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Abstract: Increasing evidence suggests that dysregulation of microRNAs (miRNAs) may lead
to a variety of diseases. Therefore, identifying disease-related miRNAs is a crucial problem.
Currently, many computational approaches have been proposed to predict binary miRNA-disease
associations. In this study, in order to predict underlying miRNA-disease association types,
a semi-supervised model called the network-based label propagation algorithm is proposed to
infer multiple types of miRNA-disease associations (NLPMMDA) by mutual information derived
from the heterogeneous network. The NLPMMDA method integrates disease semantic similarity,
miRNA functional similarity, and Gaussian interaction profile kernel similarity information of
miRNAs and diseases to construct a heterogeneous network. NLPMMDA is a semi-supervised
model which does not require verified negative samples. Leave-one-out cross validation (LOOCV)
was implemented for four known types of miRNA-disease associations and demonstrated the
reliable performance of our method. Moreover, case studies of lung cancer and breast cancer
confirmed effective performance of NLPMMDA to predict novel miRNA-disease associations and
their association types.

Keywords: multiple type miRNA-disease association prediction; semi-supervised learning;
network similarity; label propagation algorithm

1. Introduction

MicroRNAs (miRNAs) are small endogenous non-coding RNAs that mainly regulate gene
expression at the post-transcriptional level [1–3]. They are evolutionarily conserved and play a
regulatory role by base pairing with messenger RNAs (mRNAs), resulting in mRNA degradation
or translation inhibition [2,4,5]. Increasing evidence suggests that miRNAs are involved in a variety
of critical biological processes, such as development, differentiation, apoptosis and metabolism [2].
Since the discovery of lin-4 and let-7 [6,7], many researchers have focused on the study of miRNAs,
and numerous miRNAs have been identified. Furthermore, a great deal of databases have been established
to provide information on miRNAs, such as the Human microRNA Disease Database (HMDD) [8],
miR2Disease [9], database of Differentially Expressed miRNAs in human Cancers (dbDEMC) [10]
and so on. It has been demonstrated that dysregulation of miRNAs may lead to a variety of
diseases [11–13]. For example, miR-21 can target the MAP2K3 gene directly during the carcinogenesis
of hepatocellular carcinoma, resulting in expression inhibition of MAP2K3 [14]. This also indicates
that miRNAs can serve as efficient biomarkers for disease detection, diagnosis and prognosis [15].
Therefore, identifying disease-related miRNAs is a crucial problem.

During the past few decades, various disease-related miRNAs have been identified by several
experimental methods. However, with the increasing of new miRNAs and other biological information,
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these experimental methods face severe challenges, such as long experimental periods and expensive
equipment. Thus, many computational approaches have been proposed to predict miRNA-disease
associations [16]. The goal of computational approaches is to reduce the number of candidate
miRNAs. Based on abundant biological information, several network-based methods are proposed
to infer the relationships between miRNAs and diseases. The key of network-based methods is
to calculate similarity scores among miRNAs and diseases over networks. It is well known that
miRNAs with similar functions tend to be associated with similar diseases and vice versa [16,17].
Based on this assumption, Wang et al. [18] provided a method to infer human miRNA functional
similarity (MISIM) by measuring semantic similarity of diseases which associated with miRNAs.
Furthermore, they constructed a miRNA functional network. On the basis of results studied in [18],
Xuan et al. [19] calculated miRNA functional similarity by integrating information of disease terms
and similarity of disease phenotype. A new method was proposed to predict disease-related
miRNAs, which is based on weighted k of most similar neighbors. The weights were assigned
by miRNA family or cluster information. This method exhibited a good performance, but it was
not applicable to diseases without any known associated miRNAs. Therefore, Chen and Zhang [20]
adopted a network-consistency-based inference method to predict potential disease-related miRNAs
based on the data derived from the miRNA functional similarity network, disease phenotype
similarity network, and known miRNA-disease interaction network, which can be applied to isolated
diseases without any related miRNAs. Nevertheless, the performance is not particularly satisfactory.
Recently, Gu et al. [21] proposed a global and effective method to infer the associations between
miRNAs and diseases, which is called network consistency projection for miRNA-disease associations
(NCPMDA). NCPMDA is a non-parametric approach and takes full advantage of various molecular
data, including miRNA functional similarity network, disease semantic similarity network, validated
known miRNA-disease associations and miRNA family information. NCPMDA is applicable to
isolated diseases and the predictive performance is superior to the previous method. The main problem
of the above algorithms is that they all adopted similarity scores calculated by Wang et al. [18] that
are estimated by miRNA-related diseases. However, the related disease information of many
miRNAs remains largely unknown. In addition, these methods do not allow identification of the
underlying proteins involved in miRNA-disease associations. In order to reveal the underlying
proteins, Mørk et al. [22] developed a protein-driven method, miRPD, to infer miRNA-disease
associations by using miRNA-protein associations and protein-disease associations. Without using any
known information of miRNA-disease relationships, this method measured the associations of miRNAs
and diseases via calculating association scores of miRNA-protein and protein-disease. The miRPD
method attempted to reveal the underlying proteins involved in miRNA-disease associations and
exhibited a reliable result.

Machine-learning-based algorithms are beneficial to improve the prediction performance, and up to
now, several studies have proposed machine-learning-based models to predict potential miRNA-disease
associations. For example, Jiang et al. [23] trained a support vector machine classifier by a feature
vector to distinguish positive miRNA-disease associations from large-scale negative ones. Xu et al. [24]
constructed a support vector machine classifier based on the features and changes in miRNA expression;
then, the classifier was applied to an miRNA target–dysregulated network to infer new disease
miRNAs. Generally, the common limitation of these methods is the selection of negative samples.
It is known that there are no experimental validated negative associations between miRNAs and
diseases, and miRNA-disease pairs selected from unknown miRNA-disease pairs might appear to be
too biased. Considering this fact, Chen and Yan [25] proposed a semi-supervised method motivated by
the framework of regularized least squares to infer potential miRNA-disease associations (RLSMDA).
RLSMDA exhibited a reliable performance by leave-one-out cross validation (LOOCV) and case studies.
In addition, it can work for diseases without any known related miRNAs. However, it might have
biased the results, i.e., that they constructed disease similarity network and miRNA similarity network
only by disease semantic similarity and miRNA functional similarity, respectively. Recently, based on
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the hypothesis that distributional semantics can reveal information of relationships between miRNAs
and diseases, Pasquier and Gardès [26] proposed a vector space model to discover new disease-miRNA
associations. In this method, distributional information of miRNAs and diseases is represented
in a high-dimensional vector space, which contains miRNA-disease associations, miRNA-related
target mRNAs, family information of miRNAs, and genomic location information of miRNAs and
abstracts of associated studies. By reducing the dimensionality of this high-dimensional vector space
to fewer dimensions, they calculated the cosine distance of two vectors to measure their correlations.
This method makes full use of miRNA-related information and achieves a satisfactory performance.

All of the above computational methods have identified various novel miRNA-disease
interactions, but the specific types of interaction have not been predicted. Thus, mechanisms underlying
the miRNA-disease associations still cannot be fully understood. In recent years, investigating the role
of miRNAs in pathogenesis of human diseases has become one of the hottest topics [8], especially for
entries from circulating miRNAs, epigenetics, miRNA-target interactions and genetics, whose number
recorded in the HMDD has increased remarkably. As for interactions between miRNAs and targeted
genes, for example, miRTar [27], an integrated system, identifies miRNA-target interactions in
various scenarios and analyzes miRNA-targeted genes in pathways. In order to improve the
accuracy of miRNA-gene target interaction identification, Pio et al. [28] presented a semi-supervised
ensemble-based classifier that combines the prediction scores returned by several base algorithms
to infer miRNA-targeted genes. They also predicted miRNA regulatory networks by a bi-clustering
algorithm, which analyzes miRNA-target interactions to obtain inference results. The predicted
miRNA-target interactions and miRNA regulatory network are stored in Co-clustered miRNA
Regulatory Networks (ComiRNet) database. All of these researchers have shown that the miRNA
regulatory network is complicated. Therefore, Chen et al. [29] developed a method to predict multiple
types of miRNA-disease associations by a restricted Boltzmann machine (RBM) model. They constructed
RBMs for miRNAs based on the data derived from HMDD v2.0, which included four types of
miRNA-disease associations. Based on a contrastive divergence (CD) algorithm, they trained the
constructed RBMs by initially setting the visible layer and hidden layer to obtain parameters of the
RBM model. Finally, novel disease-related miRNAs and their types of interaction can be predicted
by the trained RBM model. Although this method builds on the first model to predict multiple
types of miRNA-disease associations, it only takes advantage of the data of known four types of
miRNA-disease associations and ignores the relationships of disease-disease pairs and miRNA-miRNA
pairs. Besides, RBM is a deep learning model and its training is time-consuming. In addition,
the interaction prediction method among other types of biological entities can provide constructive
suggestions for us in miRNA-disease interaction inference. By comparing over thirty network inference
methods, Marbach et al. [30] observed that community-based methods can result in a powerful and
robust performance for gene regulatory network reconstruction across different gold standards datasets.
Therefore, Ceci et al. [31] proposed a semi-supervised method to deal with the problem of gene network
reconstruction based on a multi-view learning framework. After assigning labels and identifying the
multiple views, the method builds a classifier for each view, and then combines the output results
of views to obtain final results. By applying a clustering algorithm, such as principle components
analysis (PCA) or k-means, the views can be automatically identified by the system. This algorithm
resolves the low quality and small quantity problem of known gene-gene interaction data and combines
advantages of existing methods to achieve a good performance.

In this paper, a semi-supervised model called network-based label propagation method for
inferring multiple types of miRNA-disease associations (NLPMMDA) is proposed by mutual
information derived from the heterogeneous network. Label propagation is an efficient algorithm
which can make full use of the information of labeled and unlabeled data and has been used in
many studies [32–35]. A key of the NLPMMDA method is to construct a heterogeneous network.
Firstly, a disease similarity homo-network is established by disease semantic similarity and Gaussian
interaction profile kernel similarity. Secondly, a miRNA similarity homo-network is constructed
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in a similar way, which combines miRNA functional similarity and Gaussian interaction profile
kernel similarity. Thirdly, a multi-type miRNA-disease association hetero-network is established by
validating four types of miRNA-disease associations. Then NLPMMDA performs label propagation in
each homo-network. The homo-networks are used to capture cluster structure among diseases and
miRNAs, and the hetero-network is used to capture mutual information of miRNA and disease pairs.
Finally, final label scores of miRNA-disease pairs under four types can be calculated by propagating
information on the heterogeneous network. The results of LOOCV and case studies demonstrated the
reliable performance of NLPMMDA.

2. Materials and Methods

2.1. Data Preparation

In this paper, four types of human miRNA-disease association data were retrieved from
HMDD [36]. In the updated database, human miRNA-disease data were annotated in four types,
including entries from miRNA-target interactions, circulation samples, epigenetics and genetics [8].
After mapping the different miRNA precursors to mature miRNAs, the repeating miRNA-disease
associations were removed. Finally, 682 miRNA-disease association data were obtained from
miRNA-target interactions, 443 entries from circulations, 199 entries from epigenetics and 356 entries
from genetics. All of these 1680 miRNA-disease associations are involved in 324 miRNAs and
171 diseases. These four types of miRNA-disease associations were used to construct a multi-type
miRNA-disease association hetero-network which can offer the mutual interaction information.
Besides, these four types of miRNA-disease associations are used as the gold standard dataset to
evaluate the performance of our algorithm.

2.2. Construct Disease Similarity Homo-Network

The relationship of diseases can be represented by a directed acyclic graph (DAG) according to
the disease classification system in the Medical Subject Headings (MeSH) database, in which nodes
represent diseases and links represent the relationship of two diseases. For instance, a DAG of a
disease di can be represented as DAG(di) = (di, V(di), E(di)), where V(di) represents the vertices set
of all ancestor diseases of di and disease di itself, and E(di) represents the edges set of corresponding
links. According to the algorithm proposed in [18], semantic similarity value SS of di and dj can be
calculated by:

SS(di, dj) =
∑d∈V(di) ∩ V(dj)

(Ddi
(d) + Ddj

(d))

SV(di) + SV(dj)
, (1)

where Ddi
(d) is the contribution of disease d to the semantic value of disease di, the contribution

of disease di itself to its own semantic value is defined as 1 and the contribution of other diseases
is defined as max

{
∆ ∗ Ddi

(d′)
∣∣d′ ∈ children node of d

}
. Here, ∆ is the semantic contribution factor

to distinguish the different semantic contribution values of disease d in different layers of DAG(di);
SV(di) is the semantic value of disease di, which can be defined as ∑d∈V(di)

Ddi
(d).

Gaussian interaction profile kernel similarity for diseases can be calculated by Gaussian kernel [37].
The miRNA interaction profile of a disease di is defined as DIP(di), which is a binary vector to represent
whether the disease di interacts with every miRNA in the multi-type miRNA-disease association
hetero-network. Thus, the Gaussian interaction profile kernel similarity GSd of disease di and disease
dj is defined as:

GSd(di, dj) = exp(−γd‖DIP(di)− DIP(dj)‖2), (2)

where γd is a parameter used to control the kernel bandwidth, which is set as 1/(∑nd
i=1 DIP(di)

2/nd).
Here, nd is the total number of diseases.
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By integrating the disease sematic similarity matrix and Gaussian interaction profile kernel
similarity matrix for diseases, disease similarity matrix Sd of disease similarity homo-network can be
obtained as Equation (3).

Sd(di, dj) =

{
SS(di, dj), di and dj have semantic similarity,

GS(di, dj), otherwise.
(3)

In the disease similarity homo-network, the transition probability matrix is defined as:

Pd = D−
1
2

d SdD−
1
2

d , (4)

where Dd is a diagonal matrix and Dd(i, i) = ∑j∈Nd
Sd(i, j), and Nd is the neighboring nodes set of

disease d.

2.3. Construction of the miRNA Similarity Homo-Network

Similar to the construction of the disease similarity homo-network, the miRNA similarity
homo-network is constructed based on miRNA functional similarity and Gaussian interaction profile
kernel similarity. MiRNA functional similarity was calculated in a previous study [18]. The miRNA
functional similarity value of miRNA mi and mj can be represented by MFS(mi, mj). In order to
reveal associations of miRNAs and diseases under different types, MFS(mi, mj) is simply extended to
multiple types of miRNA functional similarity matrix MMFS(mi, mj, k), it is defined as:

MMFS
(
mi, mj, k

)
= MFS

(
m[i/nk

, m[j/nk

)
, (5)

where k is the specific type, nk is the total number of types.
The Gaussian interaction profile kernel similarity matrix for miRNAs can be calculated by:

GSm,k(mi, mj) = exp(−γm,k‖MIPk(mi)−MIPk(mj)‖2), (6)

where MIPk(mi) is a binary vector which can represent relationships of miRNA mi and the whole
diseases under type k. γm,k is a parameter used to control the kernel bandwidth which is set as
1/(∑nm

i=1 MIPk(mi)
2/nm). Here, nm is the number of miRNAs.

The integrated miRNA similarity homo-network is constructed:

Sm,k(mi, mj) =

{
MMFS(mi, mj, k), mi and mj have functional similarity,

GSm,k(mi, mj), otherwise.
(7)

In the miRNA similarity homo-network, the transition probability matrix is defined as:

Pm,k = D−
1
2

m,k Sm,kD−
1
2

m,k , (8)

where Dm,k is a diagonal matrix and Dm,k(i, i) = ∑j,k∈Nm Sm,k(i, j, k), and Nm is the neighboring nodes
set of the miRNA m in miRNA homo-network.

2.4. Construction of the Multi-Type miRNA-Disease Association Hetero-Network

The multi-type miRNA-disease association hetero-network shows the relationships between
miRNAs and diseases extracted from HMDD, including four types of human miRNA-disease
association data. Figure 1 shows an example of the heterogeneous network, which contains
four diseases and five miRNAs. The edges of multi-type miRNA-disease association hetero-network
are created by four known types of miRNA-disease associations, and there are four edges between
a disease and a miRNA at most. The edge vector Eij = {ek} is used to represent the edges between



Genes 2018, 9, 139 6 of 16

disease di and miRNA mj, where ek = 1 if di and mj has an association of type k, and ek = 0
otherwise. For example, if there are three association types between d3 and m2, then the edge vector
is E32 = [1, 1, 1, 0]. Based on the edge vectors, the adjacency matrix of multi-type miRNA-disease
association hetero-network can be created. If disease di and miRNA mj have confirmed associations,
then A(di, mj) = Eij, where i = 1, . . . , nd, j = 1, . . . , nm, nd and nm are the number of diseases and
miRNAs, respectively.

Then, transition probability of miRNAs and diseases in hetero-network can be calculated by:

Pd,m,k = Dd,m,k
− 1

2 ADd,m,k
− 1

2 , (9)

where Dd,m,k is a diagonal matrix and Dd,m,k(i, i) = ∑j,k A(i, j, k).
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Figure 1. An example of the heterogeneous network composed of disease similarity homo-network,
microRNAs (miRNA) similarity homo-network and multi-type miRNA-disease association hetero-network.

2.5. Network-Based Label Propagation Algorithm for Predicting Multiple miRNA-Disease Associations

Label propagation is a semi-supervised method. Its main purpose is to predict the labels of
unlabeled data from both labeled and unlabeled data. A regularization framework for performing
label propagation algorithm for a single network has been introduced and its convergence has been
proved [35]. In this paper, label propagation is extended on a single network to our heterogeneous
network, which is motivated by literature [38], and NLPMMDA is presented. Figure 2 shows the
procedures of the NLPMMDA algorithm. The NLPMMDA method takes full advantage of mutual
information in the heterogeneous network. Based on this method, novel disease-related miRNAs and
the specific association types can be predicted.

The NLPMMDA algorithm can be described in detail as follows:
Step 1. Obtaining four types of miRNA-disease association data from HMDD and carrying out a

data cleaning process.
Step 2. According to Sections 2.2–2.4, the heterogeneous network is constructed. In this study,

the heterogeneous network G = (V, E) is composed of the disease similarity homo-network
Gd = (Vd, Ed), miRNA similarity homo-network Gm,k = (Vm,k, Em,k) and multi-type miRNA-disease
association hetero-network Gd,m,k = (Vd ∪Vm,k, Ed,m,k).
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Step 3. Performing network-based label propagation algorithm on the disease similarity homo-network.
For a given query disease, the final label vector can be obtained by iteratively implementing Equation (10).

f t
d = (1− λd) f 0

d + λdPd f t−1
d , (10)

where Pd is the transition probability matrix calculated by Equation (4); f t−1
d is a current label vector

of diseases in which the ith element provides a current label score of disease di at time t− 1; f t
d is the

final label vector of diseases; f 0
d is the initial label vector of disease nodes, and it can be obtained by

Equation (11).

f 0
d =

1− 2λd
1− λd

l0
d +

λd
1− λd

Pd,m,k fm, (11)

where l0
d is the current label vector of diseases which is derived from miRNA-disease interaction

hetero-network; fm is the current label vector of miRNA nodes, λd is a diffusion parameter of disease
similarity homo-network which specifies the relative amount of information from its neighbors and its
initial label; Pd,m,k is the transition probability matrix calculated by Equation (9). Finally, f t

d converged
to its limit fd when ‖ f t

d − f t−1
d ‖ < σ, where σ is a threshold to control terminate iteration.

Step 4. Performing network-based label propagation algorithm on the miRNA similarity homo-network
to obtain the final label vector according to Equation (12).

f t
m,k = (1− λm) f 0

m,k + λmPm,k f t−1
m,k , (12)
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where Pm,k is the transition probability matrix calculated by Equation (8); f t−1
m,k is the current label

vector of miRNAs at time t− 1; f t
m,k is the final label vector of miRNAs; f 0

m,k is the initial label vector
of miRNAs in four types, which is calculated by Equation (13).

f 0
m,k =

1− 2λm

1− λm
l0
m,k +

λm

1− λm
Pd,m,k fd, (13)

where l0
m is the current label vector of miRNAs in which the jth element represents the current label

score of miRNA mj under type k; fd is the current label vector of diseases; λm is a diffusion parameter
of miRNA similarity homo-network. Similarly, the condition of convergence is ‖ f t

m,k − f t−1
m,k ‖ < σ,

where σ is a threshold to control terminate iteration.
Step 5. Sequentially implementing network-based label propagation in the disease similarity

homo-network and miRNA similarity homo-network to update the final label vector fm and fd
until both homo-networks converge. The condition of convergence is the same as mentioned above.
Finally, for a given miRNA-disease pair, its final confidence label score in four types can be obtained.
By ranking the label score in the final label vector, the top miRNAs are as considered as the most
probable disease-related miRNAs and their type is considered as the most probable type.

3. Results

3.1. Performance Evaluation

In this study, to evaluate the performance of NLPMMDA, a LOOCV was implemented on
four known and experimentally verified types of human miRNA-disease associations. Each known
miRNA-disease association was left out in turn, and the remaining miRNA-disease associations were
used as the labeled set. Then, the NLPMMDA method was implemented and the predictive scores of
four types for each known miRNA-disease association were obtained. In addition, a receiver-operating
characteristic (ROC) curve was drawn, which plots the true positive rate (TPR) versus the false
positive rate (FPR) at different thresholds. The corresponding area under the ROC curve (AUC) was
calculated to evaluate the predictive performance of the NLPMMDA method, where AUC = 1 means
perfect performance and AUC = 0.5 means random performance. The ROC curve is typically used
in binary classification problems to demonstrate the performance of a classifier. If a dataset only has
positive and unlabeled samples, the ROC curve and AUC can be obtained by the ranked result of
test samples. For example, in LOOCV, the test sample is ranked by the prediction scores of candidate
miRNAs without confirmed association with currently investigated disease. In this paper, because the
dataset can be divided into four classes, the output is operated by binarization and an ROC curve for
each type is drawn. Finally, by considering each element of predictive scores as a binary prediction,
the micro-average ROC curve was obtained. As can be seen in Figure 3, NLPMMDA obtained a reliable
micro-average AUC value of 0.9739. The AUC value of four types of miRNA-disease associations is
0.9396, 0.9822, 0.9957 and 0.9813, respectively; type 1 represents entries from miRNA-target interactions,
type 2 represents entries from circulation samples, type 3 represents entries from epigenetics and type
4 represents entries from genetics.

Besides, considering the limited number of known miRNA-disease associations, the area under
the precision-recall (AUPR) curve is applied to further evaluate the performance of NLPMMDA.
The precision-recall (PR) curve plots the relationship between precision and recall at different
thresholds, where high precision is related to a low false positive rate, and high recall is related
to a low false negative rate. Generally, an AUPR value closer to 1 means the performance is better.
As shown in Figure 4, the micro-average AUPR value of NLPMMDA is 0.9323, and the AUPR value
for every type is 0.9441, 0.9371, 0.9625 and 0.9225, respectively.
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Figure 4. Precision-recall (PR) curve and area under the precision-recall (AUPR) value of NLPMMDA
based on LOOCV. The micro-average AUPR value of NLPMMDA is 0.9323. The AUC value of type 1,
2, 3, 4 is 0.9441, 0.9371, 0.9625 and 0.9225, respectively.

3.2. Comparison with the Restricted Boltzmann Machine Model for Predicting Multiple Types of
miRNA-Disease Associations Method

As far as we know, the restricted Boltzmann machine model for predicting multiple types
of miRNA-disease associations (RBMMMDA) [29] is the first method to predict multiple types of
miRNA-disease associations. It only makes use of known multiple types of miRNA-disease association
data, and the AUC score of LOOCV is 0.8606. However, our method, NLPMMDA, integrates the
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information of disease semantic similarity, Gaussian interaction profile kernel similarity for diseases,
miRNA functionally similarity, Gaussian interaction profile kernel similarity for miRNAs and the
known four types of miRNA-disease associations, obtaining a better performance. The micro-average
AUC value of NLPMMDA is 0.9739. Considering the complex structure of the RBM model, it is difficult
to combine the disease similarity information and miRNA similarity information in the RBM model.
The performances of RBMMMDA and NLPMMDA can be seen in Table 1. In addition, the RBM
model has various parameters and parameter selection problem is not solved well, thus the parameters
of the RBM model are simply a used experience value. Parameters of the NLPMMDA method are
selected by the performance of the experiment. Besides, training of the RBM model takes a long time.
However, NLPMMDA is a semi-supervised method, and the execution time is short.

Table 1. Comparison with the restricted Boltzmann machine model for predicting multiple types of
miRNA-disease associations (RBMMMDA) method.

Algorithms RBMMMDA NLPMMDA

AUC 0.8606 0.9739

Data Known four types of miRNA-disease associations

Disease semantic similarity, miRNA
functional similarity, Gaussian interaction
profile kernel similarity and known four
types of miRNA-disease associations

Application Cannot be applied to isolated diseases Cannot be applied to isolated diseases

Parameters Use the previous value Select by the performance of experiments

model Supervised learning Semi-supervised learning

Case study Lung cancer: 33 of top 50 Lung cancer: 44 of top 50

Breast cancer: 17 of top 50 Breast cancer: 37 of top 50

3.3. Effect of the Parameters

There are two parameters λd and λm in the NLPMMDA algorithm. λd is a diffusion parameter of
disease similarity homo-network, which adjusts the relative amount of information from its initial label
to its neighbors. λm is a diffusion parameter of miRNA similarity homo-network. In this paper, λd and
λm are set to the same value. By selecting different λd and λm values (varying from 0.1 to 0.9 with
scale 0.1), LOOCV is implemented to obtain the AUC score of the NLPMMDA method. The LOOCV
results are shown in Table 2. As a result, the AUC value is almost equal in the range of 0.1 ≤ λd ≤ 0.4
and 0.1 ≤ λm ≤ 0.4, and AUC value is decreased in the range of 0.6 ≤ λd ≤ 0.9 and 0.6 ≤ λm ≤ 0.9.
However, our predictive method has no predictive ability when λd and λm are equal to 0.5, which is
a result of the approach of initialization in homo-networks. Therefore, in this study, λd = 0.2 and
λm = 0.2 are selected to predict novel miRNA-disease association types by the NLPMMDA algorithm.
The optimal values of parameters depend on the known miRNA-disease association dataset.

Table 2. Effect of the parameters.

λd λm AUC AUPR

0.1 0.1 0.9738 0.9320
0.2 0.2 0.9739 0.9323
0.3 0.3 0.9738 0.9309
0.4 0.4 0.9720 0.9302
0.5 0.5 0.5 0.5
0.6 0.6 0.8173 0.6490
0.7 0.7 0.8076 0.6409
0.8 0.8 0.7900 0.6251
0.9 0.9 0.7559 0.5962



Genes 2018, 9, 139 11 of 16

3.4. Case Studies of Lung Cancer and Breast Cancer

To further confirm the robustness of the NLPMMDA method, case studies of lung cancer and
breast cancer were implemented to evaluate the ability of the NLPMMDA method for predicting
multi-types of miRNA-disease associations. All known miRNA-disease associations under four types
were assigned as labeled data, and unknown miRNA-disease pairs were used as unlabeled data.
Then, based on labeled and unlabeled data, NLPMMDA can predict miRNA-disease relationships and
their specific types. Prediction results were manually verified by online databases and recent literature.
The top 50 potential miRNA-disease association types of lung cancer and breast cancer are listed in
Tables 3 and 4, respectively, including disease-related miRNAs, miRNA-disease association types and
evidences related to miRNA-disease pairs. The evidence is the PubMed Unique Identifier (PMID)
of related literature. Due to the complexity of diseases and the associated miRNA roles, a predicted
association type supported by three PubMed articles at least can be considered as a reliable association type.

The morbidity and mortality of lung cancer is high in both men and women, and lung cancer
is the most common cause of cancer death worldwide [39]. Although various new therapeutics and
strategies for detection and early diagnosis have progressed in lung cancer, its prognosis remains
poor [40]. Recent studies demonstrated the important role of miRNAs in development and therapy
response of lung cancer. In the labeled data, there are 52 miRNA-disease associations, which are
classified as the miRNA-target type [41,42], circulating miRNA type [43,44], epigenetics type [45] and
genetics type [46,47]. After implementing the NLPMMDA method on labeled and unlabeled data,
scores of miRNA-disease pairs are predicted. As a result, among top 20 and top 50 candidates without
relevance of known association types, 17 and 44 lung cancer-related miRNAs and their association
types are supported by different evidence, respectively, and 25 predicted results are considered as
reliable association types. As shown in Table 3, in the top 50 potential lung cancer-related miRNAs,
miR-133a plays a tumor suppressor role in non-small cell lung cancer (NSCLC) by targeting IGF-1R,
TGFBR1 and EGFR [48]. Also, in NSCLC, miR-143 targets ATG2B and miR-34a targets TGFβR2 to inhibit
cell proliferation [49,50]; Besides, serum miR-126 and miR-21 levels can be used as novel biomarkers
in non-small cell lung cancer development, metastasis and screening [51,52], and circulating miR-29a
shows a highly prognostic signature in non-squamous NSCLC patients [53]. The single nucleotide
polymorphisms rs2910164 of miR-146a are associated with the risk of NSCLC in the Chinese population,
which can be regarded as the genetics type [54].

Table 3. Lung cancer-related candidate miRNAs and association types predicted by NLPMMDA.

miRNAs Types PMID miRNAs Types PMID

hsa-mir-499a genetics unconfirmed hsa-mir-19a target 27588137;25604748;28592790
hsa-mir-146a genetics 25154761;24144839;29127520 hsa-let-7f target 29017393
hsa-mir-133a target 24816813;22089643;25518741 hsa-mir-15a target 25442346;24500260;25874488
hsa-mir-126 circulation 28253725;27093275;29266846 hsa-mir-206 target 26919096;26075299;25522678
hsa-mir-17 genetics 17384677 hsa-mir-16 genetics unconfirmed
hsa-mir-21 circulation 25501703;25421010;29163821 hsa-mir-126 target 18602365;22510476;29277611
hsa-mir-143 target 25322940;25003638;24070896 hsa-mir-125b target 28713974
hsa-mir-34a target 25501507;25038915;24983493 hsa-mir-218 target 21159652;24247270;24705471
hsa-mir-20a genetics 17384677 hsa-mir-17 circulation 23263848
hsa-mir-29a circulation 24928469 hsa-let-7e target unconfirmed
hsa-mir-200c target 24997798;24205206;23708087 hsa-mir-20a target 24722426
hsa-mir-17 target 24755562;24722426;29289833 hsa-mir-219 target 28714014
hsa-mir-92a genetics unconfirmed hsa-mir-222 target 21042732
hsa-mir-20a circulation 25421010 hsa-mir-19b target 28364280
hsa-mir-34a epigenetics 18719384 hsa-mir-429 target 24866238;27602157
hsa-mir-34b epigenetics 24130071;22047961;21383543 hsa-mir-223 circulation 28356944;25421010;29212284
hsa-mir-18a genetics unconfirmed hsa-mir-18a target 28471447

hsa-mir-200b target 22139708;28731781;28615992 hsa-mir-122 circulation 24282590;25926378
hsa-mir-155 target 22027557;29260515;28939896 hsa-let-7a target 21097396
hsa-mir-16 target 25435430;23954293;29138833 hsa-mir-15a genetics unconfirmed
hsa-mir-34c epigenetics 24130071;22047961;21383543 hsa-mir-124 epigenetics 17308079
hsa-mir-221 target 18246122;21042732;19962668 hsa-mir-92a target 23820254
hsa-mir-183 target 18840437;26951513;27593936 hsa-mir-133b target 22883469;19654003;29328427
hsa-mir-214 target 28396596;26462018;28396596 hsa-mir-155 genetics 28225782

hsa-mir-146a circulation 28678319;25755772;24531034 hsa-mir-203 target 25140799;24040137;28921827

PMID: PubMed Unique Identifier.
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Based on annual statistical data, breast cancer is one of the most common types of cancer which
mainly occurs in women [55]. Current studies demonstrated related death rates of breast cancer
are still on the rise [56]. Besides, accumulating evidence shows that miRNAs play a vital role in
breast cancer and can be used as diagnosis and therapeutic biomarkers for breast cancer patients.
In our labeled data, there are 176 known miRNAs-disease associations which can be divided into
four types according to evidence from literature. For example, serum miR-155 is up-regulated in
breast cancer patients; thus, serum miR-155 is a potential biomarker to track breast cancer [57,58].
According to HMDD, the association between miR-155 and breast cancer is labeled as the circulation
type [8]. The candidate miRNAs without known breast cancer-related miRNAs and their association
types are predictive by the NLPMMDA method. Among the top 20 and top 50 potential miRNAs,
17 and 37 miRNA-disease association types are confirmed by biological evidence, respectively, and 16
predicted results are considered as reliable association types. Table 4 shows the details. Hsa-miR-1 is a
breast cancer-related miRNA in the HMDD database. However, their underlying association type is
not clear. In our predictive result, the relationship between hsa-miR-1 and breast cancer is target type,
which can be proved by various evidence. For example, as described in the result of Liu et al. [59],
hsa-miR-1 can function as a tumor suppressor in breast cancer by targeting K-RAS and MALAT1.
Also, IMPDH1 and NPEPL1 genes are identified as direct targets of miR-19a in breast cancer by a
quantitative proteomic strategy [60]; miR-19b can promote metastasis of breast cancer by targeting
MYLIP and its related cell adhesion molecules [61]; and miR-133a acts as a tumor suppressor in breast
cancer by targeting EGFR [62]. Moreover, the plasma level of circulating miR-146a is involved in breast
cancer biology and tumor progression [63]. In primary human breast cancer, hsa-miR-9 is affected by
epigenetic inactivation because of aberrant hypermethylation [64].

Table 4. Breast cancer-related candidate miRNAs and association types predicted by NLPMMDA.

miRNAs Types PMID miRNAs Types PMID

hsa-mir-16 genetics 16754881;17012848 hsa-mir-127 target 24282530;24155205;25477702
hsa-mir-1 target 26275461;26926567;26497855 hsa-let-7i target 24662829;21826373;

hsa-mir-126 circulation 28683441 hsa-let-7a genetics 26681038
hsa-mir-19a target 22952885;23831570;27596294 hsa-mir-106b target 27519168;27325313;28518139
hsa-let-7a target 24172884 hsa-mir-219 target Unconfirmed

hsa-mir-19b target 28969074;28731027;27602768 hsa-let-7f genetics 23042301
hsa-mir-92a genetics Unconfirmed hsa-mir-127 epigenetics 27998789
hsa-mir-223 circulation Unconfirmed hsa-mir-15b target 25783158
hsa-mir-18a target 19684618;25069832;21755340 hsa-mir-143 target 28746466;28559978;28588724;27121210
hsa-mir-29a circulation Unconfirmed hsa-mir-19b circulation Unconfirmed

hsa-let-7c target 25388283 hsa-mir-199a circulation 26476723;25906045
hsa-mir-125b genetics 19738052 hsa-let-7e genetics Unconfirmed
hsa-mir-133a target 23786162;29207145;26107945 hsa-mir-145 circulation 23334650
hsa-mir-15a target 27596816;27713175;28655885 hsa-mir-155 genetics 26095675
hsa-let-7d target 22081076 hsa-let-7d genetics Unconfirmed
hsa-let-7f target 22407818;25552929 hsa-mir-218 circulation Unconfirmed

hsa-mir-29b epigenetics 24297604 hsa-mir-221 circulation 25009660;22156446
hsa-mir-214 target 24577056;25738546;28071724 hsa-mir-146a target 27175941;25596948;25712342

hsa-mir-9 epigenetics 26519551;17948228 hsa-mir-124 epigenetics Unconfirmed
hsa-mir-146a circulation 27197674;26033453;23898484 hsa-mir-19a circulation 24938880;24416156

hsa-let-7e target Unconfirmed hsa-let-7g target 21868760
hsa-mir-18a circulation 24694649;23705859;28109133 hsa-mir-106a target 27325313
hsa-mir-25 target 25026296;29310680;28188287 hsa-mir-9 circulation Unconfirmed
hsa-let-7b target 21826373;24264599;23339187;22761738 hsa-mir-145 genetics Unconfirmed

hsa-mir-92a target 28881597;29162724;28881597 hsa-mir-19b epigenetics Unconfirmed

In conclusion, 44 and 37 out of the top 50 predictive lung cancer-related and breast cancer-related
miRNAs and their specific association types are confirmed by experimental evidence, respectively.
The results of case studies demonstrated the robustness of NLPMMDA method.

3.5. Web Server for Network-Based Label Propagation Algorithm to Predicting Multiple miRNA-Disease
Association Method

In this study, a web server was built to show the prediction results of the NLPMMDA method,
which is freely available at http://39.107.230.144/NLPMMDA.

http://39.107.230.144/NLPMMDA
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The web server enables the function of predicting four types of miRNA-disease associations based
on the NLPMMDA algorithm. The final prediction result for a specific disease will be shown in a table,
and the rank, miRNA name, association type and potential association probability will be included.
The tables contain known verified related miRNAs and types for a disease, whose value of potential
association probability is 1.0.

4. Discussion

Increasing evidence indicates the prominent role of miRNAs in the development of various
diseases. Understanding the underlying mechanisms of miRNAs in diseases is becoming an urgent
problem worldwide. In this study, a network-based label propagation algorithm is proposed
to infer specific types of miRNA-disease associations, which integrated four types of known
human miRNA-disease associations derived from HMDD. The NLPMMDA method constructed
a heterogeneous network, in which a disease similarity homo-network is constructed by integrating
disease sematic similarity information with Gaussian interaction profile kernel similarity information,
and miRNA similarity homo-network is constructed by integrating miRNA functional similarity
information with Gaussian interaction profile kernel similarity information. Besides, a multi-type
miRNA-disease interaction hetero-network is constructed by four types of known miRNA-disease
association data. In addition, the traditional label propagation algorithm is extended to the heterogeneous
network and the strategy of label initialization is changed in the NLPMMDA method. The LOOCV
result, case studies of lung cancer, and breast cancer demonstrate the reliable performance of the
NLPMMDA method.

Compared with current computational methods which can predict multiple type miRNA-disease
associations, the NLPMMDA method achieves a better performance because of several factors.
Firstly, the network-based label propagation algorithm is a semi-supervised machine learning model.
As we all know, one of the current difficulties of predictive models is the selection of negative samples.
NLPMMDA does not require verified negative miRNA-disease associations. Secondly, transition
probability among diseases and miRNAs under four types are calculated in the NLPMMDA method,
which can capture the similarity information from neighboring nodes in homo-networks and
improve the predictive function of the computational model. Thirdly, construction of heterogeneous
network could offer mutual information between the miRNA similarity homo-network and disease
homo-network. The label values of nodes in the homo-networks are initialized by their initial
labels and neighbors from other homo-networks, which makes label confidence score more
reliable. Although NLPMMDA exhibited highly reliable results, it still has some limitations.
Transition probability scores among four types are simply calculated by miRNA functional similarity
and Gaussian interaction profile kernel similarity, which may result in offset error. In addition,
the NLPMMDA method is not applicable to diseases without any known associations of miRNAs.
The different combination of diffusion parameters in homo-networks may improve the performance of
the NLPMMDA method, which can be further studied in the future.
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