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Abstract
ALS etiology and prognostic factors are mostly unknown. Metabolic diseases and especially diabetes mellitus (DM) have been
variously related to ALS. However, pieces of evidence have been variegated and often conflicting so far. This review aims to give
an overview of recent contributions focusing on the relationship between DM and ALS. DM seems to reduce the risk of
developing ALS if diagnosed at a younger age; conversely, when diagnosed at an older age, DM seems protective against
ALS. Such a relationship was not confirmed in Asian countries where DM increases the risk of ALS independently of the age of
onset. Interestingly, DM does not affect ALS prognosis, possibly weakening the potential causal relationship between the two
diseases. However, since most studies are observational, it is difficult to state the exact nature of such a relationship and several
hypotheses have been made. A recent study usingMendelian randomization suggested that DM is indeed protective against ALS
in the European population. However, these analyses are not without limits and further evidence is needed. DM is usually the core
of a larger metabolic syndrome. Thus, other metabolic changes such as dyslipidemia, body mass index, and cardiovascular
diseases should be collectively considered. Finally, hypermetabolism usually found in ALS patients should be considered too
since all these metabolic changes could be compensation (or the cause) of the higher energy expenditure.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease affecting motor neurons. It causes the paralysis of
voluntary muscles, leading to death, usually for respiratory
failure, in 2 to 4 years from symptoms onset [1]. In most cases,
the etiology of ALS is unknown but it is thought to involve
both genetic and environmental factors [1]. The difficulty in
identifying risk factors for ALS reflects the complexity of the

disease, and a more systemic approach may be needed to
unravel significant associations with genetic and environmen-
tal factors [2].

Diabetes mellitus (DM) is a chronic disease caused by dys-
functional use, or the lack, of insulin and resulting in impaired
blood glucose regulation. DM can be classified as type 1
(T1DM) and type 2 (T2DM) depending on the deficient insu-
lin production or on the body’s ineffective use of insulin,
respectively [3]. DM has an 8.5% prevalence among the adult
population; in 2014, 422 million people worldwide were af-
fected by DM [4].

Given the hypermetabolism that accompanies ALS [5], the
association with concomitant metabolic diseases such as DM,
hypertension, dyslipidemia, and obesity has been diffusely
studied [6]. In this review, we aimed to examine all contribu-
tions focused on the association between DM and ALS.

Methods

We performed a review of peer-reviewed articles in full and
only in English. The searching process was performed in
PubMed MEDLINE, using the following search formula:
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(“ALS”OR “Amyotrophic Lateral Sclerosis”OR “motor neu-
ron disease” OR “Lou Gehrig disease”) AND (“diabetes” OR
“Diabetes mellitus” OR “Glucose intolerance” OR “insuline”
OR “hyperglycemia”). The review design was not restricted
by study design. The eligible criteria were firstly evaluated by
abstract readings and subsequently by reading the remaining
articles. References of the collected published studies were
also considered. Because of the high number of articles re-
trieved, searching was restricted to a 7-year period, starting
from January 1, 2013, and updated to December 31, 2019.
Given the diversity of study designs and measures of associ-
ations, a narrative review was performed.

Results

A total of 230 articles were identified. Of these, 35 articles
were considered pertinent for the narrative analysis.

The more frequent article types were cohort studies (n =
10) followed by case-control studies (n = 7), reviews (n = 5),
and letters (n = 4). Editorials (n = 3), cellular (n = 2), and
animal studies (n = 2) were also retrieved, together with 1
observational cohort study protocol and 1 randomized clinical
trial (Table 1).

Studies not reporting an explicit link betweenDM andALS
were not included in this count.

However, other contributes were also examined in order to
better understand the mechanisms behind the association be-
tween DM and ALS.

Because of the high diversity of these results, the review
was structured into thematic sections.

Diabetes mellitus as a risk factor for ALS

In the USA, a case-control study enrolling 1288 cases and
7561 controls reported a protective role of DM as antecedent
condition of ALS (odds ratio (OR) 0.47; 95% confidence in-
tervals (CI) 0.38–0.58) [7].

In a Swedish nested case-control study which enrolled 224
ALS cases and 1437 controls individually matched for age,
sex, and area of residence, DM was found to be protective
against ALS but only among subjects above 70 years (OR
0.71, 95% CI 0.57–0.89 in the 70–79 age class and OR
0.56, 95% CI 0.40–0.78 in the > 80 age class), whereas below
50 years DM was associated with an increased ALS risk (OR
3.15, 95% CI 1.40–7.08) [8]. However, two editors’ letters
pointed out the lack of adjustment of body mass index
(BMI) in the analyses, the exclusion of patients with T1DM,
and the role of drug medication on the association between
T2DM and ALS [9, 10].

Similar results were obtained by a Danish nested case-
control study, which enrolled 3650 ALS patients and
365,000 controls extracted from the Danish National

Register system, matched for sex and age [11]. The study
reported an overall inverse association between DM and
ALS (OR 0.61, 95% CI 0.46–0.80), with a protective effect
of DM above 61 years (at 65 years old OR 0.65, 95%CI 0.50–
0.85) and a non-significant increased risk below 51 years (at
35 years old OR 1.68, 95% CI 0.75–3.75). Another cohort
study was conducted in Asia, enrolling 615,492 diabetic sub-
jects and 614,835 subjects as comparison cohort matched for
age and sex followed up from 2000 to 2008 [12]. Authors
found an overall significant hazard ratio (HR) of 1.35 (95%
CI 1.10–1.67), with sex and age as modifiers of the associa-
tion: DM was significantly and positively associated with
ALS only for men younger than 65 years old (HR 1.67;
95% CI 1.18–2.36).

Finally, a recent retrospective cohort study was conducted
in Taiwan using administrative data and considering patients
who had a T2DM diagnosis during the 2000–2013 period (n =
2,135,427) compared to a matched sample from the unex-
posed population. The risk of developing ALS did not differ
in patients with prior T2DM (HR 0.87, 95% CI 0.70–1.07, p =
0.190). However, when considering the age at T2DM diagno-
sis, DM resulted negatively associated with ALS in patients
whose age was ≥ 55 years (HR 0.72, 95% CI 0.55–0.95, p =
0.019) [13].

In a large Dutch case-control study, DM inverse relation-
ship with ALS resulted slightly not significant (OR 0.72, 95%
CI 0.51–1.01) [14].

Such opposite risk based on age at T2DM diagnosis was
not confirmed by a recent Italian cohort study, which followed
727,977 residents in Turin from 1996 to 2014 and included a
time-dependent analysis. DM resulted to be significantly as-
sociated with a decreased risk of ALS (HR 0.30, 95% CI
0.19–0.45), without significant differences in risk by sex,
age, and ALS phenotype [15].

The inverse relationship between DM and ALS depending
on age at DM diagnosis was underlined in a recent editorial
[16]. The author also argued that mixed ethnic groups showed
a lower ALS risk than people of African or European ancestry
even when they live within the same geographic area, thus
suggesting a possible role of genetics in such differences [16].

All these studies focused on T2DM. A British study
assessing the risk of ALS for people affected by each of a
range of autoimmune diseases showed that T1DM did not
confer an increased risk of developing ALS. However, ALS
risk resulted significantly increased for people aged less than
30 years at first diagnosis of T1DM (relative risk (RR) 3.94;
95% CI 1.84–7.50) [17]. A previous study distinguished
T1DM and T2DM only based on the age at diagnosis, respec-
tively under and above 30 years age [8]. Both types resulted to
be inversely associated with ALS, but only T2DM was sig-
nificantly associated (OR 0.65, 95% CI 0.52–0.79).

An editorial based on this study highlighted the opposite
effect of T1DM and T2DM in the developing ALS, and the
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Table 1 Articles included in the review

Reference First author, year Type of study Nation Diabetes as risk/
prognostic factor

Effect size

[6] Brito, 2019 Review - Prognosis -

[7] Mitchell, 2015 Case-control USA Risk OR 0.47 (95%CI (0.38-0.58))

[8] Mariosa, 2015 Nested case-control Sweden Risk Overall: OR 0.79 (0.68–0.91)
< 50 age class: OR 3.15 (1.40–7.08)
70–79 age class: OR 0.71, 95% CI 0.57–0.89
≥ 80 age class: OR 0.56, 95% CI 0.40–0.78

[9] Kawada, 2016 Letter to the Editor - - -

[10] Mariosa, 2016 Letter to the Editor - - -

[11] Kioumourtzoglou, 2015 Nested case-control Denmark Risk Overall: OR 0.61 (95% CI 0.46-0.80)
At 65 years old: OR 0.65 (95% CI 0.50–0.85)
At 35 years old: OR 1.68 (95% CI 0.75–3.75)

[12] Sun, 2015 Cohort Taiwan Risk Overall: HR 1.35 (95% CI 1.10–1.67)
Men < 65 years old: HR 1.67; 95% CI 1.18–2.36

[13] Tsai, 2019 Cohort Taiwan Risk Overall: HR 0.87, 95% CI 0.70–1.07
≥ 55 years age class: HR 0.72, 95% CI 0.55–0.95

[14] Seelen, 2014 Case-control Netherlands Risk OR 0.72, 95% CI 0.51–1.01

[15] D’Ovidio, 2018 Cohort Italy Risk HR 0.30, 95% CI 0.19–0.45

[16] Logroscino, 2015 Editorial - - -

[17] Turner, 2013 Cohort England Risk RR 3.94; 95% CI 1.84–7.50

[18] Jawaid, 2015 Editorial - - -

[19] Korner, 2013 Cohort Germany Prognosis On survival: HR 1.11, 95% CI 0.76–1.60
On progression: HR 1.07, 95% CI 0.74–1.57

[20] Paganoni, 2015 Cohort RCTs Prognosis Not provided

[21] Jawaid, 2015 Letter to the Editor - - -

[22] Paganoni, 2015 Letter to the Editor - - -

[23] Mandrioli, 2018 Cohort Italy Prognosis HR 1.11, 95% CI 0.93–1.33

[24] Moglia, 2017 Cohort Italy Prognosis HR 1.05, 95% CI 0.78–1.42

[25] Wei, 2017 Cohort China Prognosis HbA1c between 5.7% and 6.4%: HR 1.40
HbA1c > 6.5%: HR 2.06

[26] Zhang, 2019 Cohort China Prognosis HR 0.84, 95% CI 0.68–1.30

[27] Hollinger, 2016 Case-control Prognosis Not provided

[28] Zeng, 2019 Case-control Europe/Asia Risk Europe: OR 0.93, 95% CI 0.88–0.99
Asia: OR 1.17, 95% CI 0.93–1.47

[29] Lim, 2014 Animal study - - -

[30] Joardar, 2017 Review - - -

[31] Rauskolb, 2017 Review - - -

[32] Shi, 2019 Animal study - - -

[33] Araki, 2019 Cellular study - - -

[34] Jawaid, 2018 Editorial - - -

[35] Pfeiffer, 2019 Case-control USA - -

[36] Walker, 2016 Protocol UK - -

[37] Liu, 2015 Review - - -

[38] Liu, 2015 Cellular study - - -

[39] Wills, 2014 RCT - - -

[40] Herskovits, 2013 Review - - -

Studies not reporting an explicit link between DM andALS are not included in this table.OR, odds ratio;RR, relative risk;HR, hazard ratio; 95%CI, 95%
confidence intervals; RCT, randomized clinical trial; HbA1c, glycated hemoglobin
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role of BMI correlated with both types of DM, and also with
ALS onset and survival [18].

Diabetes mellitus as a prognostic factor for ALS

A German study reconstructed comorbidities of a cohort of
514 ALS patients in order to estimate their effect on survival
and disease progression, revealing that DM did not signifi-
cantly affect both survival (considered as the interval from
ALS diagnosis to death, tracheostomy, or censoring, HR
1.11, 95% CI 0.76–1.60) and progression (estimated by using
the logarithmic ALSFRS-R score ratio as the dependent var-
iable, HR 1.07, 95% CI 0.74–1.57) [19]. A study including
1322 patients from 6 ALS clinical trials showed that survival
was not different from DM to non-DM patients (p = 0.98)
[20]. Regarding this study, a letter to the editor [21] and a
reply [22] were written in order to better clarify the methodo-
logical differences between this and another American study
[41].

Even in two recent Italian studies, DM was not significant-
ly associated with ALS survival. The first one was performed
in 13 Italian ALS centers from 2009 to 2013 and enrolled
2354 incident ALS patients. The authors reported a non-
significant effect of DM on ALS survival (HR 1.11, 95% CI
0.93–1.33) [23]. In the second population-based cohort study,
650 ALS incident patients were recruited and T2DM was not
associated with survival (HR 1.05, 95% CI 0.78–1.42; p =
0.84) [24].

A Chinese cohort study recruiting 450 ALS patients indi-
cated that higher levels of hemoglobin A1c (HbA1c) at diag-
nosis were significantly associated with a higher risk of mor-
tality (HR 1.40 for HbA1c between 5.7 and 6.4% and HR 2.06
for HbA1c > 6.5%; p trend = 0.01) [25]. Finally, in another
study, survival was not significantly longer in the diabetic
ALS patients group when compared to non-DM patients
(HR 0.84, 95% CI 0.68–1.30; p =0.617) [26].

Notably, a recent systematic review pointed out that pieces
of evidence are not sufficient to establish a link between met-
abolic alterations and ALS progression [6].

DM was also found to delay ALS onset. A case-control
study focusing on antecedent conditions included 1439 ALS
patients distinguished in 600 patients without antecedent con-
ditions and 839 patients with at least one antecedent condition.
DM was found to be significantly associated with both later
ages of ALS onset (p < 0.0001) and shorter disease duration (p
< 0.0069) [27]. Same results were reported also in a previous
study, which evaluated 2371ALS patients and where DMwas
associated with a 4-year later onset of ALS (56.3 years old for
non-DM ALS patients and 60.3 years old for diabetic ALS
patients, p < 0.05) [41]. Such delay was confirmed by a
Chinese study including a total of 2562 ALS which found,
after adjusting for sex and site of onset, that patients with pre-

morbid DM showed a 4.4-year delay in the ALS onset (57.0 ±
9.6 vs 52.6 ± 10.3 years; p < 0.001) [26].

Genetic links

In DM, hereditary components are estimated to range between
20 and 80% [42]. The first genes revealed were CAPN10 and
TCF7L2, but other genes were considered candidates to play a
significant role in the pathogenesis of T2DM, such asPPARG,
IRS1, and IRS-2, KCNJ11, WFS1, HNF1A, HNF1B, and
HNF4A [42].

Over the past 20 years, several gene mutations in ALS have
been identified, including both major genes (such as SOD1,
TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72, and
PFN1) and several other minor genes [43]. Among minor
genes, SH2B3 and ATXN2 were found to be associated with
both autoimmune and neurodegenerative diseases [44].
ATXN2 plays an important role for ALS since intermediate-
length polyQ expansions (27–33 glutamines) in this gene
were found to be significantly associated with the ALS risk
[45]. Furthermore, a Turkish study, in which genomes of 158
sporadic and 78 familial ALS patients were compared with
those of 420 healthy controls, found that 31–32 polyQ repeats
in the ATXN2 gene were associated with a risk of ALS in 1.7%
of the Turkish ALS cohort (p = 0.0172) and that a significant
association of a 136-kb haplotype block across ATXN2 and
SH2B3 genes was found in 19.4% of a subset of the ALS
cohort and in 10.1% of the controls (p = 0.0057, OR 2.23),
an indication that ATXN2 and SH2B3 variants may interact in
modulating the disease pathway [46].

A recent study analyzed GWAS data from two large
European and Asian samples (~ 660,000 individuals for
T2DM and ~ 81,000 individuals for ALS in the European
population, and ~ 191,000 individuals for T2DM and ~
4100 individuals for ALS in the East Asian population).
Adopting the Mendelian randomization (MR) approach, au-
thors demonstrated that single-nucleotide polymorphisms as-
sociated with T2DM were negatively associated with ALS in
the European sample, therefore suggesting that T2DM might
be actually protective for ALS (OR 0.93, 95% CI 0.88–0.99, p
= 0.023), rather than being the effect of potential confounders
or reverse causality. An opposite despite no significant rela-
tionship was found in the Asian sample (OR 1.17, 95% CI
0.93–1.47, p = 0.190). However, the authors stated that the
smaller size of the Asian sample could account for the lack of
significance [28].

Pathogenic links

The biological mechanisms linking DM to ALS remain un-
clear but it is likely that energy metabolism and homeostasis
should be taken into account [5]. About 50% of ALS patients
show hypermetabolism (i.e., an increased energy expenditure)
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compared with controls and this could justify a higher con-
sumption of glucose and lipids [47].

In a preclinical study setting, the correction of defects in
energetics through a high-fat diet in mutant SOD1 mice de-
layed the ALS onset, improved the overall survival, and re-
duced muscle denervation [48]. A further study in mutant
SOD1mice reported that ALS progression could be mitigated
by altering energy metabolism [29]. In particular, the altered
energy metabolism reduced circulating leptin levels, an
adipocyte-derived hormone that regulates the whole-animal
energy expenditure, which in turn decreased the rate of weight
loss, increased the white adipose tissue stores, decreased mo-
tor neuron degeneration, and finally improved survival.
Furthermore, people affected by T2DM reported higher con-
centrations of progranulin [49], an adipokine that mediates
high fat-induced insulin resistance and whose overexpression
has been shown to revert mutant TDP-43-induced axonopathy
in vivo [50].

In this optic, higher serum lipids or glucose could compen-
sate ALS patients’ hypermetabolism, thus reducing the rate of
the damage caused by the hypermetabolic state on the motor
neuron system [47] and delaying ALS onset [41].

TBK1 is considered among ALSminor genes and codes for
the TANK-binding kinase 1[30]. In a genetic mouse model,
TBK-1 has been proved to contribute to the phosphorylation
of the insulin receptor, eventually attenuating its functionality.
This evidence suggests that TBK1 could be involved in
in vivo insulin resistance [51].

A recent review suggested the need to link together basic
research with personalizedmedicine approaches to define new
therapies based on cellular energetics in ALS [52]. However,
alternative hypotheses should be also considered.

Uric acid has been suggested to predict survival in ALS and
has also been positively associated with DM in high concen-
trations; thus, it could be considered as a potential pathogenic
link between DM and ALS [11].

Glutamate excitotoxicity has been linked tomotor neurons’
death. Conversely, hyperglycemia has been suggested to in-
crease glutamate uptake, thus protecting against excitotoxicity
[11].

Vitamin A metabolism has been also studied. Indeed, high
concentrations of serum retinol-binding protein 4 (RBP4), a
specific transport protein of Vitamin A, resulted to be inverse-
ly correlated with the risk of ALS (OR 0.36, 95% CI 0.22–
0.59). RBP4 has been investigated and has a proxy of insulin
resistance [31]. Furthermore, retinoic acid, a metabolite of
vitamin A playing an important role in the development and
programmed cell death, was reported as relevant to the path-
ogenesis of ALS also in other studies [53].

A recent review focused on the role of insulin-like grow
factor 1 (IGF-1) in both DM and ALS [54]. IGF-1 has a 50%
sequence homology with insulin and is able to elicit nearly the
same hypoglycemic effects [55]. Several studies have reported

an increased risk of insulin resistance and T2DM in subjects
with low IGF-1 serum concentrations [56]. IGF-1 also pro-
motes the survival of neurons and supports axon growth and
has been shown to be lower in the cerebrospinal fluid of ALS
patients when compared to controls (p < 0.0001) [57].

However, it should be highlighted that three random-
ized clinical trials (RCTs) have been conducted to test the
disease-modifying effect of the recombinant human IGF-1
(rhIGF1) on ALS [58–60]. All these trials showed no
clear beneficial effect of IGF-1 on ALS progression,
whereas a meta-analysis concluded that, considering the
two RCTs using the same outcome measure [58, 60], a
significant difference in favor of rhIGF-1 treatment was
shown; however, the quality of the evidence from the two
trials was low [61]. These results make it less probable for
IGF-1 to play a crucial role in ALS pathogenesis and to
represent the pathogenic link with DM.

An interesting review showed that chronically
prolonged endoplasmic-reticulum (ER) stress is a hall-
mark of many common neurodegenerative and metabolic
diseases, such as ALS and DM [62]. Several studies
showed that ER stress occurs in motor neurons of human
ALS patients [32]. Alteration in the ER functionality
could lead to the production of unfolded proteins (UP)
and UP response has been suggested to participate in car-
bohydrate metabolism [33].

A recent study focused on immune-mediated mechanisms.
Altered humoral immunity was found to stimulate a patholog-
ical voltage-dependent Ca2+ entry in ALS motor neurons,
thereby damaging these cells through a Ca2+ toxicity. Based
on the evidence that motor neurons and islet cells share some
mechanisms such as Ca2+-dependent exocytosis and trig-
gered cell death, the study showed that IgG fromALS patients
was able to interact with rodent islet cells, causing an Ca2+-
mediated impairment of mitochondrial function, insulin secre-
tion, and cell viability [34].

Interestingly, in a recent study, an impaired insulin secre-
tion in the early phases of the disease and a nuclear depletion
of TDP-43 in pancreatic beta-cells of ALS patients have been
demonstrated. The loss of TDP-43was prominent in beta-cells
when compared to alpha-cells, thus suggesting a specific role
of TDP-43 in insulin secretion. Furthermore, when knocking
down the TARDBP gene in a cultured beta-cells line, insulin
secretion was inhibited, possibly through the downregulation
of Ca2+ channels. Notably, ALS patients enrolled in this
study had normal basal insulin secretion levels but lower
insulinogenic index (IGI), an index of early-phase insulin se-
cretion [35].

TDP-43-positive cytoplasmic inclusions can be found in
almost all ALS cases [1]. TDP-43 has been shown to influence
fat accumulation and insulin sensitivity in both the liver and
the skeletal muscle [16] and these results further suggest its
extra-neurological role.
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Implications for ALS treatment

A recent editorial focused on the need for treatments for ALS
and on identifying a clear biological mechanism explanation
for the association between DM and ALS [36]. However, it
should be first clarified whether anti-diabetes drugs rather than
DM itself could play a role in ALS risk and progression. An
observational study showed that a wide group of diabetes
drugs was associated with a decreased risk of developing
ALS, thus suggesting their possible “repurposing” [63].
Several experimental pieces of evidence for the use of diabetes
drugs in ALS have been collected so far.

Pioglitazone and metformin

A protocol of an observational cohort study was published in
order to investigate whether prescribed drugs for the treatment
of T2DM, among others, could be associated with the risk or
the progression of several neurodegenerative diseases, includ-
ing ALS [64].

Based on the decreased levels of inflammatory mediators
in transgenic mouse models and the anti-oxidant and anti-
inflammatory effects of pioglitazone, a phase II, double-blind,
multicentre, placebo-controlled trial on this drug (45 mg/day)
in 219 ALS patients treated with riluzole was conducted.
However, pioglitazone did not confer a benefit on survival
(HR 1.21, 95% CI 0.71–2.07) [65]. Similar findings resulted
in another study on the transgenic G93ASOD1mice exposed to
metformin, another anti-diabetic drug with potent anti-inflam-
matory, and anti-oxidative proprieties, which showed a dose-
dependent negative effect on the disease progression in female
mice (p = 0.036) [37].

AMPK activators

The enzyme AMP-activated protein kinase (AMPK) is a mas-
ter regulator of energy balance [66]. AMPK is a common
target for anti-diabetic drugs (for example, metformin) and
the abnormal activation of AMPK was found in some neuro-
degenerative diseases, such as Alzheimer’s disease (AD),
Parkinson’s disease, Huntington’s disease (HD), and ALS,
possibly because of its role in the autophagy network [67].
In the G93ASOD1 mice, the activation of AMPK via the use
of latrepirdine resulted in a delayed symptom onset and a
significant increase in lifespan (p < 0.01) [38], while an in-
creased AMPK activity seems to play a negative role in motor
neuron survival in another animal model [68].

In another preclinical study using TDP-43 transgenic mice,
the downregulation of the α1 subunit of AMPK played a
relevant role in reducing TDP-43 mislocalization and the de-
velopment (and progression) of ALS, suggesting AMPK-α1
as a potential drug target [69]. The aberrant activation of
AMPK can drastically impact the normal distribution of the

human antigen R (HuR, a major mRNA stabilizer), which
may imbalance RNAmetabolism and contribute to ALS path-
ogenesis [70].

AMPK activators are widely prescribed to DMpatients and
should be further investigated as potential therapeutic
strategies.

Dietary modifications

A Japanese case-control study revealed that combined high
intakes of carbohydrate (adjusted OR 2.14, 95% CI 1.05–
4.36; the highest versus the lowest tertile) and low intakes of
total fat (adjusted OR 0.41, 95% CI 0.21–0.80; the highest
tertile versus the lowest) may increase the risk of ALS, sug-
gesting that high-fat diet could be instead protective [39].
According to this hypothesis, in a mouse model, the adminis-
tration of a ketogenic diet led to an improvement of motor
neuron survival and motor function [71]. Furthermore, a hu-
man study demonstrated that among patients treated with high
caloric enteral diet, those who received high carbohydrate had
a smaller total number of adverse events (0 versus 9) and death
(0% versus 43%) than those received high fat or control group
[40], in keeping with the hypothesized protective role of hy-
perlipidemia on ALS survival [27].

The sirtuins pathway

Mammalian sirtuins are a group of seven NAD+-dependent
enzymes able to deacetylate many intracellular proteins in-
volved in many processes, including carbohydrate and lipid
metabolism, apoptosis, and autophagy [72]. Accordingly,
sirtuins were suggested to be protective against AD, HD,
and ALS, via several mechanisms like regulation of stress
response, apoptosis, and DNA repair [71, 73]. Moreover,
SIRT2 was found to be inversely associated with mitochon-
drial fragmentation and neuronal cell death in G93ASOD1
transgenic mice [74]. Sirtuin activators have been proposed
as a therapeutic target in DM and could be considered as a
potentially valuable therapeutic factor in ALS [73].

Discussion

Recent literature converged into stating that DM diagnosed at
younger ages has a detrimental or null effect on the develop-
ment of ALS; when DM is diagnosed at older ages (about 50–
60 years), as it happens more commonly, it shows a protective
effect on the ALS risk. There is no clear explanation for this
age effect and some studies did not confirm it [15].

A possible explanation is that this age cutoff excludes most
T1DMcases that rely on different pathogenic mechanisms [8].
However, such a phenomenon should be further studied since
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the distinction between T1DM and T2DM solely on basis of
age could be imprecise [3].

Also, competing DM and ALS risks at older ages should be
taken into account as a possible explanation.

The protective role of DM on ALS was not confirmed in
the East Asian population where T2DM seems to increase the
risk of ALS [12, 28]. It is plausible to think that genetic and
environmental factors could act differently across populations,
thus varying the terms of this interaction [16]. However, only
two studies provided such opposite results and further pieces
of evidence should be sought.

It remains unclear whether T2DM and ALS are linked by a
causal relationship. Indeed, because of the retrospective ob-
servational nature of all these studies, despite most of them
have attempted to adjust for some known confounding factors,
it is impossible to completely rule out known not considered
and unknown potential confounders. Conversely, the low fre-
quency of ALS and obvious ethical aspects hamper observa-
tional prospective and experimental studies. Mendelian ran-
domization (MR) could give useful hints in the attempt of
moving beyond these limits and the study by Zeng et al. could
be considered as proof of the causal relationship of diabetes on
ALS [28]. However, MR is not without intrinsic limitations
and it cannot entirely rule out the role of possible confounders
and reverse causation [28, 75]. Therefore, it remains still un-
clear if T2DM could be considered as protective to ALS, if
ALS causes the lack of T2DM (together with other metabolic
conditions) or if both are caused, with opposite relationships,
by a third not considered confounding factor.

In the light of a possible repurposing of drugs acting on
glucose metabolism, clarifying the relationship between DM
and ALS becomes crucial. Some preclinical studies showed
positive results so far [31, 38, 70]. However, in a sensitivity
analysis, Zeng et al. showed that fasting glucose, fasting insu-
lin, and Hb1Ac do not share a causal relationship with ALS
[28]. Thus, intervening on such factors could be ineffective
and other targets, maybe occurring upstream in the pathogenic
pathways, should be investigated. Together with the heteroge-
neity of ALS, this observation could justify the negative re-
sults of some trials using anti-diabetic drugs for modifying the
risk of ALS. Furthermore, the possible opposite effect of DM
onALS in Europe and Asia could impose different therapeutic
strategies in these two populations.

Interestingly, despite suggested as a protective factor, sev-
eral studies showed that T2DM does not affect ALS progno-
sis. Such discrepancy could be interpreted as a lack of causal
relationship between DM and ALS. However, it is not possi-
ble to exclude that ALS pathogenesis involves several path-
ways at different times, each one showing variable vulnerabil-
ity to DM.

DM is usually part of a wider modification of metabolism
known as metabolic syndrome [76]. Thus, focusing on the
relationship of ALS with DM could mean missing the big

picture. The most widely accepted hypothesis considers insu-
lin resistance as the pathogenic center of metabolic syndrome
[76]. Insulin inhibits lipase thus allowing the delivery of free
fatty acids (FFAs) from the adipose tissue. In turn, FFAs in-
hibit, by a negative feedbackmechanism, the action of insulin.
This justifies how insulin resistance could lead to the accumu-
lation of adipose tissue thus leading to obesity and how, on the
contrary, obesity could result in insulin resistance [76].
Accordingly, obesity showed a similar effect to DM in ALS
risk. With some exception in American studies [77], results
converged into the hypothesis that elevated pre-diagnostic and
baseline BMI scores are protective against both onset and
survival of ALS and that conversely lower BMI is detrimental
in developing the disease [7, 78]. A recent study showed that
patients’ survival was related to the mean monthly percentage
of weight loss at diagnosis (p < 0.0001) but not to pre-morbid
BMI or BMI at diagnosis [79]. However, one study consid-
ered both obesity and DM and showed that DM was an inde-
pendent prognostic factor on ALS risk [11].

In the setting of insulin resistance, the increased flux of
FFAs to the liver results in increased triglyceride synthesis.
This could justify the frequent co-occurrence of DM with the
overproduction of very-low-density lipoproteins (VLDL),
hypertriglyceridemia, and the reduction of HDL cholesterol
[76]. Dyslipidemia together with a low-level inflammatory
state that seems to even precede the appearance of insulin
resistance [80] leads to vascular damage, arterial hyperten-
sion, and ultimately to a higher risk of cardiovascular diseases
(CVDs) [76].

According to the inverse association of DM and ALS risk,
hypercholesterolemia has been found less frequently among
ALS patients than controls [14] and has been reported to be
inversely associated with ALS onset [7]. Moreover, hyperlip-
idemia seems to delay the age of ALS onset and prolong life
expectancy [27]. Further pieces of evidence showed lower
frequencies of arterial hypertension, cardiac arrhythmia, and
myocardial infarction among ALS patients [19].

However, results are inconsistent across literature and other
studies reported no altered lipid levels in ALS patients [81]. A
previous study showed no significant influence of hyperten-
sion, cardiac arrhythmia, and coronary heart disease on ALS
survival [19] while two recent studies showed that the comor-
bidity of hypertension and heart disease was associated with
reduced survival in ALS [23, 24]. Finally, it has been sug-
gested that BMI rather than hyperlipidemia could influence
ALS prognosis [78, 82].

Despite such metabolic abnormalities that could be read as
epiphenomena of insulin resistance, a recent MR study dem-
onstrated that dyslipidemia could be causative itself [83].

As a final remark, it remains unclear whether all metabolic
findings could be a compensation for hypermetabolism found
in ALS patients [5]. Despite hyperglycemia, early weight loss,
and dyslipidemia could be read as compensation effect of a

Neurol Sci (2021) 42:1377–1387 1383



high energy expenditure, in the absence of studies on pre-
symptomatic patients, it remains unclear if hypermetabolism
is a product or a cause of the neurodegenerative process [84].

In conclusion, DM and ALS seem to be inversely correlated
as concerning ALS risk; conversely, the findings on the effect of
DM on ALS prognosis are inconclusive. The exact causal rela-
tionship between DM and ALS remains unclear. However, such
a relationship should be read as the piece of a larger metabolic
dysfunction and could be related to the finding of hypermetabo-
lism in ALS patients. Further genetics studies using techniques
such as MR could be helpful in disentangling this complex met-
abolic, possibly across different ethnic backgrounds.
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