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Abstract

Background: Characterizing the modular structure of cellular network is an important way to identify novel genes
for targeted therapeutics. This is made possible by the rising of high-throughput technology. Unfortunately,
computational methods to identify functional modules were limited by the data quality issues of high-throughput
techniques. This study aims to integrate knowledge extracted from literature to further improve the accuracy of
functional module identification.

Results: Our new model and algorithm were applied to both yeast and human interactomes. Predicted functional
modules have covered over 90% of the proteins in both organisms, while maintaining a comparable overall
accuracy. We found that the combination of both mRNA expression information and biomedical knowledge greatly
improved the performance of functional module identification, which is better than those only using protein
interaction network weighted with transcriptomic data, literature knowledge, or simply unweighted protein
interaction network. Our new algorithm also achieved better performance when comparing with some other well-
known methods, especially in terms of the positive predictive value (PPV), which indicated the confidence of novel
discovery.

Conclusion: Higher PPV with the multiplex approach suggested that information from both sources has been
effectively integrated to reduce false positive. With protein coverage higher than 90%, our algorithm is able to
generate more novel biological hypothesis with higher confidence.

Keywords: Protein-protein interaction, Graph clustering, Random walk, Multiplex, Topic modeling, Gene expression,
Functional module, Protein complex

Background
Understanding the mechanisms of pathway perturba-
tions underlying complex human diseases remains a dif-
ficult problem, hindering the development of targeted
therapeutics. Complex diseases involve many genes and
molecules that interact within context-specific cellular
networks, such as signaling networks, physical inter-
action networks, and co-expression networks [1]. For ex-
ample, cancer was often viewed as the disruption of
cellular signaling networks. Such complex networks are
inherently modular [2], meaning that genes usually per-
form certain biological function in separate groups.

Therefore, to investigate complicated cellular mechan-
ism, it is necessary to characterize the modular structure
of cellular networks.
A functional module is defined as a group of genes or

their products which are related by one or more genetic
or cellular interactions, e.g. co-regulation, co-expression
or membership of a protein complex, of a metabolic or
signaling pathway or of a cellular aggregate (e.g.
chaperone, ribosome, protein transport facilitator) [3].
Since physical protein-protein interactions directly indi-
cate the cooperation of gene products to drive a biological
process, a variety of clustering methods were developed to
identify functional modules from protein-protein inter-
action networks [4]. Zinman, et al. [5] have found that
functional interactions that are part of functional modules
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are conserved at a much higher rates, further supporting
the advantage of using protein interaction networks.
In the past decade, a vast amount of methods has been

developed to identify functional modules in protein-pro-
tein interaction networks. As summarized by previous
reviews [4], a majority of these algorithms can be catego-
rized into: (1) density-based [6, 7], identifying densely
connected groups of proteins; (2) partition-based [8],
separate all sparsely connected nodes; (3) flow
simulation-based [8–11], simulating a biological or func-
tional flow; (4) core attachment-based [12–14], exploit-
ing the core-attachment structure of protein relations.
Recently, evolutionary algorithm [15, 16] has been
adopted to avoid poor local minimum; and node embed-
ding [17] have been used to transform the graph cluster-
ing problem into a conventional clustering problem. In
addition, algorithms [18, 19] combining two or more ap-
proaches described above has emerged. Unfortunately,
the computational methods for functional module iden-
tification are clearly limited by the poor quality of the
underlying PPI data, which is noisy with high rates of
false positive and false negative [20, 21]. However, the
various approaches to identify functional modules have
served as the foundation to inspire further improvement.
In this study, we followed the flow simulation-based ap-
proach to capture the dynamics of multiplex networks.
Another popular approach is to identify functional

modules from co-expression network. Unlike protein
interaction networks, edges in co-expression networks
indicate differential expression of two genes within the
same sample or condition. It assumes that tightly inter-
acting and functionally dependent proteins are
co-expressed across most conditions. This assumption is
a reliable heuristic for functional module identification,
despite that co-expression is not direct evidence for
functional relation. Studies had successfully identified
stable functional modules from co-expression networks
across species [22]. Therefore, expression status of
co-expression functional modules should be highly re-
lated to activities or behavior of cells. Many biological
studies have identified active functional modules related
to certain diseases from co-expression networks [23, 24].
However, in the case of co-expression network, identify-

ing functional modules at the appropriate granularity is a
big challenge. As each experimental condition usually has
perturbed multiple signaling pathways, differentially
expressed genes in each condition usually correspond to
multiple dysregulated biological processes [20]. This could
result in predicted functional modules being a superset of
several real functional modules.
In addition, high-throughput expression data also has

its own data quality issues. For example, RNAseq data
still suffered from technical issues, such as batch effects
and contamination. Recent studies have developed

different methods to improve accuracy of module identi-
fication by integrating co-expression network and pro-
tein interaction networks [3, 20, 25–30] or other
heterogeneous data sources [31–33], while others inte-
grated homogeneous data sources to improve confidence
[34, 35]. However, data quality issues common in
high-throughput data, especially the experimental as-
pects, remain unresolved.
Besides high-throughput data, decades of research ef-

forts have obtained and validated vast amounts of bio-
logical knowledge through wet-lab experiments, which
are valuable resources for further research. Such know-
ledge should contain much less errors compared to
high-throughput data. A few studies have attempted to
utilized the literature for functional module identifica-
tion [36–39]. However, relying on literature alone may
lead to findings biased towards well studied genes, pro-
viding less novel insights [40, 41].
Since high-throughput data is less biased towards

well-known genes and literature has fewer data quality
issues, integrating these two information sources seems
promising [42]. Methods [17, 43, 44] have been pro-
posed to integrate prior knowledge. However, some of
the methods suffer two major issues: (1) identification is
restricted in the scope of knowledge, resulting in know-
ledge bias unresolved; (2) adoption of strong prior
knowledge, such as Gene Ontology, that may not be in-
dependent from the gold standard, leads to overly opti-
mistic evaluation results.
To address the issues above, this study has followed

a multilayer network approach for data integration.
Multiplex is a natural way to represent interactions in
a complex system from multiple perspectives [45]. By
treating prior knowledge separately in one layer, the
identification process is not confined by knowledge,
but enhanced by knowledge. In addition, although it is
common practice to aggregate multiplex into a single
weighted network [46–48], research on multiplex
suggested that important information can be lost
during aggregation [49]. Thus, this study seeks to
capture multiplex dynamics with random walk / diffu-
sion theoretic.
Random walks on multiplex can induce congestion

even when each single layer remains decongested [50].
Also, the fraction of nodes a random walker can travel
has increased, owing to their resilience to uniformly ran-
dom failures [51]. Thus, the dynamics of diffusion is able
to capture the additional information brought by multi-
plex formation. In this study, we first computed the first
k step visit probability of the nodes in the multiplex,
which can be viewed as the uncompressed, exact solu-
tion for node embedding [52]. Then we identified
modules on the probability matrix with an objective
function, named isolation, that promotes both module
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density and minimum cut in terms of k-step
connectivity.
Two major hypothesis were tested in this study: (1)

gene-topic associations extracted from literature is able
to reveal functional relations of genes and provide infor-
mation complementary to high-throughput data; (2) in-
tegration of multiple information sources with multiplex
approach can improve the accuracy of functional module
identification.

Result
We first identified differentially expressed genes from
RNA expression data. Then we calculated topic-gene as-
sociation from Pubmed titles and abstracts. These two
types of data were used to calculate functional similarity
among genes used as edge weights for protein inter-
action networks respectively. The two weighted PPI net-
works were further connected with the multiplex
approach. Finally, we developed a clustering algorithm
to identify functional modules with locally maximum
isolation from the two-layer protein interaction network.
Our clustering algorithm on multiplex was compared

with itself on single layer network to show the effective-
ness to information integration. To further demonstrate
its performance, a network integration algorithm named
Similarity Network Fusion (SNF) [48] was also com-
pared. Then the proposed algorithm was compared
against other methods in terms of protein coverage and
accuracy.

Descriptive statistics
BioGrid curation of PPI for Saccharomyces cerevisiae
contained 32,353 interactions among 4518 gene prod-
ucts. The transcriptomic profile of yeast perturbation ex-
periments contained expression values of 5980 genes
under 1525 knockout conditions. The topic-gene associ-
ation matrix contained 216 topics and 5348 genes.
After network construction, the yeast interactome based

on topic modeling had 4187 genes and 30,989 interac-
tions; the yeast interactome based on transcriptomic

profiles contained 4179 genes and 30,887 interactions; the
interactome based on the combination of the transcrip-
tomic interactome and the topic-gene associations con-
tained 8302 genes and 65,793 interactions.
The protein interaction network contained 10,945

nodes and 56,471 edges. The transcriptomic profile of
breast cancer patients in TCGA contained 1218 samples
and 20,252 genes. The topic-gene association matrix
contained 209 topics and 16,712 genes.
After network construction, the human interactome

based on transcriptomic profiles contained 10,029 genes
and 49,909 edges. The human interactome based on
topic modeling contained 10,368 genes and 48,806
edges. The combined interactome contained 19,266
genes and 212,292 edges.

Single-layer versus multiplex
We first checked if a method using both knowledge and
expression data can obtain better performance than
those using only protein interaction networks or com-
bined with topic associaion. As shown in Fig. 1, 2, 3, 4,
after being weighted by topic association (“human_topic”
and “yeast_topic” in the legend), sensitivity, PPV and ac-
curacy have been improved improved across different
datasets and different gold standards. It was shown that
topic-association data provided additional information
about functional relations among genes.
After integrating the interactomes weighted by topic

association and gene co-expression (“human_two_layers”
and “yeast_two_layers” in Figs. 1, 2, 3, 4), PPV was fur-
ther improved while sensitivity decreased slightly. This
suggests our algorithm tends to identify clusters with
less false positives, at the cost of inducing a few false
negatives. Overall, accuracy increased with the multiplex
approach.
The performance of the network fusion approach

(“human_snf” and “yeast_snf” in Figs. 1, 2, 3, 4) seems to
differ in different datasets. In the case of the human in-
teractome, SNF has increased PPV and decreased sensi-
tivity, which is similar with our method, though the

Fig. 1 Performance of isolation clustering on three different human interactomes, using Gene Ontology as gold standard
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overall performance gain is not obvious. For the yeast
interctome, SNF yielded a performance worse than the
single layer clustering in terms of sensitivity, PPV and
accuracy. The reason could be that the iterative matrix
computation procedure of SNF is more likely to return
an almost uniform distribution of edge weights if the
network density is high.

Comparison with other methods
We then compared our clustering method with some
other well-known methods in terms of solution sizes, pro-
tein coverage, and accuracy. All the clusters with less than
3 proteins or larger than 200 proteins were removed. As
shown in Tables 1 and 2, the distribution of cluster size
for our method (isolation) is more skewed towards size 3–
10. For the species of yeast, CYC2008 has over 83.3% of
proteins with size less than 10, while the percentage of
MCL, Infomap, Isolation was 73.8, 64.4, and 92.3% re-
spectively. For the species of human, 89.5% of proteins
complexes in CORUM contain less than or equal to 10
gene products, while 88.9% of functional modules gener-
ated by Isolation has such small size. Assuming that this
distribution of CORUM and CYC2008 represents the true
distribution of protein complexes, it indicated that the
modular structure characterized by Isolation clustering
was similar with that within real cells.

Protein coverage rates
As shown in Fig. 5, clusters generated by ClusterOne,
MCODE, and Walktrap can only cover around half of
the interactome. MCL, Infomap, and Isolation had cov-
ered over 90% of the interactome. Significantly higher
coverages indicated that clustering methods based on
random walks (i.e. MCL, Infomap, and Isolation) may
provide more information about novel proteins so as to
generate more biological insights. In the next section,
only MCL, Infomap, and Isolation were compared
against each other to in terms of accuracy.

Geometric accuracy
As shown in Figs. 6 and 7, Isolation has outperformed
MCL and Infomap in yeast interactome in terms of geo-
metric accuracy. The accuracy by our method is slightly
higher than other methods. However, in the case of hu-
man interactomes, these three methods yielded very
similar performance in every aspect.

Examples of clusters
Our clustering results have found many overlaps with
known complexes. Two of them were perfect matches
(Fig. 8). For some genes misclassified to a complex, we are
able to identify close functional relations from literature.
For example, our methods had grouped PINX1 with

Fig. 2 Performance of isolation clustering on three different human interactomes, using CORUM as gold standard

Fig 3. Performance of isolation clustering on three different yeast interactomes, using Gene Ontology as gold standard
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TRF-Rap1 complex I (Fig. 9). Although PINX1 is not part
of the complex, it is well studied that PINX1 can mediate
TRF1 (or TERF1) and TERT accumulation in nucleus and
enhances TERF1 binding to telomeres [53, 54], thus affect-
ing the function of the complex.
Furthermore, “misclassified” genes without direct evi-

dence supports may be more interesting since they could
provide new insights for current knowledge. For ex-
ample, C18orf21 was grouped with Rnase/Mrp complex
by our method (Fig. 10). Several studies have found gen-
etic association between variants in C18orf21 and phe-
notypes of human. Besides the high-throughput data
(BioPlex [55]) used in this study, no further experiments
have been conducted to investigate the functions of
C18orf21. Our results suggested that C18orf21 could
function through regulating Rnase/Mrp complex. An-
other example was shown in Fig. 11, where PNMA6A,
DRAP1, PTCD3, AURKAIP1, and DDX55 were grouped
with the 28S ribosomal subunit. Through literature we
found that these misclassified genes, except PNMA6A,
have significant impact on mitochondrial ribosome
though detailed mechanisms are not clear [56–58].

Discussion
As illustrated in the result section, isolation clustering
tends to identify isolated regions supported by both layers
in the multiplex. Such tendency reduces false positives
while inducing more false negatives. As shown in results,
our new clustering algorithm, Isolation, has achieved bet-
ter, or at least comparable, performance with other

well-known clustering algorithms based on random walk.
Particularly, subnetworks with locally maximal isola-
tion exhibited higher confidence of being true positive
when compared with MCL and Infomap. When com-
pared with clustering algorithms such as ClusterOne,
our algorithm has covered over 90% of proteins while
density-based clustering can only cover around 50%.
This leads to higher PPV from density-based cluster-
ing algorithms.
In addition, PPV is more important than sensitivity in

terms of the confidence of true discovery. PPV of 1 indi-
cates that the predicted module is a subset of a certain
functional group in the gold standard, which means that
every gene within the predicted module is related. On
the other hand, sensitivity of 1 means a certain real func-
tional module is a subset of a predicted module, which
doesn’t validate other functional relationships among the
predicted module. Thus when end users try to identify
genes functionally relevant with a specific gene, it is nat-
ural to focus more on positive predictive value or preci-
sion rather than composite scores or sensitivity used by
most methodological evaluations. From this perspective,
our integrative approach provides more practical values.
However, since the method is trading sensitivity for

PPV, it could be problematic when data is more
prevalent with false negative than false positive. In
most cases, this means our algorithm is more suitable
for dense networks. Users of our method should
analyze the sparsity of the network before conducting
the algorithm.

Fig. 4 Performance of isolation clustering on three different human interactomes, using CYC2008 as gold standard

Table 1 The distribution of cluster size by different methods on yeast interactomes. The rightmost column is the gold standard
used in this study

Size MCL Walktrap Infomap MCODE ClusterOne NCMine Isolation CYC2008

3–10 342 158 275 135 426 1096 995 198

11–50 107 44 140 21 86 612 82 36

51–100 13 5 7 11 10 23 1 2

100–200 0 5 5 2 4 0 0 0

> 200 1 0 0 0 0 0 0 0
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Selected examples in the result section have shown
that false positive genes could be functionally related in
a way other that protein complexes. This illustrated one
fundamental limitation for functional module identifica-
tion and its evaluation. Biological experiments should be
conducted to further verify the predicted modules.
This study also demonstrated that topic modeling of

biomedical literature is an effective complementary
source of information. Knowledge validated and curated
in the form of literature are generally more reliable than
high-throughput data. By integrating knowledge into the
functional module identification process, false positives
caused by data quality issues can be reduced. Thus,
functional modules are identified with higher confidence.
However, topic modeling of biomedical literature is not
an easy task. The nHDP model used in this study took
roughly 7 days to generate the topic mixtures. Future re-
search may consider alternative information sources for
integration.

Conclusion
In this paper, we have proposed a multiplex approach to
integrate high-throughput data and literature for func-
tional module identification and developed a clustering
method that can utilize the topology based on random
walk. Results showed that our algorithm is able to

generate more novel biological hypothesis with higher
confidence.

Methods
Topic modeling of genes
The title and abstract information of biomedical articles
were downloaded from Pubmed. First, by treating each
gene as a document, tf-idf scores were calculated to
identify words most pertinent to a certain gene. To filter
the documents, words with tf-idf scores lower than 167
were removed; and the vocabulary was restricted to
13,000. Second, a word vector was then created for each
gene by going through its list of 200 words with the
highest tf-idf scores and including only the ones that
occur in the vocabulary. For each cancer sample, word
vectors for its differentially expressed genes were com-
bined. nHDP [59] was used to identify the latent topics
in the set of combined word vectors.
Topic-document associations and topic-word associa-

tions generated from nHDP were further utilized to cal-
culate the gene-topic association scores used in this
study. Association strength between a certain gene g and
a certain topic t was calculated by the total sum of prod-
ucts of: (1) a specific word w’s count in g’s word vector,
(2) t’s probability in document d, (3) the word w’s

Table 2 The distribution of cluster size by different methods on human interactomes. The rightmost column is the gold standard
used in this study

Size MCL Walktrap Infomap MCODE ClusterOne NCMine Isolation CORUM

3–10 1008 323 506 319 1322 1943 2131 1562

11–50 353 83 241 47 108 253 260 176

51–100 15 13 16 8 0 0 4 5

100–200 0 3 3 1 0 0 1 2

> 200 0 0 0 3 0 0 0 0

Fig. 5 In clustering for both yeast and human interactomes, clustering based on random walks has covered most proteins, while density-based
clustering discarded around half the proteins
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probability in t. For detailed description of this section,
please see steps A-E in [37, 60].

Similarity measure
Functional similarity among genes was calculated with
topic-gene association matrix and transcriptomic profiles
respectively.
For the topic-gene association matrix, association

scores less than one were set zero. Measure of similarity
was computed based on Simrank [61]:

Ti ¼ c1 STGiS
� � ð1Þ

Gi ¼ c2 STTi−1S
� � ð2Þ

where S was a g by n matrix containing the association
score between n topics and g genes, Gi was the g by g

matrix containing the similarity among genes in the ith
iteration, Ti was the n by n matrix containing the simi-
larity among topics in the ith iteration, and c1 and c2
were the hyper-parameters controlling the impact of
later iterations. In this study, both c1 and c2 were set to
0.8. The eq. (1) and (2) were iterated until T and G reach
convergence. Note that only the similarity matrix G was
used in the next section.
For the transcriptomic profile data, expression values

were dichotomized. Genes expressions higher or lower
than 95% interval of the distribution was encoded as
one, otherwise zero. Cosine similarity was used to com-
pute the similarity among genes, which is:

simij ¼
expi∙ exp jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‖ expi‖∙‖ exp j‖
q ð3Þ

Fig. 6 Comparison of geometric accuracy of MCL, Infomap, and isolation on yeast interactomes

Fig. 7 Comparison of geometric accuracy of MCL, Infomap, and isolation on human interactomes
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where expi was the vector of expression values of the ith
gene across all the experiments, ‖expi‖ is the L2 norm of
that vector.

Network construction
Computation of similarity matrix
Protein-protein interaction (PPI) networks were used as
the base network. The similarity measures computed in
the last section were used as the edge weights for these
PPI networks. Thus, the topic-based interactome con-
sisted of the topology of a PPI network with edge
weights from topic-gene association matrix; and the
expression-based interactome consisted of the topology
of a PPI network with edge weights from transcriptomic
profile data. For PPI curated in BioGrid for yeast, we
only selected interactions supported by at least two
studies.
These two interactomes were further combined into

one network by treating each interactome as a layer and

connecting the same gene across different layers, as
demonstrated in Fig. 12.

Network integration
For all the networks described above, self-loops were re-
moved. Edges with zero similarity and nodes with zero
weighted degree were removed. The combined network
is represented by supra-adjacency matrix [62]:

A ¼ A1 IN
IN A2

� �

where Ai is the adjacency matrix for the ith layer, IN is
an N by N identify matrix, N is the number of nodes in
a single layer.

Clustering algorithm
The algorithm developed in this study consists of two
steps: (1) transform the adjacency matrix into a matrix

Fig. 8 The two predicted complexes perfectly matched to CORUM complexes. On the left is matched to hTREX84 complex. On the right
is matched to SNAPc complex

Fig. 9 Predicted complex matched to telomere-associated protein complex and TRF-Rap1 complex I, 2MD. Blue nodes were genes predicted but
absent in the gold standard
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representing k-step walks visiting probability; (2) enu-
merate each node to identify clusters with locally opti-
mal isolation.

Network transformation
With the network constructed from previous steps, the
Markov transition matrix, M, should be computed next,
which is:

Mij ¼ Aij=Ai: ð4Þ

where Ai. is the sum of the ith row of A.
From M, we further computed a matrix C, where Cij is

the probability that node j is visited if a walk of K steps
start from node i. In this study, K is always set to 10.
Since Cij is complementary to the probability that node j
never show up in the path, it can be computed as:

Fig. 10 Predicted complex matched to Rnase/Mrp complex. Blue nodes were genes predicted but absent in the gold standard

Fig. 11 Predicted complex matched to 39S ribosomal subunit, mitochondrial. Blue nodes were genes predicted but absent in the gold standard
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Cij ¼ 1−1iT MI− j
� �K

1 ð5Þ
where 1i is the vector with only the ith element as one,
others zero, I−j is an identity matrix with the jth diagonal
value zero, 1 is the vector of 1.
As the vectorization of the operation above, the matrix

C can be computed by the procedure below:

Objective function
Let us denote tij as the number of times node j is present
in the path started from node i, then tij is sampled from
a Bernoulli distribution with probability Cij. Thus, Cij

can also be viewed as the expected number of times
node j is present if a k-step walk is started from node i,
which is:

Cij ¼ Pr tij ¼ 1
� � ¼ E tij

� � ð6Þ
We further denote R as a subset of nodes, and tiR as

the total number of nodes of R present in the walk:

tiR ¼
X

j∈R
tij ð7Þ

According to linearity of expectation, we can derive
that:

E tiRð Þ ¼
X

j∈R
Cij ð8Þ

We can further generalize the equation by denoting
tQR as the total number of nodes in R present in a walk

started from a node in Q. A walk is started from a node
i in R for Wi times. From the law of total expectation,
we can derive that:

E tQR
� � ¼ X

i∈R

X
j∈Q

W jCij ð9Þ

Assuming Wj =1 for every j, we developed two mea-
sures to capture the degree of isolation of a subset R.
One is retention:

retention ¼ E tRRð Þ
E tRGð Þ ¼

P
i∈R

P
j∈RCijP

i∈R

P
j∈GCij

ð10Þ

where G is the subset for all the nodes within the graph,
tRR is the expected number of nodes of R visited in the
k-step walks started from each node in R once, tRG is the
expected total number of nodes of G visited in the k-
step walks started from each node in R once. The higher
retention, the more likely walkers started in R will stay
in R.
The other is:

exclusivity ¼ E tRRð Þ
E tGRð Þ ¼

P
i∈R

P
j∈RCijP

i∈G

P
j∈RCij

ð11Þ

where tGR is the expected total number of nodes of R
visited in the k-step walks started from all the nodes in
G once. The higher exclusivity, the less likely walkers
outside R will get in.
Combining these two measures, the objective function,

named isolation in this study, is (Fig. 13):

isolationRR ¼ E tRRð Þ
E tRGð Þ þ E tGRð Þ

¼
P

i∈R

P
j∈RCijP

i∈R

P
j∈GCij þ

P
i∈G

P
j∈RCij

ð12Þ

Optimization procedures
To identify clusters with maximal isolation, we adopted
a greedy approach iterating between two phases.
One is expansion. In the expansion phase, isolation is

calculated for each individual node outside the cluster:

isolationiR ¼
P

j∈RCij þ
P

j∈RCjiP
j∈GCij þ

P
j∈GCji

ð13Þ

Top 10 nodes with isolationiR higher than the original
cluster are added into the cluster.
The other is shrinking. In this phase, isolation is calcu-

lated for each individual node within the cluster. All the
nodes with isolationiR lower than original cluster are re-
moved from the cluster.

Fig 12. Illustration of the combined interactome, brown edges were
artificial edges added to connect these two layers

Box 1 Algorithm for computing the matrix C

C1 = A ∙ (1 − I)

for i in (2: K):

diag (Ci − 1) = 0

Ci = A ∙ Ci − 1

C = 1 − Ci
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The algorithm keeps iterating between expansion and
shrinking until there is no more qualified nodes for
expansion.

Proof of convergence
For expansion, let us denote the set of qualified nodes as
X and the resulting cluster as R’. For each node i within
X, isolationiR > isolationRR. In other words:

X
i∈X

X
j∈R

Cij þ
X
i∈X

X
j∈R

Cji

P
i∈X

P
j∈GCij þ

P
i∈G

P
j∈XCij

>
E tRRð Þ

E tRGð Þ þ E tGRð Þ

Thus:

E tRRð Þ þ
X
i∈X

X
j∈R

Cij þ
X
i∈X

X
j∈R

Cji

E tRGð Þ þ E tGRð Þ þP
i∈X

P
j∈GCij þ

P
i∈G

P
j∈XCij

>
E tRRð Þ

E tRGð Þ þ E tGRð Þ

On the other hand,

isolationR0R0 ¼
E tRRð Þ þ

X
i∈X

X
j∈R

Cij þ
X
i∈X

X
j∈R

Cji þ E tXXð Þ

E tRGð Þ þ E tGRð Þ þP
i∈X

P
j∈GCij þ

P
i∈G

P
j∈XCij

>

E tRRð Þ þ
X
i∈X

X
j∈R

Cij þ
X
i∈X

X
j∈R

Cji

E tRGð Þ þ E tGRð Þ þP
i∈X

P
j∈GCij þ

P
i∈G

P
j∈XCij

Hence isolationR ′ R′ > isolationRR after expansion.

Similarly, increase of isolation after shrinking can
be proved. Thus, our objective function, isolation, is
always increasing during iterations and convergence is
guaranteed.

Fig. 13 Illustration of the intuition of the objective function. Nodes within the red dotted circle would be a region with high isolation since walkers
inside are likely to stay within and walkers outside are unlikely to get in

Box 2 Clustering Algorithm

function IsolationOptimization(C);

Input: The matrix C

Output: The list of tuples of index

let R be an empty list

let S be a set of indexes of all the nodes in C

Sort S in the descending order of RowSum(C)

while S != Null do

region = S.pop()

candidates = expand(C, region)

while candidates != Null do

region = region.add(candidates)

region = shrink(C, region)

candidates = expand(C,region)

end while

R.append(region)

S = SetDifference(S, region)

end while

return (R)

end
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Merging overlapped clusters
Highly overlapping clusters are likely to exist for this
method. Additionally, for integrated networks, duplicate
gene IDs in the same cluster need to be removed. There-
fore, overlapping among clusters were evaluated by Jac-
card coefficients:

overlap Ci;C j
� � ¼ Ci∩C j

�� ��
Ci∪C j

�� �� ð14Þ

where Ci was the ith cluster, |Ci| was the number of
genes in Ci. Ci ∩ Cj was the intersection of Ci and Cj, and
Ci ∩ Cj is the union of Ci and Cj. A graph with clusters
as nodes was constructed. There is an edge between
cluster i and j if overlap(Ci,Cj) > 0.8. Collections of
highly overlapping clusters is identified as a connected
component of the graph. Union and intersection of all
the highly overlapping clusters is computed and added
into the collection as new clusters. For each collection,
the cluster with highest isolation will remain while all
the others will be removed.

Evaluation
Metrics
Three sets of measures were adopted in this study to
evaluate the clustering performance: (1) Geometric ac-
curacy [21], PPV [21], sensitivity [21]; (2) F measure
[63], precision [63], and recall [63]; (3) protein coverage
rates, which is the number of unique proteins included
by the clustering methods over the total number of pro-
teins of the interactome.

Precision, recall and F-measure
Let P denote the sets of complexes predicted by a com-
putational method and B the real ones in the gold stand-
ard. The neighborhood affinity score NA(p, b) between
the element p in P,Vp, and the element b in B is defined
as:

NA p; bð Þ ¼ Vp∩Vb

�� ��2
j Vp j � j Vb j

where Vp is the set of vertexes in the predicted subnet-
work p. When NA(p,b) > 0.2, we say p matches b, or vice
versa. Thus precision and recall can be defined as:

Precision ¼ Ncp

j P j

Recall ¼ Ncb

Bj j
where Ncp is the number of elements in P that matches
at least one element in B and Ncb the number of ele-
ments in B that matches at least one element in P. F-
measure, or F1, can then be defined as:

F ¼ 2� Precision� Recall
Precisionþ Recall

Sensitivity, positive predictive value (PPV) and geometric
accuracy
With the notations above, let’s denote the overlap be-
tween p and b as:

Tpb ¼ Vp∩Vb

�� ��
Sensitivity and PPV are then defined as:

Sensitivity ¼
PB

b max
p

Tpb
� 	

PB
b j Vb j

PPV ¼
PP

p max
b

Tpb
� 	

PP
p j Vp j

As a summary metric, geometric accuracy, or simply
accuracy, is defined as:

Accuracy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� PPV

p

Protein coverage
Denote VP as:

VP ¼ Union Vpjp∈P
� 	� �

Then protein coverage can be defined as:

Coverage ¼ j VP j
N

where N is the total number of proteins in the
interactome.

Experiment datasets
Three types of data were collected, including protein-
protein interactions, transcriptomic profiles, and re-
search paper titles and abstracts from NCBI. BioPlex 2.0
[55] was used as the protein interaction network. RNA-
seq data about 1097 breast cancer patients stored in
TCGA [64] was used as the transcriptomic profile data.
For the application on yeast interactome, protein inter-
action data was collected from BioGrid (version 3.4.162).
Microarray datasets about systematic perturbation in
yeast [25, 65] was also used in this study. We download
over one million paper titles and abstracts from NCBI
on March 23rd, 2016 for yeast and on September 25th,
2017 for human.

Gold standard
Gene Ontology (GO) and manually curated database of
protein complexes were used as gold standard. The GO
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annotation for Homo sapiens was downloaded from
Gene Ontology consortium. This file annotated 19,473
gene products and was submitted on September 26,
2017. The GO annotation file for Saccharomyces cerevi-
siae was downloaded from Saccharomyces Genome
Database (SGD). This file annotated 6357 gene products
with 4393 GO terms, 2104 of which are in the category
of biological process. The list of 408 yeast protein com-
plex was derived from CYC2008 [66], covering 1627
unique genes. Human protein complexes were down-
loaded from CORUM [67], with 2693 complexes and
4413 unique genes.

Control methods
We used Infomap [68], Markov Clustering algorithm
(MCL), MCODE, Walktrap [69], NCMine [13] and Clus-
terOne [70] as the methods for comparison. These algo-
rithms have been widely used to identify functional
modules or protein complexes in protein interaction net-
works. We implemented MCL based on the work of
Enright [9], used igraph to run Infomap and Walktrap,
and used Cytoscape to run ClusterOne, NCMine and
MCODE.
Since multiplex is applicable to most clustering methods

based on random walk. Performance of MCL, Infomap,
and Walktrap were evaluated based on their results on
multiplex. For density-based clustering methods (i.e.
MCODE, ClusterOne) and core-attachment approaches
(i.e. NCMine), clustering results of the single layer with
better performance were shown and compared.
In addition, we compared the multiplex approach with

Similarity Network Fusion (SNF). The aggregated matrix
generated by SNF is fed to the Isolation clustering algo-
rithm. Our preliminary results showed that the network
transformation step in the clustering procedure yields a
uniform distribution of edges weights for most nodes.
Therefore, the performance of SNF shown in the result
section was generated by conducting merely the
optimization step in the isolation algorithm.
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