even if they lack
exact features in common (1).

In recent years, microbiome studies have transitioned from experimental designs
with a few hundred samples to designs with tens of thousands of samples. The sparsity
of microbiome data tends to increase as a function of the number of samples under
investigation, even within a single environment where the sparsity can be in excess of
99.8% (Fig. 1A). The use of larger sample size is important because, similar to human
genomic studies, the amount of variation that exists within each environment type (6)
can be high. By increasing sample size, researchers can detect subtle associations with
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the microbiome (7). Efforts under way right now, such as the Earth Microbiome Project
(8) (EMP) and the American Gut/Microsetta Initiative (9), in part aim to provide large
sample sizes crucial for untangling the many factors that influence microbial commu-
nity composition, pushing the limits of existing tools as they operate on data sets
beyond their original design considerations.

Having an efficient and scalable implementation for computing UniFrac thus is cru-
cial for scaling individual microbiome studies and for large meta-analyses. Striped
UniFrac was recently proposed and implemented, and it exhibits almost linear scaling

FIG 1 Optimized UniFrac. (A) Sparsity of microbiome data as a function of the number of samples stratified by environments with at least 1,000 samples
(307k sample set), representing 92.37% of the total number of samples. (B) Runtime of optimized UniFrac using the 307k sample set. Black bars represent
CPUs, and white bars show GPUs. (C) The proportion of the total convex hull volume from computed over principal coordinates for environments with at
least 1,000 samples (307k sample set; volumes obtained by randomly selecting 1,000 samples from each environment 10 times and computing the convex
hull volume over the first three principal coordinates for those samples, normalized to the total convex hull volume of all 307k samples). (D) A principal
coordinates plot of the first two axes from 307k public and anonymized private 16S rRNA V4 samples from Qiita, colored by the Earth Microbiome Project
Ontology level 3. An interactive version of the plot can be accessed at https://bit.ly/unifrac-pcoa-307k.
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with respect to the number of compute nodes used (10). However, the existing imple-
mentation does not scale linearly with the number of central processing unit (CPU)
cores on a single node due to its memory-heavy nature. Massively parallel algorithms,
especially memory-heavy ones, are natural candidates for computation on graphics
processing unit (GPU) architectures. A key design factor was avoiding the generation
of CPU-only and GPU-only code paths to reduce barriers for use. These constraints led
to using OpenACC (11), which allows coexistence of CPU and GPU compute and condi-
tional creation of GPU offload sections. OpenACC is supported by GCC and the NVIDIA
HPC Toolkit (12), and it operates as a series of pragma directives to a compiler. The
methodology used by OpenACC is similar to that of OpenMP (13) and spares the devel-
oper the manual device management typical in low-level frameworks like OpenCL
while also avoiding the device-specific constraints of CUDA.

Porting to GPUs (14) and subsequent optimization (15) of the implementation
underwent multiple phases. Expanded detail on each of these changes can be found
in online methods and Fig. S1 and S2 in the supplemental material. The following
steps were used. (i) Implementing a temporary unified memory buffer to support
the memory access patterns of OpenACC. This fused inner loops and increased the
available parallelism. (ii) Batching data to reduce the total number of GPU kernel
invocations. (iii) Reorganizing loops and memory alignment to improve cache local-
ity. (iv) Assessing floating point precision requirements and the support of 32-bit
(single precision) floats. (v) Leveraging the sparse nature of the inputs within the
UniFrac inner loops.

Benchmarking of UniFrac was performed on three 16S rRNA V4 data sets: the previ-
ously described 27,751-sample set (EMP) from the Earth Microbiome Project (8), the
previously described 113,721-public-sample set (113k) from Qiita (16) used in Striped
UniFrac (10), and a 307,237-sample set (307k) composed of public and anonymized pri-
vate samples from Qiita. The EMP and 113k sets were evaluated on multiple hardware
targets, including consumer- and server-oriented products (Tables 1 and 2). Evaluation
of the 307k sample set was limited to high-performance hardware, as the memory
required is not typically found on consumer-grade products (Fig. 1B). All evaluations
were performed on job-exclusive systems. Numerous hardware combinations yielded
performance gains in excess of 1,000� relative to the original Striped UniFrac on the
same hardware. Notably, the use of an NVIDIA RTX3090 in an Intel Xeon Gold 6140
host system resulted in a 4,200� reduction in walltime for unweighted UniFrac on the
307k set (Table 3), requiring just under 2 h of walltime.

To reduce serialization and deserialization expense when interacting with these dis-
tance matrices, we implemented an HDF5-based (17) binary distance matrix type for
memory-mapped random access to sample distances. We additionally implemented a

TABLE 1 Speedups on the EMP data set relative to a few different architectures for
unweighted UniFraca

Platform
RAM
(GB)

Runtime
(min) Speedup

GPU
speedup

Mobile
speedup

Original CPU Xeon Gold 6242 5.6 504 1�
CPU Mobile i7-8565U 8.1 28.2 18� 1�
CPU Mobile i7-8850H 8.1 18.7 27� 1.5�
CPU Xeon Gold 6242 8.1 4.8 105� 1�
GPU Mobile GTX 1050 Max-Q 6.6 3.8 170� 1.3� 7.4�
GPU T4 7.8 1.5 340� 3.2�
GPU RTX2080TI 8.4 0.73 690� 6.6�
GPU V100 PCIE 32GB 8.2 0.75 670� 6.4�
GPU A100 PCIE 40GB 7.8 0.62 810� 7.7�
GPU RTX3090 8.4 0.53 950� 9.0�
GPU RTX8000 7.8 0.48 1,050� 10.0�
aSpeedup is relative to performance on the same data using Striped UniFrac from McDonald et al. (10). In all
cases, all available compute resources for an architecture were utilized. Peak resident memory for the runs is
provided.
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CPU-based principal coordinate analysis directly into the UniFrac codebase such that
these coordinates are automatically computed at runtime (adds 4 min to runtime on
the 307k sample set), storing the coordinate details in the same HDF5 container. A
Python API wraps the optimized code using Cython (18) and provides programmatic
interaction with these types, including easily representing the coordinates in the scikit-
bio (19) OrdinationResults object, which is compatible with QIIME 2 (20). Convex hull
volumes computed over the first three principal coordinates of the 307k sample set
reveal that animal-associated environments tend to occupy a larger portion of the
space (Fig. 1C). The first two coordinates visualized relative to the Earth Microbiome
Project Ontology level 3 emphasize the dramatic difference in host-associated versus
environmental microbiome samples (Fig. 1D; an interactive version of the plot can be
found at https://bit.ly/unifrac-pcoa-307k).

Having access to effective but also fast computational methods for microbiome
analysis is essential. UniFrac has long been an important tool in microbiome research,
and our work now allows many analyses that were previously relegated to large compute
clusters to be performed with much lower resource requirements. Even the largest data
sets currently envisaged could be processed in reasonable time with a server-class GPU
or cloud-based GPUs, while smaller but still massive data sets like the EMP now can be
processed on laptops.

In addition to the substantial reductions in runtime for UniFrac, we also show why
OpenACC should be considered for other performance-critical C/C11 code within and
beyond the microbiome field. It allows for a single codebase for both CPU and GPU code,
an important consideration for reducing long-term support burden, and is similar in many
respects to the popular OpenMP framework. However, the experience emphasizes the im-
portance of budgeting for software developers and specialists. Many codebases that sup-
port the microbiome field are written in R or Python due to their accessibility, which tend

TABLE 2 Speedups on the 113k data set relative to a few different architectures for
unweighted UniFraca

Platform RAM (GB)
Runtime
(h) Speedup

GPU
speedup

No. of
chunks

Original CPU Xeon Gold 6242 5.5 498 1� 36
CPU Mobile i7-8850H Not collected 10 50� 12
CPU Xeon Gold 6242 148 3 166� 1� 1
GPU Mobile GTX 1050 Max-Q 3.6 3 166� 1� 36
GPU T4 38 0.68 730� 4.4� 4
GPU RTX2080TI 27 0.32 1,560� 9.4� 6
GPU V100 PCIE 32GB 75 0.22 2,260� 13.6� 2
GPU RTX3090 51 0.19 2,600� 15.8� 3
aSpeedup is relative to performance on the same data using Striped UniFrac from McDonald et al. (10). In all
cases, all available compute resources for an architecture were utilized. Peak resident memory for the runs is
provided; however, the amount of maximummemory used for processing is a function of how many chunks are
processed at one time. The largest memory use comes from creating the distance matrix that is N2 to the
number of samples (not shown) and is effectively invariant to the architecture.

TABLE 3 Speedups on the 307k data set relative to a few different architectures for
unweighted UniFraca

Platform RAM (GB) Runtime (h) Speedup GPU speedup No. of chunks
Original CPU Xeon Gold 6242 7 8,326 1� 482
CPU Xeon Gold 6242 184 33.1 252� 1x 6
GPU T4 38 6.9 1,200� 4.8� 30
GPU RTX2080TI 33 3.3 2,530� 10x 36
GPU V100 PCIE 32GB 85 1.93 4,300� 17.2� 13
GPU RTX3090 47 1.97 4,200� 16.8� 24
aSpeedup is relative to performance on the same data using Striped UniFrac from McDonald et al. (10). In all
cases, all available compute resources for an architecture were utilized. Peak resident memory for the runs is
provided; however, the amount of maximummemory used for processing is a function of how many chunks are
processed at one time. The largest memory use comes from creating the distance matrix that is N2 to the
number of samples (not shown) and is effectively invariant to the architecture.
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to obscure low-level aspects of the hardware necessary for fine-tuned optimization.
Rewriting complex algorithms in low-level C/C11 creates opportunities to maximize
hardware performance but incurs a challenging engineering effort. Relatively few code
changes to the C/C11 code were necessary to obtain large performance gains, suggest-
ing further exploration of OpenACC should be considered for memory-intensive C/C11

code in the microbiome space. We hope the work here is viewed as an example of the
dramatic gains available to bioinformatic researchers with the adoption of high-perform-
ance frameworks such as OpenACC and that UniFrac acts as an exemplar for the gains
possible. We encourage researchers in the bioinformatic community to examine
OpenACC for use in their tools to accommodate the incredible scaling challenges faced
by the field with the ever-increasing volumes of data being generated.

Porting and optimizing UniFrac. The original Striped UniFrac implementation is
composed of a set of tight loops that operate on adjacent, independent memory cells
and a set of memory buffers. We set out to adapt the implementation to use GPUs
with OpenACC, as it simplifies device and memory management and the utilization of
heterogeneous computational targets. OpenACC does not allow for passing an array of
pointers into OpenACC sections. To minimize the refactoring complexity, we first cre-
ated a unified temporary buffer where time-consuming code could operate and that
holds a final copy at the end of the computation. With a unified memory buffer in
place, we then switched the code to use pointer manipulation to access the necessary
memory cells. This change fused loops, increasing the available parallelism. A compari-
son of a subset of the code before and after is provided in Fig. S1a. This relatively light
change was all that was needed to compile a working version of UniFrac that could
run on a GPU with appreciable performance gains: the EMP could be computed in 92
min on an NVIDIA Tesla V100 GPU, representing over 5� gain over the original imple-
mentation using a 16-core Intel Xeon Gold 6242 CPU.

A GPU port typically requires further optimization to saturate the available compu-
tational resources. Code profiling was performed, leading to the identification of hot
spots within the inner loops that perform the UniFrac calculations among the different
UniFrac variants. A major bottleneck was observed related to repeated writes to the
main memory buffer residing with the CPU, such that each GPU kernel invocation
would access the CPU buffer, transform the information, and write back to the updated
CPU buffer sequentially. Writing to memory takes substantially more time than reading
from it, and each input/output operation against main memory from a GPU kernel car-
ries overhead. This observation suggested a batching strategy where many input buf-
fers were provided to a single kernel invocation, allowing the UniFrac inner loops to
process data from many input buffers at once before writing to the CPU memory
buffer. This buffering increased the memory footprint of the application by 1% but
resulted in a further reduction in runtime on the EMP data set to 33 min on an NVIDIA
Tesla V100 GPU. The updated code snippet is available in Fig. S1b. By grouping the
input buffers, it became obvious that these buffers were being accessed multiple times
within a single GPU kernel; the access pattern was such that data reuse was deferred,
resulting in poor cache utilization. A small reorganization of the main loop, and mem-
ory alignment, allowed for maximizing cache locality (Fig. S1c) and further reducing
EMP compute time to 12 min, representing a roughly 40� improvement over the origi-
nal implementation. Excitingly, with OpenACC disabled, we observed a 4� reduction
in runtime with the EMP on CPUs, indicating the implementation optimization was
generally beneficial.

We next explored whether the use of single (fp32) versus double (fp64) precision
floating point values had a difference in results. Consumer-grade GPUs, such as those
found in laptops, are not optimized for fp64 operations. This is largely due to there
being negligible benefit for graphics and physics models in the popular video games
that drive the market. UniFrac was originally implemented using fp64, but it was not
obvious whether the increased precision yielded different results. To test this, we com-
piled UniFrac using fp32 and observed a nearly identical result with the EMP-to-fp64
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distances (Mantel R2, 0.99999; P, 0.001), with a further 2� to 6� reduction in runtime.
As such, we recommend the fp32-enabled code for most microbiome discovery work,
particularly if on consumer equipment, and that users should rely on the fp64 variant
only in the unusual situation where the relative abundances of the input data or the
tree branch lengths exhibit a very high dynamic range in elements of the distance ma-
trix that contribute substantially to downstream results, e.g., after dimensionality
reduction.

As a further step, we considered the sparsity of the inputs to UniFrac. In previous
algorithms of UniFrac, including Striped UniFrac and Fast UniFrac, the data at the point
of UniFrac calculation are expressed as dense vectors. This is true even if the input
data are a sparse matrix. For Striped UniFrac, the use of dense vectors did not require
substantial memory, as the dense vector representations were only used on an as-
needed basis. However, this resulted in a large amount of compute within the UniFrac
kernels being expended on zeros. By retaining proportions as sparse vectors and rede-
signing the inner loops to be “sparse-aware” (Fig. S2A and B), the total compute per
tree vertex was reduced by an average of 90%, resulting in drastic speedup of the GPU
code. A single CPU thread now was not enough to feed the data fast enough to the
GPU, so the dense vector generation code was made multithreaded through the use of
OpenMP. The EMP compute time using fp32 math thus was reduced to 2.4 min on an
NVIDIA V100 GPU, roughly a 200� improvement over the original implementation. As
expected, with OpenACC disabled, we observed a significant speedup on CPUs too,
resulting in an EMP compute of less than 14 min on the Intel Xeon Gold 6242 CPU.
UniFrac compute on larger samples resulted in even more significant time reductions
on the NVIDIA V100 GPU, namely, 750� for the 113k data set and 1,500� for the 307k
data set.

For unweighted UniFrac, which is qualitative, meaning the metric operates on pres-
ence/absence data, we were further able to reduce the overhead by utilizing bit vec-
tors and bitwise operations. Furthermore, a lookup table has been introduced as a
memory/compute trade-off, further reducing the runtime (Fig. S2C and D). Together
with sparsity considerations, the EMP compute time was reduced to a mere 44 s on an
NVIDIA V100 GPU for an approximately 650� speedup. With OpenACC disabled, the
speedup on CPUs is approximately 100�. As before, the unweighted UniFrac speedup
increases with sample size; using an NVIDIA V100 PCIE 32GB GPU with a Xeon Silver
4110, we measure a 2,200� speedup for the 113k data set and a 4,300� speedup for
the 307k data set.

Benchmark data sets. Benchmarking surrounded three data sets. The first was the
published Earth Microbiome Project (8) (EMP), representing 27,751 samples. The sec-
ond data set, here referred to as 113k, corresponds to the public portion of Qiita (16)
as of February 2017. Details of data set construction and treatment for the EMP and
113k set are described in Striped UniFrac documentation (10). The third data set corre-
sponds to the entirety of the public and anonymized private portions of Qiita from the
90-nucleotide Deblur 16S rRNA V4 context, obtained from redbiom (21) in July 2020.
Briefly, 326,926 samples were obtained from Qiita, and features were inserted into
Greengenes 13_8 99% (22) using SEPP (23). Features that failed insertion were
removed from the samples, followed by rarefying the samples to 500 sequences per
sample. We opted for a rarefaction level of 500 sequences per sample to ensure a com-
putationally difficult problem was presented, as the number of samples is the domi-
nant scaling factor for UniFrac (see the supplemental material of reference 10 for
detailed discussion on scaling). Following rarefaction, the final feature table contained
307,237 samples and 1,264,796 features with a sparsity of 99.994%.

Benchmarking detail. All benchmarking was performed on job-exclusive systems,
including systems hosted by the Pacific Research Platform (24). Timings were obtained
using GNU Time.

Sparsity calculation. Sets of samples, per EMPO type, were randomly pulled from
the 307k table at increasing powers of 2, in steps from 64 to 8,192, with 10 iterations at
each step, followed by computing the number of zero elements relative to the total
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number of elements a dense representation of the feature table would contain. Only
those environments with at least 1,000 samples were plotted.

Convex hull calculation. Convex hull volumes were computed from the first three
principal coordinates using SciPy v1.5.2 (25). Specifically, the total volume was computed
for all samples. Next, for each environment with at least 1,000 samples, a random subset
of 1,000 samples was pulled 10 times (with replacement). The volume of the sample sub-
set was computed and normalized with respect to the total volume for all samples.

Code availability. An implementation of UniFrac is available on GitHub (https://
github.com/biocore/unifrac-binaries) with a Python wrapper (https://github.com/biocore/
unifrac); both repositories use a BSD-3 license. The specific version of the source code
used here is available from Zenodo under no. 10.5281/zenodo.6127564. A CPU- and
GPU-optimized build can be installed using conda from Bioconda channel (26) and is
part of QIIME 2’s q2-diversity plugin. All builds provide a command-line interface, a C
shared library, and a Python application program interface. Most variants of UniFrac
are implemented, including unweighted, weighted, generalized, and variance-
adjusted UniFrac (1, 27–29). An accessioned tutorial companion showing how to
download the data used here, install UniFrac, operate it in GPU or CPU mode,
and generate figures, all from Google Colabs, is available from Zenodo under no.
10.5281/zenodo.6127558. The benchmarking scripts and specifics are available from
Zenodo under no. 10.5281/zenodo.6127654.

Data availability. The data sets analyzed within the current study are part of the
Qiita repository and were extracted from an internal redbiom cache that indexes public
and private study data. A BIOM table, unweighted UniFrac distance matrix, principal
coordinates, and limited sample metadata representing the 307k data set is available
from Zenodo under no. 10.5281/zenodo.6127601. Studies noted as private by study
owners were included; however, the corresponding study and sample identifiers have
been anonymized.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.4 MB.
FIG S2, TIF file, 1.3 MB.
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