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Introduction
Lung cancer has the highest mortality rate for both men and 
women in the world. Lung cancer includes non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC 
constitutes 85% of all lung cancer cases, and the other 15% 
lung cancers are SCLC. NSCLC has two major subtypes of 
histology: squamous cell lung carcinoma and lung adenocarci-
noma (AC).1 Surgery is the main treatment option for stage I 
NSCLC.2 Unfortunately, 35–50% of stage I NSCLC patients 
will die from relapse or metastasis within 5 years after sur-
gery and adjuvant chemotherapy for patient stages II and III 

have not shown good results.3 It is a challenging issue for 
physicians to identify patients for chemotherapy. In spite of 
a few studies describing transcriptional profiling for lung 
cancer prognosis,3,4 currently, there is no fully validated clin-
ical model for predicting lung cancer prognosis or chemore-
sponse.5 Therefore, it remains an important research issue to 
identify prognostic and predictive genes for improving lung 
cancer treatment.

In the search of clinically important biomarkers, many 
studies have ranked genes based on clinical outcome and used 
top-ranked genes in a classifier.6 However, rank-based feature 
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selection methods cannot model the complex interactions 
among genes in disease.7 It has been shown that the genes that 
have a statistically significant association with outcome results 
are not necessarily good classifiers.8–10 Discovering networks 
of molecular interactions is much more important than finding 
a list of genes in personalized medicine.11 Molecular network 
analysis had been shown to be useful in disease classification12 
and identification of novel therapeutic targets.13

DNA copy number variations (CNVs) refer to the copy 
number changes in a chromosomal segment, often observed 
in tumor tissues.14,15 Several studies have shown that CNV 
may be linked to the change of expression levels in some 
genes.14,16,17 Recent studies estimate that CNVs are responsi-
ble for .15% of heritable variation in gene expression (GE).18 
The relation between GE and DNA copy number is complex. 
For cancer cells in general, the impact of CNV on GE is found 
to be important. Many studies have investigated the relation 
between CNV and GE. Many of them consider correlation 
between GE and CNV, in a manner of gene by gene across 
all samples.19,20 Nevertheless, the correlation between CNV 
and GE was not consistent across all genes.21 Moreover, each 
cancer is unique and has its own driver genes. Driver genes 
are involved in cancer pathogenesis, in contrast to “passenger 
genes,” which mutate during pathogenesis without having an 
effect on cancer.22 It is an important issue to identify driver 
genes and distinguish them from “passenger genes” that have 
no discerning advantage.23 Integrative analysis of CNV and 
GE could recognize potential cancer driver genes.24

A challenge in finding the candidate drivers is that the 
number of regulators (potential candidate drivers) is large and 
is related to the amount of available data. As CNV regions 
contain a large number of genes, it is difficult to identify a 
driver gene that is a correct regulator.25 Therefore, there is a 
need to use some information in addition to DNA copy num-
ber, such as GE, in the search for the functionally important 
driver genes. CONEXIC23 is a method that combines both 
CNV and GE to detect driver genes located in a deleted or 
amplified region and constructs regulatory networks based 
on the identified driver genes. Each potential driver gene 
changes in some tumors and is considered to have a major 
role in regulating expression of a group of genes.23 In this 
study, we present a novel framework based on CONEXIC 
to integrate CNV and GE and apply it to model lung cancer 
progression. First, candidate driver genes were selected 
from a pool of genes that were either amplified or deleted 
in NSCLC tumors, or were associated with metastasis at 
DNA copy number level or mRNA expression level. Second, 
CONEXIC was used to construct regulatory networks based 
on these candidate drivers and rank the importance of the 
driver genes. Third, because the predicted regulatory net-
works were large, Ingenuity Pathway Analysis (IPA) was 
used to reduce them to the networks of experimentally vali-
dated interactions. Finally, these refined regulatory networks 
were visualized with Genatomy.26

Materials and Methods
DNA copy number and mRNA profiles in patient 

cohorts. Two datasets were used in this study. The first data-
set contains 271  NSCLC tumor samples with DNA copy 
number profiles. These 271 samples are histologically divided 
into lung AC (n = 179) and squamous cell carcinoma (SQCC; 
n = 92). This dataset also contains GE profiles for 49 samples 
(n = 29 for AC; n = 20 for SQCC). This dataset is available 
in NCBI Gene Expression Omnibus (GEO) with accession 
number GSE31800. DNA copy number profiles of the first 
dataset were quantified for each sample with whole-genome 
tiling path array comparative genomic hybridization (aCGH). 
Details of the genomic array, DNA extraction, labeling, and 
hybridization were described previously.27 aCGH is a tech-
nique for measuring the changes in chromosomal segments.28 
The main difference between CGH and mRNA expression 
is that DNA is hybridized rather than mRNA transcript.29 
CGH consists of log-ratio normalized intensities from disease 
versus normal samples. With resolution enhancements, aCGH 
is becoming more powerful. Consequently, this method has 
more advantages comparing to cytogenetic techniques such 
as fluorescence in situ hybridization (FISH).29 The GE for 
this dataset was generated by Affymetrix GeneChips30 and is 
available at GEO with accession number GSE31800.

The second dataset includes SQCC tumors with DNA 
copy number profiles (n  =  201) and mRNA expression pro-
files (n = 132). DNA copy number values were generated with 
Agilent 415 microarrays.31 Copy number estimations for each 
tumor were refined using tangent normalization. Tangent nor-
malization divides tumor signals by signal intensities from the 
linear combination of all normal samples.31 GE of this dataset 
was quantified using Agilent 244k microarrays. Preparation, 
hybridization, and processing to produce GE was previously 
described,32 and the dataset is available in The Cancer Genome 
Atlas (TCGA) data portal1 Lung SQCC section.31 Clinical 
information of these two patient cohorts is shown in Table 1.

Matching DNA probes to genes. DNA copy number 
values were assigned to the corresponding genes with a map-
ping scheme. DNA copy number datasets contain information 
about the chromosomal location of each probe and its copy 
number value. There is no chromosomal information of genes 
in GE datasets, requiring the use of some public repositories 
such as UCSC Genome Browser2 and MatchMiner3. To find 
the chromosomal location for each gene, gene names should 
be entered to the software in a batch mode, and the output 
includes chromosomal location. The DNA copy number probes 
must then be matched to the corresponding genes. Among 
different methods to match genes to copy number probes, dis-
tance matching33 was used. This method matches each gene to 
the closest probe that is on the same chromosome.

1https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?mode  =  ApplyFilter&disea
seType = LUSC
2http://genome.ucsc.edu
3http://discover.nci.nih.gov/matchminer
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Detecting DNA copy number aberrations. There is a 
need to convert raw log-ratio values in the original aCGH 
data to absolute measures of DNA copy numbers. These abso-
lute measures usually have three states: loss (less than two 
copies), normal (two copies), and gain (three to four copies). 
This process is named “calling.”34 CGHcall was used to detect 
these different DNA copy number states.34 CGHcall classi-
fies different regions of CNV based on mixture models. First, 
it uses circular binary segmentation (CBS) to segment DNA 
copy number values of aCGH. The CBS method has been 
shown as one of the strongest methods for segmentation.35 

Second, CGHcall considers the fact that loss, normal, and 
gain levels are not uniform across all the samples. It allows 
fluctuation by using random effects. Finally, it uses a combina-
tion of segmentation results and mixture model to figure out 
the most likely state per segment.34 This package was used in 
its default setting with human as the tissue type.

CONEXIC. CONEXIC23 is a computational algorithm 
that performs integrative analysis of CNV and GE in 
cancer. This algorithm is based on module network36 and com-
bines matched GE and CNV of the samples to identify cancer 
driver genes. CONEXIC uses a Bayesian scoring function to 
detect the combination of modulators among the amplified or 
deleted regions, which explains the behaviors of GE modules 
across patient samples. The score measures how well a modu-
lator can predict the behaviors of a GE module. CONEXIC 
searches for high-score modulators to recognize most probable 
driver genes in a stepwise manner: (1) selection of candidate 
drivers, (2) a single modulator step that builds an initial net-
work between candidate drivers and gene modules, and (3) an 
iterative network learning step that improves the initial model. 
This method not only searches for important driver genes but 
also constructs regulatory networks. The concept of regulation 
networks or regulation program originates from Segal et al.36 
This software package was used in its bootstrapping mode.

A score function was used to rank cancer driver genes 
in the CONEXIC method. The score function is a Bayesian 
function that maximizes the joint probability of data and 
model structure. Let D be the data and S represent the struc-
ture of the network. The scoring function is:

	 log ( , ) log ( | ) log ( ).P D S P D S P S= +

The first term is the likelihood of the data for a given 
model, and it has a normal gamma distribution. The normal 
gamma distribution function gives higher score to the data 
with lower variance. Therefore, it splits the data into two com-
pletely different distributions.

The second part is a priori on the structure of data, which 
is a penalty score on network complexity. The penalty function 
has two parts. The first part penalizes the number of leaves in 
each regulation program using exponential distribution over 
the total number of leaves. The second part is a network width 
penalty function that penalizes (1) the number of genes in the 
module for each modulator and (2) the number of distinct 
split values that a modulator has. Hence, the scoring function 
would be:

	 log ( , ) log ( | ) log ( )P D S P D S P S= +
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Table 1. Clinical information of patient cohorts analyzed in this study.

Variables TCGA  
dataset (31)  
(n=201)

GEO dataset  
(GSE31800;  
n=271)

Gender

Male 28% NA

Female 72% NA

Race

White 65% NA

Black or African American 5% NA

Asian 2% NA

NA 28% NA

Histological type

Lung adenocarcinoma 0 179

Lung squamous cell carcinoma 201 92

Age

Mean ± std 67.5 ± 8.5 NA

[Min, Max] (Median) [39, 85] (68) NA

Vital status

Alive 58% NA

Dead 42% NA

Pathological tumor stage

Stage I 55% NA

Stage II 24% NA

Stage III 21% NA

Ethnicity 

Not Hispanic or Latino 59% NA

Hispanic or Latino 2% NA

NA 39% NA

Tobacco smoking history 

Current Smoker 16% NA

Reformed smoker  
for , or = 15 years

56% NA

Reformed smoker  
for . 15 years

21% NA

Non-Smoker 4% NA

NA 3% NA
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The parameters of the score are β, x, y, which can be 
determined by optimizing the log-likelihood of data through 
cross-validation test.23,37

IPA. IPA4 is a curated database that enables the search 
and visualization of experimentally confirmed molecular 
interactions and networks. Published molecular interactions 
can be explored from this web-based software application. 
This database gathers information from multiple resources, 
including experimental repositories or text collections of pub-
lished literatures. In this study, only direct interactions among 
genes in human tissues were considered experimentally and 
confirmed molecular interactions in IPA analysis.

Genatomy. After constructing regulatory networks with 
CONEXIC and refining them using IPA, Genatomy was 
used for visualizing the networks. Genatomy is a software 
toolset for visualizing biological data such as GE, genotypes, 
and DNA copy number information.26 The software package 
was used based on its default settings. The CNV and GE val-
ues were normalized with the min and standard deviation to 
be in the range of [−1, 1].

Results
The scheme to perform integrative analysis of CNV and GE 
contains the following steps (Fig. 1). First, candidate driver 
genes were selected using DNA copy number informa-
tion and mRNA prognostic genes. CGHcall34 was used to 
detect the aberrant regions of DNA copy numbers. Genes 
that showed consistent copy number aberrations in NSCLC 

compared with normal tissues in both datasets were selected. 
In addition, genes that had a significant association with 
patient survival time based on their copy number status were 
selected. The remaining candidate driver genes were mRNA 
prognostic genes identified in our previous studies. Second, 
after identifying candidate driver genes, CONEXIC was 
used to construct regulatory networks for good prognosis and 
poor prognosis NSCLC patients, respectively. Third, as the 
constructed regulatory networks were large, IPA was used to 
reduce the gene interactions to only experimentally validated 
ones. Finally, the Genatomy package was used to visualize the 
refined regulatory networks.

Selecting candidate driver genes. The selection of can-
didate driver genes consists of two parts: first, DNA copy 
number information was used to find the aberrant regions 
and second, mRNA prognostic genes previously identified in 
our studies7,38,39 were included. To identify candidate driver 
genes based on DNA copy numbers, the CGHcall package 
was used. This method distinguishes three different states of 
CNV: loss (deletion), normal, and gain (amplification). Genes 
in the normal state have two copy numbers, in a loss state have 
less than two copies, and in a gain mode have three or more 
copy numbers. The CGHcall package was run on three data-
sets (the dataset GSE31800 containing both AC and SQCC 
was analyzed separately according to histology). Based on 
results from CGHcall, genes that showed to be aberrant in 
more than 50 percent of the NSCLC tumor samples com-
pared with normal tissues were selected for further analysis. 

DNA copy number datasets mRNA prognostic genes

Genomic aberration

Candidate driver genes

Good prognosis
(>3 years survival)

Poor prognosis
(>2.5 years survival)

Constructing regulatory networks

IPA

Genatomy

CNV/mRNA regulatory networks

Experimenally validate networks

CONEXIC

CGH Call

Figure 1. Overview of integrative analysis of DNA copy number and GE.

4http://www.ingenuity.com
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chemoresponse.42–44 Table 3 shows the common genes among 
SQCC tumors in the TCGA dataset31 and the GSE31800 
dataset. Only three genes (C3orf31, SELT, and C3orf52) were 
found to have consistent CNV with gain copy number aber-
ration in both patient cohorts. Among them, C3orf52 was 
a prognosis gene of cancer in a US patent.45 Genes listed in 
Tables 2 and 3 showed a consistent CNV in multiple patient 
cohorts and histology of NSCLC, indicating their important 
role in NCLSC initiation.

Next, we sought to identify prognostic genes using three 
categories of CNV status (amplification, normal, and dele-
tion). A Cox proportional hazards model was fit for the SQCC 
patients in the TCGA dataset.31 Genes with a significant  
(P , 0.05; Cox model) association between their CNV sta-
tus and survival time in SQCC patients are listed in Table 4. 
Hazard ratios and their confidence intervals for the gain and 
loss categories are shown as well. A total of 30 genes had a 
significant association with patient survival time based on 
the gain status of DNA copy number, and 11 genes showed 
a strong association with survival time with their loss status. 
TADA3L is the only gene that had a strong association with 
survival time for both gain and loss DNA copy number value. 
TADA3L was associated with tumor suppressor gene p53 
during the differentiation of hematopoietic stem and progeni-
tor cells.46 As metastasis/relapse is the major treatment failure 
of lung cancer, aberrations in DNA copy numbers of genes in 
Table 4 are related to NSCLC metastasis and relapse.

Additional candidate driver genes were from mRNA 
prognostic genes identified in our previous studies, showing 
a significant association with NSCLC patient survival and/or 
chemoresponse.7,38,39,47 These genes were further validated with 
Reverse transcription polymerase chain reaction (RT-PCR) 
assays of additional NSCLC patient samples (unpublished 
results). Supplementary Table S4 shows the complete list of can-
didate driver genes considered for constructing regulatory net-
works. Among these candidate driver genes, 30 genes had loss 
(Table 2) and 3 had gain CNV (Table 3) in the studied NSCLC 
cohorts. Forty genes had a strong association with SQCC survival 
time (Table 4), and the rest of the genes are mRNA prognostic 
genes identified in our previous studies.7,38,39,47 These candidate 
driver genes were used to construct regulatory networks.

Constructing CNV/mRNA regulatory networks. 
Having selected candidate driver genes as the first step, 

Table 2. Genes with consistent DNA CNVs between lung AC and 
SQCC in the dataset GSE31800. The percentage in this table stands 
for the percent of CNV in the corresponding patient cohort.

Gene  
Name

Chromosome # AC N=179
[ACCN  
GSE31800]

SQCC N=92
[ACCN  
GSE31800]

CNV  
Type

UBE1DC1 3q22.1 51% 65% Loss

CMTM6 3p22.3 51% 65% Loss

ULK4 3p22.1 51% 65% Loss

NKX2–5 5q34 78% 78% Loss

NEUROG1 5q23-q31 78% 78% Loss

LOC441150 6p21.1 78% 76% Loss

C6orf153 6p21.1 78% 76% Loss

C6orf134 6p21.33 78% 76% Loss

C6orf173 6q22.32 78% 76% Loss

C6orf194 6p22.1 78% 76% Loss

HIBADH 7p15.2 68% 67% Loss

IFRD1 7q31.1 68% 67% Loss

PMPCB 7q22.1 68% 67% Loss

TRIB1 8q24.13 51% 68% Loss

AZIN1 8q22.3 51% 68% Loss

CTSB 8p22 70% 79% Loss

IKBKB 8p11.2 70% 79% Loss

IMPAD1 8q12.1 70% 79% Loss

CPNE3 8q21.3 70% 79% Loss

TUSC3 8p22 70% 79% Loss

RIPK2 8q21 70% 79% Loss

LYN 8q13 70% 79% Loss

ENTPD4 8p21.3 70% 79% Loss

ABCB9 12q24 67% 66% Loss

SPRYD4 12q13.3 67% 66% Loss

DDIT3 12q13.1 s 67% 66% Loss

RAB22 A 20q13.32 71% 64% Loss

NCOA6 20q11 71% 64% Loss

PRPF6 20q13.33 71% 64% Loss

STX16 20q13.32 71% 64% Loss
 

Table 3. Genes with consistent CNV in the TCGA dataset (31) and 
SQCC samples in dataset GSE31800. The percentage in this table 
stands for the percent of CNV in the corresponding patient cohort.

Gene  
name

Chromosome #  SQCC  
(n=201) (31)

SQCC (n=92)  
(GSE31800)

CNV  
Type

C3orf31 3p25.2 80% 62% Gain

SELT 3q25.1 82% 62% Gain

C3orf52 3q13.2 80% 64% Gain

 

Supplementary Tables  S1–S3 list the genes with CNV in 
three corresponding datasets: SQCC and AC in the dataset 
(GSE31800), respectively, and SQCC in the TCGA data-
set.31 To further select relevant genes with CNV in NSCLC 
initiation, genes that had consistent CNV among different 
datasets were pinpointed. There were 30  genes in common 
with CNV of type loss between AC and SQCC in the data-
set GSE31800 (Table  2). Among these genes, NEUROG1 
was found to be an important marker in early detection of 
colorectal cancer.40 LYN was a mediator of epithelial— 
mesenchymal transition and a therapeutic target of dasatinib 
in breast cancer.41 CPNE3, ABCB9, and AZIN1 were shown 
to be involved in promoting NSCLC metastasis or mediating 
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Table 4. Genes with a significant association between CNV and 
survival time in SQCC tumors in the TCGA dataset (31). Top genes 
are identified based on P-value. Hazard ratios and their confidence 
intervals are shown. Significant hazard ratios are marked with an 
asterisk (*).

Gene  
Name

P-value Gain-Hazard  
(95% CI)

Loss-Hazard  
(95% CI)

C14orf173 0.0007 2.7851 [1.61, 4.81]* 1.3415 [0.77, 2.32]

BRMS1L 0.0007 2.7851 [1.61, 4.81]* 1.3415 [0.77, 2.32]

CHURC1 0.0007 2.7851 [1.61, 4.81]* 1.3415 [0.77, 2.32]

NEK9 0.0007 2.7851 [1.61, 4.81]* 1.3415 [0.77, 2.32]

CIDEB 0.0007 2.7851 [1.61, 4.81]* 1.3415 [0.77, 2.32]

SERPINA3 0.0007 2.7851 [1.61, 4.81]* 1.3415 [0.77, 2.32]

C14orf172 0.0008 2.7625 [1.59, 4.77]* 1.3195 [0.76, 2.28]

PTPRU 0.0013 0.7796 [0.49, 1.23] 0.2738 [0.12, 0.61]*

SEMA3F 0.0014 0.4337 [0.24, 0.76]* 1.1128 [0.54, 2.28]

TADA3L 0.0015 0.3342 [0.19, 0.57]* 0.4007 [0.18, 0.86]*

CCNB1IP1 0.0016 2.6560 [1.52, 4.62]* 1.3451 [0.77, 2.34]

C14orf79 0.0016 2.6560 [1.52, 4.62]* 1.3451 [0.77, 2.34]

UPB1 0.0016 0.3726 [0.20, 0.66]* 0.7158 [0.42, 1.20]

SH3BP1 0.0016 0.3726 [0.20, 0.66]* 0.7158 [0.42, 1.20]

TCF20 0.0016 0.3726 [0.20, 0.66]* 0.7158 [0.42, 1.20]

MUSTN1 0.0020 0.4559 [0.25, 0.80]* 1.1888 [0.57, 2.47]

ZC3H14 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

C14orf50 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

TDP1 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

C14orf24 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

KIAA0831 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

PTGER2 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

FOXN3 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

PRMT5 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

RIPK3 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

ZFP36L1 0.0021 2.5397 [1.46, 4.39]* 1.2468 [0.71, 2.16]

LGR6 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

RFX5 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

CD1D 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

FLVCR1 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

MRPS14 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

DAB1 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

PUSL1 0.0022 0.9346 [0.59, 1.47] 0.3007 [0.13, 0.66]*

CSDC2 0.0022 0.3736 [0.20, 0.67]* 0.7728 [0.46, 1.29]

P2RXL1 0.0022 0.3736 [0.20, 0.67]* 0.7728 [0.46, 1.29]

PNPLA3 0.0022 0.3736 [0.20, 0.67]* 0.7728 [0.46, 1.29]

CSNK1E 0.0022 0.3736 [0.20, 0.67]* 0.7728 [0.46, 1.29]

CCDC117 0.0022 0.3736 [0.20, 0.67]* 0.7728 [0.46, 1.29]

ATP8B2 0.0023 1.0134 [0.64, 1.59] 0.3111 [0.13, 0.69]*

NPPB 0.0023 1.0111 [0.64, 1.58] 0.3108 [0.13, 0.69]*
 

the second and third steps of the CONEXIC method were 
used to construct regulatory networks and rank the impor-
tance of driver genes based on DNA copy number and GE 
information.

In the second step of the CONEXIC method, the single 
modulator step, network initialization between candidate driv-
ers and gene modules, was completed. Genome-wide CNV and 
GE datasets were filtered before this step. Specifically, genes 
with a variance above 0.2 in each patient cohort were consid-
ered for further analysis, because genes with a constant level of 
copy number or expression across all samples are unlikely to 
have a role in the regulatory networks.23 After the data filtering, 
the TCGA dataset31 was separated into good prognosis and 
poor prognosis groups. Patients who survived more than  
3 years after surgery were grouped as good prognosis, whereas 
those who had survival time less than 2.5 years were grouped 
as poor prognosis. This single modulator step was performed 
with non-parametric bootstrapping for 10 times23 on good and 
poor prognosis groups, respectively. The bootstrapping method 
guarantees the robustness of the results. The modulators that 
were selected in at least 60% of the runs were picked. These 
modulators were used for a final run of the single modulator 
step. After performing the second step, the relation among 
genes was initialized and the basic regulatory networks were 
created. These networks were considered as the starting point 
for the third step, which is the network learning step.

The third step of the CONEXIC method was performed 
with non-parametric bootstrapping to ensure robustness of 
the results. This step was also completed for good prognosis 
and poor prognosis groups, separately. This step was also run 
10 times, and the candidate driver genes that were selected in 
60% of the runs were selected for the final run. Supplemen-
tary Table S5 shows the top-ranked genes (modulators) after 
running the final network learning step. As a result, each of 
these modulators is related to a large number of genes in the 
constructed module network.

As mentioned earlier, part of candidate driver genes were 
mRNA prognostic biomarkers identified from our previous 
studies, with potential clinical utilities for personalized lung 
cancer treatment.7,38,39,47 After constructing regulatory net-
works, we sought to investigate the functional roles of these 
mRNA prognostic genes. As the regulatory networks were 
constructed separately for good prognosis and poor progno-
sis patients, respectively, investigating important driver genes 
and regulatory modules could potentially reveal important 
mechanisms in NSCLC progression and metastasis and their 
impact on clinical outcome. Table 5 shows the regulatory role 
of top-ranked prognostic mRNA biomarkers in poor prog-
nosis patients. Specifically, SAMD4B, APOA2, ATAD4, and 
VASH1 were top-ranked modulators (driver genes) in poor 
prognosis, with a potential functional involvement in rendering  
adverse clinical outcome in NSCLC patients. The other 
mRNA prognostic genes in Table 5 were not modulators, but 
they are in the modules of other driver genes such as CTSB. 
Table 6  shows the regulatory role of the mRNA prognostic 
genes in the good prognosis dataset. In particular, ADH1B, 
CCL19, FHL1, VASH1, and RB1 were top-ranked modula-
tors (driver genes) in good prognosis group. Other mRNA 
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prognostic genes were not modulators, but they were in the 
modules that were regulated by driver genes such as RB1 and 
VASH1. In the comparison of Tables 5 and 6, modulators in 
good prognosis and poor prognosis groups were vastly differ-
ent, suggesting that NSCLC tumor progression and the ulti-
mate clinical outcome are driven by very different molecular 
mechanisms.

Refinement and visualization of CNV/mRNA regu-
latory networks. From the results of CONEXIC analysis, 
top-ranked driver genes were examined for further analy-
sis. Specifically, CTSB was one of the top selected driver 
genes in poor prognosis patient group, and it was shown to 
modulate most mRNA prognostic genes, including TNSF9, 
THBS1, STK24, AKAP13, TOMM34, and HFE. Therefore, 
CTSB was selected for further analysis. For good prognosis 
group, RB1 was selected for further analysis because it is a 
prognostic biomarker gene by itself7 and modulated multiple 

mRNA prognostic biomarkers, including C8orf70, AKAP13, 
MSX2, and ICA1. In the regulatory network analysis, CTSB 
was related to 1,043 other genes in 10 different modules. RB1 
modulated 681  genes in the 7 constructed regulatory mod-
ules. To refine the constructed regulatory networks, IPA was 
used to select experimentally validated molecular interactions 
in the module networks. Experimentally confirmed molecu-
lar interaction network for CTSB in poor prognosis SQCC 
patients is shown in Figure 2a, and the confirm network for 
RB1 in good prognosis SQCC patients is shown in Figure 3a, 
respectively. Next, Genatomy package was used to visualize 
the refined regulatory networks based on the text output 
from CONEXIC. Figure  2b shows the modules regulated 
by CTSB in poor prognosis SQCC patients, focusing on the 
modules involving previously identified mRNA prognostic 
genes. Similarly, Figure  3a shows RB1-modulated mRNA 
expression in good prognosis SQCC patients, focusing on the 

Table 5. mRNA prognostic biomarkers identified in our previous 
studies7,38,39 ranked as top driver genes in poor prognosis SQCC 
patients.

Gene  
Name

Modulator?  
(# Modules)*

Modulated  
by

Reference

SCLY No IFRD1 39

TNFSF9 No CTSB 38

CD27 No STAT4 39

DAG1 No SELT N/A#

SAMD4B Yes (3) No modulator N/A#

THBS1 No CTSB 39

XPO1 No PTGER2 39

C8orf70 No PTGER2 39

STK24 No CTSB 39

AKAP13 No CTSB 38

APOA2 Yes (3) No modulator 7

CCL19 No STAT4 7

CLIC2 No STAT4 7

COL14A1 No VASH1 7

HMBOX1 No VASH1 7

IRF3 No SAMD4B 7

ATAD4 Yes (5) No modulator 7

SLC39A8 No VASH1 7

SPIN1 No IFRD1 7

TAF4 No SELT 7

TOMM34 No CTSB 7

VASH1 Yes (2) SAMD4B 7

VIPR2 No SERPINA3 7

HFE No IFRD1 39

HNF4A No CTSB N/A#

STAT6 No SERPINA3 47

Notes: *If a gene is a modulator (driver gene), the number of modules 
regulated by it is listed in parentheses. #Unpublished mRNA prognostic 
biomarkers associated with NSCLC outcome.

Table 6. mRNA prognostic biomarkers identified in our previous 
studies7,38,39 ranked as top driver genes in good prognosis SQCC 
patients.

Gene  
Name

Modulator?  
(# Modules)*

Modulated  
by

Reference

OGT No C6orf134 38

CCDC99 No CCL19 39

CD27 No CCL19 39

DAG1 No C6orf134 N/A#

XPO1 No PRMT5 39

C8orf70 No RB1 39

AKAP13 No RB1 38

MSX2 No RB1 38

ADH1B Yes (4) STAT4 7

ANXA6 No VASH1 7

CCL19 Yes (4) No Modulator 7

CLIC2 No ADH1B 7

COL14A1 No VASH1 7

FHL1 Yes (1) VASH1 7

ICA1 No RB1 7

IRF3 No C6orf134 7

IVD No VASH1 7

SLC39A8 No ADH1B 7

SPIN1 No PRMT5 7

TAF4 No C6orf134 7

VASH1 Yes (4) ADH1B 7

HFE No C14orf50 39

RB1 Yes (7) No Modulator 7

STAT6 No CCL19 47

ZNF638 No C6orf134 38

UBE1L2 No C6orf134 39

Notes: *If a gene is a modulator (driver gene), the number of modules 
regulated by it is listed in parentheses. #Unpublished mRNA prognostic 
biomarkers associated with NSCLC outcome.
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Figure 2. Regulatory networks of CTSB in poor prognosis SQCC patient group. (A) Experimentally validated network of CTSB in poor prognosis SQCC 
patients (31) with IPA analysis. (B) CNV/mRNA regulatory network of CTSB in poor prognosis SQCC patients (31). 
Notes: The top color bar under the driver gene shows the mRNA expression and the below one shows CNV. Green color indicates overexpression/
amplification and red color indicates under-expression/deletion.

modules involving our identified mRNA biomarkers. These 
results reveal potential regulatory mechanisms of how CNV 
in a driver gene regulates the expression of a group of genes, 
among which are prognostic and predictive mRNA biomark-
ers associated with NSCLC metastasis and chemoresponse. 
The interactions among these genes in the computationally 
constructed regulatory networks were experimentally con-
firmed in the published literature with IPA.

Discussion and Conclusion
Lung cancer is a complex disease involving numerous somatic 
mutations, amplifications, and deletions. Tumor relapse and 
metastasis is the major cause of treatment failure (ie, death) in 
lung cancer. Chromosomal CNVs are shown to be function-
ally important in regulating GE changes and genotypes in 

tumorigenesis and metastasis. While using GE changes alone 
has been shown to be a precise and feasible tool for clinical diag-
nostics and prognostics,48 it does not necessarily reveal molecu-
lar functional involvement and cancer mechanisms. Integrative 
analysis of GE and copy number is expected to identify can-
cer driver genes and prioritize them, as well as reveal disease 
mechanisms and provide insight into novel therapeutic targets. 
Regulatory network approaches have been developed for detect-
ing GE affected by DNA CNVs, genetic biomarkers, or motif 
data. Lirnet,25 Geronimo,37 and CONEXIC23 are three major 
approaches based on module networks, which were originally 
conceived by Segal et al.36 CONEXIC was used in this study to 
construct CNV/mRNA regulatory networks because it models 
CNV together with GE, whereas Lirnet and Geronimo have 
not been used in such applications before. There are some other 
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regulatory networks that were developed to model other molec-
ular data types,49,50 but not with GE and DNA copy numbers.

The novelty of CONEXIC is that it does not require the 
correlation between CNV and GE in the search for driver 
genes. Many methods for identifying driver genes among 
aberrant regions focus on the genes with correlated CNV and 
GE.51,52 As a matter of fact, in many cases, the expression of a 
driver gene is poorly connected with the DNA copy number.23 
The reason behind this is that CNV is only one of the many 
causes to induce up-regulation or down-regulation of a gene. 
In fact, the expression of many driver genes is less correlated 
with their copy numbers compared with passenger genes. In 
contrast, the expression of genes in a module is more related to 

the expression of the corresponding driver gene. The algorithm 
of CONEXIC was designed based on these biological con-
texts, which has the following advantages over other methods. 
First, by assessing both CNV and GE, CONEXIC provides 
a better way to find important areas in the aberrant chromo-
somal regions as potential candidate driver genes, comparing 
to the methods that consider only DNA copy number. Second, 
CONEXIC associates the expression of a driver gene to the 
expression of genes in the corresponding module in constructing 
regulatory networks.23 However, this could be considered 
as a limitation of CONEXIC, as it does not consider CNV  
in constructing regulatory networks in the second and third 
steps of the algorithm. One of the future improvements on this 

Figure 3. Regulatory networks of RB1 in good prognosis SQCC patient group. (A) Experimentally validated networks for RB1 in good prognosis SQCC 
patients (31) with IPA analysis. (B) CNV/mRNA regulatory network of RB1 in good prognosis SQCC patients (31). 
Notes: Green color indicates overexpression/amplification, and red color indicates under-expression/deletion.
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method would be considering two types of regulators (GE reg-
ulators and CNV regulators) and combining these two types of 
regulators in constructing regulatory networks.

In this study, we designed a framework based on 
CONEXIC to integrate CNV with GE to identify important 
driver genes in NSCLC and reveal experimentally confirmed 
regulatory networks in metastasis. In our approach, the can-
didate driver genes were selected and validated using multiple 
patient cohorts. Instead of using Genomic Identification of 
Significant Targets in Cancer (GISTIC) method53 as proposed 
in the original CONEXIC method, CGHcall34 was used to 
classify different regions of CNV based on mixture models. 
The selected candidate driver genes had either consistent CNV 
in different NSCLC patient cohorts and histology subtypes or 
a strong association with patient survival information based on 
their CNV status or mRNA expression levels. Next, regula-
tory networks were constructed for good prognosis and poor 
prognosis patient groups separately. The candidate driver genes 
were the same for both groups. After running CONEXIC with 
bootstrapping, the top-ranked driver genes and the constructed 
regulatory networks were very different in both groups, indi-
cating that different molecular mechanisms render different 
clinical outcomes in NSCLC patients. As these computation-
ally derived networks contained a large number of modules, 
IPA was used to select the genes and molecular interactions in 
the modules that were experimentally validated and reported 
in the literature. In this way, the gene modules were refined to 
the experimentally validated ones. Finally, Genatomy was used 
to visualize the refined regulatory networks. These experimen-
tally confirmed regulatory networks reveal important CNV-
regulated transcriptional activities in NSCLC metastasis. As 
many genes in the candidate drivers were NSCLC prognostic 
or chemoresponse predictive biomarkers identified in our pre-
vious studies, these results shed light on potential innovative 
therapeutic targets for NSCLC treatment.
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