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Abstract

In population genetics, the amount of information for an analytical task is governed by the

number of individuals sampled and the amount of genetic information measured on each of

those individuals. In this work, we assessed the numbers of individual yellowfin tuna (Thun-

nus albacares) and genetic markers required for ocean-basin scale inferences. We

assessed this for three distinct data analysis tasks that are often employed: testing for differ-

ences between genetic profiles; stock delineation, and; assignment of individuals to stocks.

For all analytical tasks, we used real (not simulated) data from four sampling locations that

span the tropical Pacific Ocean. Whilst spatially separated, the genetic differences between

the sampling sites were not substantial, a maximum of approximately Fst = 0.02, which is

quite typical of large pelagic fish. We repeatedly sub-sampled the data, mimicking a new

survey, and performed the analyses. False positive rates were also assessed by re-

sampling and randomly assigning fish to groups. Varying the sample sizes indicated that

some analytical tasks, namely profile testing, required relatively few individuals per sampling

location (n ≳ 10) and single nucleotide polymorphisms (SNPs, m ≳ 256). Stock delineation

required more individuals per sampling location (n ≳ 25). Assignment of fish to sampling

locations required substantially more individuals, more in fact than we had available (n >
50), although this sample size could be reduced to n ≳ 30 when individual fish were

assumed to belong to one of the groups sampled. With these results, designers of molecular

ecological surveys for yellowfin tuna, and users of information from them, can assess

whether the information content is adequate for the required inferential task.

1 Introduction

Making sure that enough data is gathered to effectively answer specific scientific questions has

been recognised to be an important part of the scientific process (e.g. power analysis, see [1]).

Without adequate data quantities, results of statistical analyses are likely to be uncertain, in

that the result may be prone to high rates of incorrect inferences (e.g. a type I or type II error

in hypothesis testing; [1, 2]). The issue of adequate data is of sufficient importance that such

considerations are mandatory when proposing surveys / experiments that utilise animal sub-

jects [3], and this importance is paralleled in population genetics.
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There have been a number of studies that investigated sample size considerations in molec-

ular ecology, which all had a different taxonomic focus: from plants [4–6], insects [7], birds

[7], mammals [7, 8], and synthetic theoretical populations [6, 9–11]. These studies also had a

different analytical foci and either try to: 1) estimate allele frequencies [7]; 2) differentiate pop-

ulations [5, 8, 11, 12]; 3) detect relationships in populations [4, 6, 9], or; 4) infer properties

within a population [10]. In genetic studies, the number of individuals is not the only consider-

ation as the number of markers will also affect the information content in the data [12, 13].

This provides another delineating factor for sample size calculations: whether the number of

those markers is fixed [4, 7, 8] or is part of the sample size investigation [5, 6, 12]. Investigating

the number of markers allows us to quantify the benefit from using modern marker technolo-

gies that cheaply provide many (1000s) markers. Such multi-faceted delineation of genetic

data, organism and inferential goals makes it difficult to supply generalised sample size advice.

For yellowfin tuna (Thunnas albacares), guidelines for data quantities for genetic popula-

tion studies are lacking. This is in spite of its enormous economic importance and value as a

food source. Indeed, we are unaware of published studies aimed at assessing sample size and

genotyping requirements for any large pelagic fish, from which we can extrapolate to yellowfin

tuna. The inadequacy has meant that sample sizes can only be guessed at, based on informa-

tion from model organisms which may have experienced quite different evolutionary pro-

cesses, different life stages, and even different genomic structure. This problem is amplified

when different analytical tasks are additionally considered. For tunas, interest is often in test-

ing for population differentiation using genetic profiles (a hypothesis test, [14]), in delineating

stocks [15–17], and in assigning individual fish to sampling locations [18, 19]. We refer to

these three separate analytical tasks as: genetic profile testing, stock identification, and individ-

ual assignment.

In this work, we studied the sample size requirements for future genetic studies on yellow-

fin tuna. Our approach was to exploit data holdings from sample locations across the species’

distribution in the Pacific Ocean, and we repeatedly use these as a resource from which new

re-sampled survey data were generated. This approach, while not available for organisms with

limited data, should have guaranteed that the re-sampled survey data matched data that is

likely from real observations. The same guarantee could not be made for simulated genetic

data as information was lacking concerning life histories, evolutionary events, linkage maps,

and so on. In this analysis, the re-sampled data sets were used as inputs to analyses for profile

testing, stock identification and individual assignment. To understand the data requirements,

we varied the size of the re-sampled data in terms of the number of fish and the number of

genetic markers measured on each of those fish.

2 Methods

To perform this study, three things were needed: 1) quality yellowfin tuna genetic data that

was bigger than that required for statistical analyses and also exhibited genetic variation similar

to experimental goals, 2) a resampling scheme that produced new in silico samples from the

original data, and 3) an implementation of the statistical methods that directly matched the

desired inferential purposes. The basic idea of our approach was to generate numerous re-sam-

ples [20, 21], analyse these re-samples and store the results. In this way, we generated an esti-

mate of the effectiveness of the analyses using sensible assessments of their performance (e.g.

p-values for hypothesis tests). This procedure is outlined in Fig 1. Details of the statistical

methods used to assess the information content are given in Section 2.3. In the current study,

we varied both the numbers of fish sampled and the number of genetic markers scored on

each fish. Doing so enabled assessment of whether the analyses had better performance with
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either sample size delineator, or with both. Our subsampling process mirrored that in [6]

except that we considered more combinations of the numbers of individuals and the numbers

of markers. This enabled a more detailed investigation of the way that the analytical results

responded to combinations of both individuals and markers. Also, we used hold-out samples

to assess some inferences (e.g. stock identification).

2.1 Yellowfin tuna data

We utilised data on yellowfin tuna (Thunnus albacares) from four locations throughout the

tropical Pacific Ocean. The locations were (from west to east): Mooloolaba (Australia), Solo-

mon Islands, Hawaii (U.S.A.), and Baja California (Mexico), See Fig 2. These four sites were

expected to exhibit small to moderate genetic differences (see Table 1), with the Baja California

location being distinct [17, 22].

Each fish was genotyped using single nucleotide polymorphisms (SNP) markers obtained

with DArTseq, a Restriction site-associated DNA (RAD) genotyping by sequencing approach

[23]. We considered it likely that the SNP data were error prone and noisy, like all genetic data

[24]. We tried to mitigate the effect of these errors on inferences and we ‘cleaned’ or ‘filtered’

Fig 1. Depiction of the resampling process used in this study. Details of the data, resampling strategy, and the

statistical methods are given in Section 2.

https://doi.org/10.1371/journal.pone.0259113.g001
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the markers data to remove obviously erroneous values. This was performed using the radiator

R-package [25], which removes low quality markers/individuals without biassing the molecu-

lar signal in the data. We removed markers exhibiting low reproducibility, low minor allele fre-

quencies (MAF), low/high read depths, high missingness, and frequencies not in Hardy-

Weinberg equilibrium. For each locus only the marker with the highest MAF was retained.

We also removed fish that were highly/poorly heterozygous, or had genotypes that were very

similar to other fish (duplicated). The dataset was checked for monomorphic markers after

each filtering step that removed individuals. In addition, we removed SNP markers with

minor alleles observed in less than 5 fish or that were observed fewer than 2 times within each

sampling location. After filtering we retained 6051 SNP markers on 346 yellowfin tuna.

To avoid complications with some, but not all, analytical methods we imputed missing val-

ues and created a ‘complete’ data set. We assumed that, within a sampling location, the missing

values were missing completely at random [26, Chapter 25] and performed a simple imputa-

tion by randomly drawing a fish’s missing marker value based on the allele frequency from an

individual’s sampling location. The end result of this process was a complete data set, whose

entries were either observed or were a random realisation of the observed marker data. In total

there were *2.3% values imputed, out of a total of 2,044,830 values.

2.2 Resampling approach

The resampling process is outlined in Fig 1. The observed data from the four sites were resam-

pled so that there were the same numbers of fish per population sample. A ‘hold-out’ sample

Fig 2. Approximate sample locations where yellowfin tuna Thunnus albacares were collected. The three most

western areas (Mooloolaba, Solomon Islands and Hawai’i) showed small genetic differentiation and were sometimes

separated as the “Western Pacific” data.

https://doi.org/10.1371/journal.pone.0259113.g002

Table 1. Sample sizes (top row) and pairwise Fst for the different geographical locations. Fst values were calculated after cleaning of the genetic data and imputation

of missing values (see Section 2.1).

Mooloolaba Solomon Islands Hawaii Baja California

Sample size 115 106 62 63

Mooloolaba —

Solomon Islands 0.0005 —

Hawaii 0.0022 0.0024 —

Baja California 0.0205 0.0202 0.0129 —

https://doi.org/10.1371/journal.pone.0259113.t001
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was also generated for assessing the predictive performance of the statistical methods, where it

was appropriate to do so. As an example, a resample of 20 Mooloolaba fish was randomly sam-

pled (without replacement) of the 115 real fish, and the 10 hold-out fish were randomly chosen

from the remaining 95 fish.

In addition to sampling fish, a subset of markers was also taken randomly from the full set

of markers. The reason for using a random sample, and not a sample of the most informative

markers, was, when scoring markers, we usually do not know a priori if it was going to be

informative or not.

To understand the effects of increasing/decreasing sample sizes, and the number of mark-

ers, on the amount of information in the data, we varied the number of fish and markers

resampled. We ranged the number of fish sampled from n = 5 per population to n = 50 per

population, in increments of 5. We stopped at n = 50 so that there remained at least n = 10 per

sample location for a hold-out sample to assess the out-of-sample assignment performance.

Similarly, we incremented the number of markers according to a doubling sequence;

m = 4,8,16,. . .,4096. At each combination of sample size and number of markers, 25 data sets

were resampled and analysed using the methods below. The results were a summary of those

25 resampled data sets.

To understand if the results were spurious or real, we analysed data sets which have no
genetic structure. This was done by taking the West Pacific data only (excluding Baja Califor-

nia) and randomly assigning fish to one of the 3 sampling sites (see Table 1). Some researchers

may be familiar with this idea as, for statistical hypothesis testing, analysing these randomised

data sets gives an estimate of rates of false-positive (type I) errors. For other types of analyses

the idea of false positives is not applicable, but the intuition still applies: how strong an infer-

ence can be wrongly made.

2.3 Statistical analyses

Three different analyses were performed on each resampled data set. The analyses were chosen

to reflect questions central to management of wild populations. Details will be presented

below, but these analyses can be described as:

Genetic profile delineation Was there a difference between the genetic profiles (allele fre-

quencies) of the different locations? This hypothesis test gave a p-value.

Stock Identification Could the sampling locations (of individual fish) be reconstructed as the

major sources of variation? This was a stock-structure analysis.

Individual Assignment Could an individual fish be assigned to its sampling location? Was

there enough information to assign them to any location?

2.3.1 Genetic profile delineation. This analysis tested if the allele frequencies amongst

two or more previously defined groups were different in relation to noise in the data (locations

in these data). We called this a hypothesis test as we were formally comparing the likelihood of

a null hypothesis in relation to an alternative hypothesis. Formally, the null hypothesis was

that there is no difference between the groups, and the alternative hypothesis was that there is

a difference. We note that this difference could be that just one location differed from the oth-

ers, or that they all differed from each other. The statistical method used on the genetic marker

data are those described in [14], which is well-known as Analysis of MOlecular VAriance

(AMOVA).
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For each resampled data set the AMOVA analysis produced a p-value. To present the

results, these p-values were averaged and then plotted as a colour map with axes of: 1) the

number of fish sampled, and 2) the number of markers used. To provide further information

on analysis performance, we tested an extra two hypotheses. The first was to see if the Baja Cal-

ifornia population could be distinguished from the remaining three populations (whose

genetic profiles are assumed to be equal). This test was performed as the Baja California popu-

lation has been shown previously to be quite different [22] and should therefore require fewer

samples. The second test was to see if there were any differences between the Honolulu, Solo-

mon Islands, and Mooloolaba populations. This test was performed to find out how much

information is needed to separate populations with relatively small genetic differences.

We repeated the hypothesis test on the Western Pacific data (those excluding Baja Califor-

nia), with randomisation of fish to groups. As stated before, this gave an indication of the likely

amount of false positives.

2.3.2 Stock identification. This analysis attempted to find groups amongst the individuals

when no a priori grouping has been assumed. This analysis disregarded the location labels for

the fish and used only the individuals’ marker data. We assessed how well the analysis per-

formed by seeing how many of the individuals have been correctly assigned back to their geo-

graphical groups.

The statistical method used was that described in [17] and implemented in the R-package

stockR [27]. For this analysis, we specified the number of groups to be four, equal to the num-

ber of sampling sites. Once the four groups have been identified, and the probabilities of each

individual belonging to each group estimated, the performance of the analysis needs to be eval-

uated. Here, we assessed performance using the procedure in [17]:

1. Finding the most likely (best) permutation of group labels. This is needed as there is no rea-

son that the ordering of labels will remain consistent between model output and observed

data labels (ordering is not invariant within this class of model). As an example: we may

have had the individual fish ordered within the groups (Mooloolaba, Solomon Islands,

Hawaii, Baja California) but the analysis found a different ordering of (Solomon Islands,

Hawaii, Mooloolaba, Baja California). For results to be meaningful, the matching of labels

was required.

2. Calculating the number of matches and mis-matches between the best ordering and the

real locations.

We note that finding the ‘best’ ordering may give an optimistic impression of how well

the groups were found. The optimistic view may have been heightened with smaller sample

sizes—there was a higher chance of a random assignment performing well. The effect of

‘chance’ good assignment (akin to false positives) was assessed using randomisation of the

Western Pacific data where all groups are only nominal.

2.3.3 Individual assignment. This analysis attempted to assign an individual to a sam-

pling location based on its genetic data. It was an analysis that is used to identify provenance

in a mixed fishery. The analytical method employed here follows that in [18, 19]. This method

was chosen as it: 1) allows for the possibility that the individual does not belong to any of the

sampled genetic groups, and; 2) is well established in the literature.

For each sampling location, the analysis first calculated a distribution of conditional proba-

bilities (the probability of observing the fish’s marker data given the sampling locations’ empir-

ical allele frequencies). An individual fish, whose allocation is not known, was inferred to have

a genotype that is ‘consistent’ with a sampling location if its conditional probability was not

extreme when compared to the location’s empirical distribution [19]. suggested that ‘extreme’

PLOS ONE Sample size requirements for genetic studies on yellowfin tuna

PLOS ONE | https://doi.org/10.1371/journal.pone.0259113 November 4, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0259113


be defined as less probable than the 0.01 or even 0.02 percentile. These suggestions are fairly

low values, and are used to mitigate the chance of wrongly excluding an individual from the

group. Taking such a low value, however, also increases the chance of wrongly suggesting that

the individual may come from that (or any other) group. It was not uncommon for the Pacific

yellowfin data that multiple groups were consistent with an individual’s genetic profile. For

this study, we investigated 3 percentile cut-offs: 0.01, 0.05, and 0.1.

Note that the term ‘conditional probability’, in this analysis, refers to the probability of a

genotype assuming that the individual fish comes from a particular location. The assignment

method proceeds using a bootstrap method to generate a sampling location’s distribution of

likely values. See [19] for details.

In our study, this assignment process was repeated for each subsample of the original data.

The hold-out fish were assigned to sampling locations based on the data from the subsampled

fish. Assignment of an individual fish was considered ‘correct’ if it was assigned to its actual

location, and only that location. The statistic that was summarised within this simulation

study was the proportion of correctly assigned fish.

In addition to this assignment—where a fish may not be assigned to any of the sampling

locations—we also performed assignment with the assumption that the fish must come from

one of the sampling locations. To perform this assignment, we made assignments based on the

posterior probability of membership statistic defined in [17]. Fish were assigned to the sam-

pling location that had the highest posterior probability.

We assessed the risk of falsely assigning individuals to groups by using data without any

real group structure. This was done using randomisation, where fish in the Western Pacific are

randomised to groups.

The randomisation and analysis steps we then repeated as before.

3 Results

3.1 Genetic profile testing

When the number of fish and particularly the number of markers was increased, our ability to

delineate locations improves; i.e., there was an increase in the number of rejected hypotheses

(lower average p-value; see Fig 3). When a lot of markers was used (our maximum of

m = 4096), any sample sizes tested proved sufficient to provide excellent power. As the number

of markers used decreased, more samples were needed to achieve similar power. For our larg-

est sample size, the minimum number of markers was m� 256 (Fig 3, left and central panels).

Significance appears to be driven largely by Baja California being different from the other sam-

pling locations (Fig 3, centre panel). However, when the differences were smaller, the number

of individuals and the number of markers needed to be increased simultaneously (Fig 3, right

panel). For those situations (small differences), and with m� 4000 markers, at least n� 25

individuals were needed. When testing for differences that were not actually present (ran-

domly assigned groups in the Western Pacific data), the genetic profile test did well. In particu-

lar, the average p-value was, as it should have been, around the α = 0.05 significance level

(Fig 4).

3.2 Stock identification

Stock identification for grouping a sample of individual fish using only their genetic informa-

tion was assessed using the statistic of average proportion of correctly defined stocks (Fig 5).

Increased number of markers increased the ability to identify stocks. There was also some

counterintuitive evidence suggesting that increasing the number of individuals actually

decreases performance. There were two possible reasons for this: 1) there was a noticeable
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Fig 3. Results from genetic profile (hypothesis) testing experiment. Left panel is for the hypothesis test of no

differences between all 4 geographical regions. Central panel is for the test of no differences between the Baja

California region and the three remaining regions (combined). Right panel is for a test of no differences amongst the

three West Pacific regions (Baja California removed). Lower values (cooler colours) reflect lower p-values and hence,

on average, a higher chance of rejecting the null hypothesis (i.e., of detecting differences).

https://doi.org/10.1371/journal.pone.0259113.g003

Fig 4. Results from genetic profile (hypothesis) testing on data with randomised location groups. The figure contains the

proportion of false-positive tests significant at the α = 0.05 level.

https://doi.org/10.1371/journal.pone.0259113.g004
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false-positive rate (Fig 6) and; 2) the ‘matching’ of the estimated groups to the regions was per-

formed after the analysis (only for performance statistic calculation) and could have biased the

metric upwards, and more so for small sample sizes. The false positive rate implied that there

is, with small sample sizes, a good chance that any grouping of individuals had an inflated

chance to be found.

There appeared to be little difference in using n = 15 and n = 50 individuals with more than

m = 32 markers. This implies that n = 15 is probably enough. Increasing the number of mark-

ers did appear to have substantial effect. Even with m = 4096 markers, the benefits of including

more appeared to be still increasing.

None of the combinations observed (numbers of individuals and markers) gave excellent

discrimination power, with the highest only * 0.75. This is perhaps unsurprising given that

some of the regions were genetically similar (Table 1).

3.3 Individual allocation

Results for allocating all the hold-out fish to all sampling locations, and to allocating the hold-

out Baja California fish to only the Baja California location are presented in Figs 7 and 8

respectively. In the latter comparison, only the Baja California fish were checked for correct

assignment (to Baja California) and fish from other locations were ignored. The broad message

is: increasing the number of markers and increasing the number of individuals sampled

increased the ability to assign individuals. The most gain was when both markers and individ-

uals were increased. There is little point in trying to allocate individuals to populations when

Fig 5. Results from stock identification analysis from the resampling experiment. Lower values (cooler colours)

represent poorer delineation. This experiment attempted to delineate all four regions.

https://doi.org/10.1371/journal.pone.0259113.g005
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there were as few as n = 5 or even n = 10 individuals, irrespective of the number of markers

available.

Assuming that a reasonable number of individuals were sampled, say n> 25, then there

was more gain by increasing the number of markers than by further increasing the number of

individuals sampled from a location (Fig 7, top row). For this increased number of individuals,

the performance of assignment increased quite rapidly with increasing markers, after around

m = 256. At m = 4096, the maximum number of markers considered, the assignment perfor-

mance was still increasing implying that even more markers were likely to have increased per-

formance further. The same inference was made when only allocation to Baja California is

considered (Fig 8, top row). However, due to the larger genetic differences, the assignment to

only Baja California produced a higher proportion of individuals correctly assigned.

When doing the allocation, we also performed an allocation that assumed that the individ-

ual did actually come from one of the observed regions, we just didn’t know which one. These

results are shown in the bottom panel of Figs 7 and 8. Clearly, allocation was much better

when this extra assumption was made; implying that not having an out-group increased per-

formance substantially. However, allocation was still limited when all regions were considered.

When only considering the fish from Baja California, the allocation was much improved to

when considering all regions.

Randomisation of the Western Pacific data indicated that, irrespective of grouping, assign-

ment can be made with more-or-less the same efficiency as when assigning to the real groups

(Figs 7 and 9). The exception was for assignment when assuming that the fish comes from one

of these groups (Fig 9 bottom panel). There were two reasons for this: 1) the data available or

Fig 6. Results from randomising the location information from the 3 Western Pacific regions for stock

identification. If stock identification is successful, then all values should be 1/K = 1/3. Higher values indicate that

groups can be found, even though they are not present. Colour scale chosen to match Fig 5.

https://doi.org/10.1371/journal.pone.0259113.g006
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the analytical methods were not sufficient to distinguish the groups, and 2) there was not

enough genetic differentiation between the groups to assign with any reliability.

4 Summary and discussion

In this investigation, we have examined the effect of increasing the number of individual yel-

lowfin tuna (n) and the number of markers (m) on the performance of a number of common

statistical tasks. This has been done using an extensive data set on yellowfin tuna, which makes

the results realistic and without excessive assumptions that are typically made when simulating

datasets. Our results showed that small studies were under-powered and were likely to be

insufficient for research objectives. However, our results also indicated what type of research

questions and the proposed study objectives greatly affected the sample size requirements.

Testing genetic profiles between locations required the least information, with only n� 10 and

m� 500 needed to consistently obtain a significant test (Fig 3). However, if the Baja California

region is removed, the remaining populations were less genetically differentiated, requiring a

Fig 7. Results from individual assignment analysis. Lower values (cooler colours) represent poorer assignment. The

top panels are for the same analysis but with different cutoff values, with a smaller cutoff (left) requiring greater

dissimilarity to a location before it is considered not to be from that location. The bottom plot is for the situation where

the individual was assumed to come from one of the sampled stocks (no chance of it not coming from any of them).

https://doi.org/10.1371/journal.pone.0259113.g007
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subsequent increase in both sampling effort and numbers of markers investigated (n� 35 and

m� 1000, Fig 3). Stock identification required more information, with n≳ 25 (Figs 5 and 6),

and individual allocation required even more information to be reliable (Figs 7–9). In fact, the

stock identification and individual allocation were never excellent even for the n = 50 individu-

als and m = 4096 markers (Figs 5 and 7–9). This is undoubtedly due to the fact that some of

the regions were genetically similar (Table 1).

Random groupings allowed investigation of false inferences. For hypothesis testing, this

type of error was approximately as it was specified (the false-positive or type I error rate, Fig

4). For stock delineation, the ability to correctly partition was erroneously increased for small

numbers of fish (n≲ 30 fish, Fig 6) suggesting more than*30 fish should be sampled for stud-

ies examining stock delineation.

Assignment of fish to groups was not accurate and this was true for all the different num-

bers of fish and markers investigated (Fig 7). The situation was improved when considering

only the most genetically differentiated groups but even this level of differentiation required

large sample sizes (Fig 8). Whilst the level of genetic differentiation between the Western

Pacific locations was small, it is worrying that a similar amount of assignment success was

Fig 8. As per Fig 7, except that assignment is only for fish from Baja California. These plots reflect how well the

Baja California fish are allocated to the Baja California region.

https://doi.org/10.1371/journal.pone.0259113.g008
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obtained from randomising fish to locations (Fig 9). This could be explained by a small

amount of genetic differentiation, but we note that such differentiation was detectable in

group averages (Fig 3, right panel). This result requires further investigation as it may have

important implications about the assignment method employed here, or about the data

themselves.

When planning sampling for the explicit task of assignment, we note that it is likely to be

worthwhile to sample a wide variety of genetic groups. Such sampling is also beneficial for

landscape genetic analyses [6]. The reason for choosing a wide variety of genetic groups, for

assignment purposes, is that our results showed that the assignment was substantially

improved when there was no outgroup (Figs 7–9). In particular, the performance of the assign-

ment to random groups was much better (Fig 9). We acknowledge that there was a potential

confounding here between the presence of an outgroup and the analytical method used to per-

form the assignment. Irrespective of the cause, the outcome remains the same—excluding the

outgroup appeared to be more accurate.

Fig 9. Results from individual assignment analysis to randomised sampling locations. Only locations from the

Western Pacific (excluding Baja California) are used in this analysis. All other values as per Fig 7. If assignment is

random, as it should be, then all values should be 1/K = 1/3.

https://doi.org/10.1371/journal.pone.0259113.g009
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For the assignment analysis, there was a natural trade-off between the certainty that we

want to exclude individuals from regions and how certain we want to be to include them. This

was represented in the different ‘cut-off’ values. At a cut-off of 0.01 we were asserting that indi-

viduals must be less probable than the first percentile of the individuals that do actually belong

to that region. This means that an individual-to-be-assigned must be very ‘odd’ before it was

‘rejected’ from that population, especially if there was high variance of the genotypes within a

population. The consequence of this was that individuals can tend to be ‘assigned’ to multiple

regions. As the cut-off value was increased, the threshold for ‘oddness’ was decreased, and so

we were able to exclude individuals more readily at the risk of false-exclusion from a popula-

tion. In this resampling study, increasing the cut-off actually increased the assignment capabil-

ity too.

We note that the results of this study are in line with, but do not duplicate, previous studies.

In particular, it is accepted that increasing both the number of individuals and/or the number

of markers will increase the success of the analysis (e.g. [6] and references therein). This is

achieved by both decreasing bias and decreasing estimate uncertainty [6, Fig 1]. Our results

are in line with this as, for example with hypothesis testing, decreased uncertainty corresponds

to decreasing p-values (Fig 3).

Ecological genetics is currently undergoing a technological step-change, where the density

of information per individual is increased substantially [28]. This doesn’t mean that the infer-

ences obtained in this manuscript will be immediately obsolete however. The fact is, RAD gen-

otyping-by-sequencing technology will remain to be utilised into the near future; novel

technology delivering higher marker density is still not widely available, especially to most

resource-poor projects.

This study assessed the performance of standard statistical methods. It did not compare dif-

ferent methods for the same statistical task. This would have given information about which

method gives highest power, or greatest discrimination. While different statistical methods

will alter sample size requirements, we hope, and expect, that these changes would not have

been substantial. We stress that better, more robust and more powerful statistical methods

should be sought, developed and used when available.

Yellowfin tuna is an important species globally, from an economic, food security and a

research perspective. These results will aid survey design for new yellowfin tuna studies,

whether the study is for profile delineation, stock identification or individual assignment.

Researchers wanting to take these results and apply them to other species need to do so with

care. Care is needed as differences in evolutionary history and genetic structure (amongst oth-

ers) will alter the precise data requirements. In such cases, these results should be taken as

indicative. When there are no other sources of information, then perhaps surveys should be

designed to collect more data than this study suggests.

In this study we purposefully did not simulate surveys which already had pilot study infor-

mation. If a pilot study was available, then its data could be used in a couple of different ways.

Firstly, a pilot study could be used to gauge the level of genetic differentiation present and to

see if a small or large number of individuals is required. Secondly, the pilot study could also be

used to select a panel/subset of highly informative markers [29] that would then be scored

within the main study. This can only be done if the genetic groups were known a priori. Since

this marker panel is no longer random, the number of markers scored can no longer be

inferred from the results of this study.

Finally, we note that there are many possible reasons why adequate sample sizes cannot be

obtained, such as when there were no fish available to sample. We note that many of the survey

locations are hard to access and the cost of placing a field team into these locations is high.

This commits a large proportion of survey budgets to items that only change slightly with
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increased numbers of fish and not at all with increased numbers of markers. It is therefore our

recommendation that when field work is undertaken, sufficient effort is taken at hard to access

locations to collect enough fish to make meaningful scientific inference (as outlined in this

study). However, sometimes small sample sizes are truly unavoidable, but does not necessarily

mean that a survey should not be performed. Such data may still be valuable, in that it provides

some information where there may previously have been none. In the future, it can also pro-

vide historical information that would otherwise be completely missing. The key though, it to

recognise that inferences may be uncertain, that the uncertainty should be quantified, and

incorporate the uncertainty into any conclusions or decisions that stem from the data.

Supporting information

S1 Data.

(RDATA)

S1 File.

(ZIP)

Acknowledgments

We would like to thank: Thierry Gosselin for consistent and diligent help; Paige Eveson for

constructive and detailed reading of a preliminary version of this manuscript, and the journal’s

review team for their efforts.

Author Contributions

Conceptualization: Scott D. Foster, Peter Grewe, Campbell Davies.

Data curation: Peter Grewe.

Formal analysis: Scott D. Foster.

Funding acquisition: Campbell Davies.

Investigation: Scott D. Foster, Pierre Feutry.

Methodology: Scott D. Foster.

Supervision: Pierre Feutry, Peter Grewe.

Validation: Scott D. Foster, Pierre Feutry, Peter Grewe, Campbell Davies.

Writing – original draft: Scott D. Foster.

Writing – review & editing: Scott D. Foster, Pierre Feutry, Peter Grewe, Campbell Davies.

References
1. Murphy K., Myors B., and Wolach A. (2009). Statistical Power Analysis: A Simple and General Model

for Traditional and Modern Hypothesis Tests. Routledge.

2. Neter J., Kutner M. H., Nachtsheim C. J., and Wasserman W. (1996). Applied Linear Statistical Models.

Chicago: Irwin. https://doi.org/10.1128/cdli.3.4.369-370.1996 PMID: 8807197

3. National Health and Medical Research Council (2013). Australian code for the care and use of animals

for scientific purposes ( 8th ed.). Canberra: National Health and Medical Research Council.

4. Sinclair E. A. and Hobbs R. J. (2009). Sample size effects on estimates of population genetic structure:

Implications for ecological restoration. Restoration Ecology 17(6), 837–844.

PLOS ONE Sample size requirements for genetic studies on yellowfin tuna

PLOS ONE | https://doi.org/10.1371/journal.pone.0259113 November 4, 2021 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259113.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259113.s002
https://doi.org/10.1128/cdli.3.4.369-370.1996
http://www.ncbi.nlm.nih.gov/pubmed/8807197
https://doi.org/10.1371/journal.pone.0259113


5. Nazareno A. G., Bemmels J. B., Dick C. W., and Lohmann L. G. (2017). Minimum sample sizes for pop-

ulation genomics: an empirical study from an amazonian plant species. Molecular Ecology Resources

17(6), 1136–1147. https://doi.org/10.1111/1755-0998.12654 PMID: 28078808

6. Aguirre-Liguori J. A.; Luna-Sánchez J. A.; Gasca-Pineda J. & Eguiarte L. E. (2020) Evaluation of the

Minimum Sampling Design for Population Genomic and Microsatellite Studies: An Analysis Based on

Wild Maize. Frontiers in Genetics, 11, 870 https://doi.org/10.3389/fgene.2020.00870 PMID: 33193568

7. Hale M. L., Burg T. M., and Steeves T. E. (2012). Sampling for microsatellite-based population genetic

studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLOS

ONE 7(9), 1–10. https://doi.org/10.1371/journal.pone.0045170 PMID: 22984627

8. Flesch E. P., Rotella J. J., Thomson J. M., Graves T. A., and Garrott R. A. (2018). Evaluating sample

size to estimate genetic management metrics in the genomics era. Molecular Ecology Resources 18

(5), 1077–1091. https://doi.org/10.1111/1755-0998.12898 PMID: 29856123

9. Balkenhol N., Waits L. P., and Dezzani R. J. (2009). Statistical approaches in landscape genetics: an

evaluation of methods for linking landscape and genetic data. Ecography 32(5), 818–830.

10. Hoban S., Gaggiotti O., Consortium C., and Bertorelle G. (2013). Sample planning optimization tool for

conservation and population genetics (spotg): a software for choosing the appropriate number of mark-

ers and samples. Methods in Ecology and Evolution 4(3), 299–303.

11. Selmoni O., Vajana E., Guillaume A., Rochat E., and Joost S. (2019). Sampling strategy optimization to

increase statistical power in landscape genomics: a simulation-based approach. bioRxiv. https://doi.

org/10.1111/1755-0998.13095 PMID: 31550072

12. Kalinowski S. T. (2005). Do polymorphic loci require large sample sizes to estimate genetic distances?

Heredity (94), 33–36. https://doi.org/10.1038/sj.hdy.6800548 PMID: 15329660

13. Nei M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

14. Excoffier L., Smouse P. E., and Quattro J. M. (1992). Analysis of molecular variance inferred from met-

ric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genet-

ics 131(2), 479–491. https://doi.org/10.1093/genetics/131.2.479 PMID: 1644282

15. Fournier D. A., Beacham T. D., Riddell B. E., and Busack C. A. (1984). Estimating stock composition in

mixed stock fisheries using morphometric, meristic, and electrophoretic characteristics. Canadian Jour-

nal of Fisheries and Aquatic Sciences 41(3), 400–408.

16. Millar R. B. (1987). Maximum likelihood estimation of mixed stock fishery composition. Canadian Jour-

nal of Fisheries and Aquatic Sciences 44(3), 583–590.

17. Foster S. D., Feutry P., Grewe P. M., Berry O., Hui F. K. C., and Davies C. R. (2018). Reliably discrimi-

nating stock structure with genetic markers: Mixture models with robust and fast computation. Molecular

Ecology Resources 18(6), 1310–1325. https://doi.org/10.1111/1755-0998.12920 PMID: 29943898

18. Paetkau D., Calvert W., Stirling I., and Strobeck C. (1995). Microsatellite analysis of population structure

in canadian polar bears. Molecular Ecology 4(3), 347–354. https://doi.org/10.1111/j.1365-294x.1995.

tb00227.x PMID: 7663752

19. Paetkau D., Slade R., Burden M., and Estoup A. (2004). Genetic assignment methods for the direct,

real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular

Ecology 13(1), 55–65. https://doi.org/10.1046/j.1365-294x.2004.02008.x PMID: 14653788

20. Efron B. and Tibshirani R. J. (1993). An Introduction to the Bootstrap. Number 57 in Monographs on

Statistics and Applied Probability. Boca Raton, Florida, USA: Chapman & Hall/CRC.

21. Davison A. C. and Hinkley D. V. (1997). Bootstrap Methods and their Applications. New York: Cam-

bridge University Press.

22. Grewe P., Feutry P., Hill P., Gunasekera R., Schaefer K., Itano D., et al. (2015). Evidence of discrete

yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally impor-

tant resource. Scientific Reports 5, 16916. https://doi.org/10.1038/srep16916 PMID: 26593698

23. Cruz V. M. V., Kilian A., and Dierig D. A. (2013). Development of dart marker platforms and genetic

diversity assessment of the u.s. collection of the new oilseed crop lesquerella and related species.

PLOS ONE 8(5), 1–13. https://doi.org/10.1371/journal.pone.0064062 PMID: 23724020

24. Laehnemann D., Borkhardt A., and McHardy A.C. (2015). Denoising DNA deep sequencing data—

high-throughput sequencing errors and their correction Briefings in Bioinformatics, 17, 154–179 https://

doi.org/10.1093/bib/bbv029 PMID: 26026159

25. Gosselin, T. (2017). radiator: RADseq Data Exploration, Manipulation and Visualization using R.

26. Gelman A. and Hill J. (2007). Data analysis using regression and multilevel/hierarchical models. New

York: Cambridge University Press.

27. Foster, S. D. (2018). stockR: Identifying Stocks in Genetic Data. R package version 1.0.68.

PLOS ONE Sample size requirements for genetic studies on yellowfin tuna

PLOS ONE | https://doi.org/10.1371/journal.pone.0259113 November 4, 2021 16 / 17

https://doi.org/10.1111/1755-0998.12654
http://www.ncbi.nlm.nih.gov/pubmed/28078808
https://doi.org/10.3389/fgene.2020.00870
http://www.ncbi.nlm.nih.gov/pubmed/33193568
https://doi.org/10.1371/journal.pone.0045170
http://www.ncbi.nlm.nih.gov/pubmed/22984627
https://doi.org/10.1111/1755-0998.12898
http://www.ncbi.nlm.nih.gov/pubmed/29856123
https://doi.org/10.1111/1755-0998.13095
https://doi.org/10.1111/1755-0998.13095
http://www.ncbi.nlm.nih.gov/pubmed/31550072
https://doi.org/10.1038/sj.hdy.6800548
http://www.ncbi.nlm.nih.gov/pubmed/15329660
https://doi.org/10.1093/genetics/131.2.479
http://www.ncbi.nlm.nih.gov/pubmed/1644282
https://doi.org/10.1111/1755-0998.12920
http://www.ncbi.nlm.nih.gov/pubmed/29943898
https://doi.org/10.1111/j.1365-294x.1995.tb00227.x
https://doi.org/10.1111/j.1365-294x.1995.tb00227.x
http://www.ncbi.nlm.nih.gov/pubmed/7663752
https://doi.org/10.1046/j.1365-294x.2004.02008.x
http://www.ncbi.nlm.nih.gov/pubmed/14653788
https://doi.org/10.1038/srep16916
http://www.ncbi.nlm.nih.gov/pubmed/26593698
https://doi.org/10.1371/journal.pone.0064062
http://www.ncbi.nlm.nih.gov/pubmed/23724020
https://doi.org/10.1093/bib/bbv029
https://doi.org/10.1093/bib/bbv029
http://www.ncbi.nlm.nih.gov/pubmed/26026159
https://doi.org/10.1371/journal.pone.0259113


28. Lou R. N.; Jacobs A.; Wilder A. & Therkildsen N. O. (2021) A beginner’s guide to low-coverage whole

genome sequencing for population genomics Molecular Ecology, na, na-na https://doi.org/10.1111/

mec.16077 PMID: 34250668

29. Rosenberg N. A. (2005) Algorithms for selecting informative marker panels for population assignment.

J. Comput. Biol. 12, 1183–1201. https://doi.org/10.1089/cmb.2005.12.1183 PMID: 16305328

PLOS ONE Sample size requirements for genetic studies on yellowfin tuna

PLOS ONE | https://doi.org/10.1371/journal.pone.0259113 November 4, 2021 17 / 17

https://doi.org/10.1111/mec.16077
https://doi.org/10.1111/mec.16077
http://www.ncbi.nlm.nih.gov/pubmed/34250668
https://doi.org/10.1089/cmb.2005.12.1183
http://www.ncbi.nlm.nih.gov/pubmed/16305328
https://doi.org/10.1371/journal.pone.0259113

