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Background: Gliomas are the most malignant tumors of the nervous system. Even
though their survival outcome is closely affected by immune-related genes (IRGs) in the
tumor microenvironment (TME), the corresponding regulatory mechanism remains poorly
characterized.

Methods: Specific enhancer RNAs (eRNAs) can be found in tumors, where they control
downstream genes. The present study aimed to identify eRNA-regulated IRGs, evaluate
their influence on the TME, and use them to construct a novel prognostic model for
gliomas.

Results: Thirteen target genes (ADCYAP1R1, BMP2, BMPR1A, CD4, DDX17, ELN,
FGF13, MAPT, PDIA2, PSMB8, PTPN6, SEMA6C, and SSTR5) were identified and
integrated into a comprehensive risk signature, which distinguished two risk
subclasses. Discrepancies between these subclasses were compared to explore
potential mechanisms attributed to eRNA-regulated genes, including immune cell
infiltration, clinicopathological features, survival outcomes, and chemotherapeutic drug
sensitivity. Furthermore, the risk signature was used to construct a prognostic tool that
was evaluated by calibration curve, clinical utility, Harrell’s concordance index (0.87; 95%
CI: 0.84–0.90), and time-dependent receiver operator characteristic curves (AUCs: 0.93
and 0.89 at 3 and 5 years, respectively). The strong reliability and robustness of the
established prognostic tool were validated in another independent cohort. Finally, potential
subtypes were explored in patients with grade III tumors.

Conclusion: Overall, eRNAs were associated with immune-related dysfunctions in the
TME. Targeting of IRGs regulated by eRNAs could improve immunotherapeutic/
therapeutic outcomes.
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BACKGROUND

Gliomas are the most common malignant tumors of the central
nervous system, accounting for more than 80% of cases, and have
complex survival outcomes (Lin et al., 2017; Bouckaert et al.,
2020). Existing therapeutic strategies and regimens have proven
inadequate (Qin et al., 2017). In recent years, immunotherapy has
emerged as a promising approach for treating patients with
malignant tumors including gliomas (Jahan et al., 2018).
However, the clinical benefits may outweigh the costs only in
a small fraction of glioma patients, due to the “cold tumor”
character and complex tumor microenvironment (TME) of this
malignancy (Wang et al., 2020; Cai et al., 2021). Although several
studies have revealed a function for immune-related genes (IRGs)
in immune cell infiltration, tumorigenesis, and tumor prognosis
(Najima et al., 2016), their exact role and regulators remain
unclear (Lou et al., 2020). Diverse and complex factors
influence IRGs, including somatic mutations, variations in
gene copy number, and gene methylation (Binder et al., 2019;
Huang et al., 2019). Because these effects are not always consistent
and identical between IRGs, the regulatory relationship has been
difficult to ascertain and some important immune modulators
may have been overlooked. Therefore, more specific immune
modulators should be identified, and the functions of their target
genes should be investigated to better understand the underlying
mechanisms.

Enhancers are important distal regulatory DNA elements.
They are transcribed bidirectionally to produce enhancer
RNAs (eRNAs) and directly drive tumorigenesis (Lee et al.,
2020). Besides possessing enhancer activity, eRNAs can also
regulate clinically relevant genes and immune checkpoints.
Accordingly, eRNAs may play an important role in
controlling immune-related functions and could promote
clinical antitumor therapies by interacting with
transcription factors (Hsieh et al., 2014; Schaukowitch
et al., 2014; Liang et al., 2016; Ye et al., 2018; Zhang et al.,
2019). In addition to conventional eRNAs, there are special
eRNAs transcribed from more than one enhancer in a series
and referred to as super-enhancer RNAs (seRNAs) (Pott and
Lieb, 2015; Peng et al., 2019). SeRNAs tend to have stronger
transcriptional activity than conventional eRNAs, suggesting
a greater role in the regulation of gene expression
(Thandapani, 2019). Crucially, because eRNA expression is
cell type-specific, they and their target genes could serve as
diagnostic tumor biomarkers and therapeutic targets. At
present, though, it remains to be determined how eRNAs/
seRNAs affect immune function and influence survival
outcomes in glioma patients.

In this study, we aimed to identify survival-mediating IRGs
regulated by eRNAs/seRNAs and explore potential
mechanisms causing immune malfunction in the TME of
gliomas. The identified IRGs were used to construct a
prognostic tool to predict survival outcomes, as well as
facilitate clinical decisions and individual management. The
obtained information could be used to improve the therapeutic
regimen and prolong the overall survival (OS) of glioma
patients.

METHODS

Data Access and Patient Selection
Gene expression, copy number variance, methylation (450K) data
and phenotype data for the training cohort were downloaded
from The Cancer Genome Atlas (TCGA) dataset using the Xena
Cancer Browser (https://xena.ucsc.edu/). The external validation
cohort was obtained from the Chinese Glioma Genome Atlas
(CGGA; https://www.cgga.org.cn/). Enhancer expression data
and the regulatory information for eRNAs and their target
genes in TCGA patients were acquired from the Enhancer
RNA in Cancers database (https://hanlab.uth.edu/eRic/)
(Zhang et al., 2019). The immune gene list was available from
ImmPort (https://www.immport.org).

Patients were recruited according to the following criteria: 1)
glioma as primary tumor and 2) OS > 30 days. Patients with
missing information were excluded and those with an incomplete
pattern were subjected to missing completely at random testing
using Little’s method (Adamis et al., 2020). These criteria and
statistical analyses were applied to both TCGA and CGGA data.
The batch effect was corrected using the ComBat method
(Johnson et al., 2007).

Identification of eRNA-Regulated
Immune-Related Genes and Functional
Enrichment Analysis
Prognostic eRNAs were obtained after Kaplan-Meier and
univariate Cox analyses, with adjusted p < 0.05 as the cut-
off criterion. The selected prognostic eRNAs were matched to
their target genes including IRGs. Kaplan-Meier and
Spearman correlation analyses between the target gene and
eRNA expression were carried out simultaneously to identify
IRGs related to OS and eRNAs. The correlation filtration
process was based on whether the Spearman correlation
coefficient (rs) was >0.3. The biological function of IRGs
was revealed by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses.

Construction and Evaluation of the
Immune-Related Gene Signature
The least absolute shrinkage and selection operator (LASSO) Cox
regression model was used to narrow the list of IRGs to the most
important ones. The risk score was calculated using the inner
products between the LASSO Cox regression coefficients and
their gene expression levels. The time-dependent receiver
operator characteristic (ROC) curve and respective area under
the curve (AUC) were applied to determine the specificity and
sensitivity of the IRG signature in predicting survival outcomes.
The turning point of the risk score in the density curve was
selected as the cut-off for separating patients into low- and high-
risk groups in the TCGA cohort. The difference in survival
between low- and high-risk patients was evaluated using the
Kaplan-Meier curve. The IRG landscape and statistical
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comparisons of clinical phenotypes were used to reveal the
relationship between IRGs and clinicopathological
characteristics. The same methods were applied to an
independent validation cohort.

Comparison of Immune Landscape,
Pathway Activity and Therapeutic
Sensitivity
To investigate the clinical heterogeneity between the two risk
groups, differences in immune landscape, pathway activity, and
therapeutic sensitivity were compared.

The proportion of immune and tumor cells in each glioma
patient was evaluated with the estimate package in R. To further
characterize the TME and predict the immune cell infiltration
status, a computational algorithm was run using the CIBERSORT
package in R. After excluding samples with p > 0.05, the
infiltration proportion of 22 immune cells was compared
between the low- and high-risk groups for each glioma
patient. Single-sample gene set enrichment analysis (ssGSEA)
was implemented to obtain a second estimate of immune cell
infiltration (Barbie et al., 2009). Other immunocyte infiltration
algorithms were also taken into account in our research,
including xCell and Tumor Immune Estimation Resource
(TIMER) (Aran et al., 2017; Li et al., 2017; Cai et al., 2021).
As an important gene family related to immune functionality,
human leukocyte antigen (HLA) was compared to uncover
additional differences in the TME.

Gene set variation analysis (GSVA) was applied to explore
differences in pathway activity between the low- and high-risk
groups. KEGG pathway activity was estimated, compared, and
visualized between low- and high-risk groups based on the GSVA
and limma packages in R.

Immune checkpoint expression levels and tumor mutation
burden (TMB) were used to predict immunotherapeutic efficacy
for patients with different immune risk signatures. Checkpoint
expression of cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) and programmed cell death ligand-1 (PD-L1)
served as the main biomarker for anti-CTLA-4 and anti-PD-
L1 immunotherapy. To identify potential drugs against gliomas,
the half-maximal inhibitory concentration (IC50) for various
chemotherapeutic agents, including cisplatin, bleomycin,
docetaxel, doxorubicin, gemcitabine, and paclitaxel, was
predicted. The estimation was predicted by the pRRophetic
package which was based on the ridge regression analysis and
the Cancer Genome Project (CGP) database, and directly used the
expression matrix of all genes without any data processing
(Geeleher et al., 2014). The IC50 of temozolomide could be
predicted by the oncoPredict package, based on the Genomics
of Drug Sensitivity in Cancer database (Maeser et al., 2021).

Development and Validation of the
Prognostic Model
Considering the risk signature and traditional clinical variables,
univariate and multivariate Cox models were employed to select
reliable prognostic features, including age, sex, radiotherapy

status, isocitrate dehydrogenase (IDH) status, and X1p19q co-
deletion status, with which to construct a prognostic model. The
indicator age was transformed into a dummy variable (young and
elderly) according to its median. In multivariate Cox analysis, a
stepwise process was used to confirm crucial characteristics.
Harrel’s concordance index and AUCs were calculated, and
the calibration, Kaplan-Meier, ROC, and decision analysis
curves were plotted to assess sensitivity, specificity, and clinical
utility in predicting survival outcomes using the prognostic
model. These indicators were also evaluated in an independent
CGGA cohort.

Exploring the Relationship Between Risk
Signature and Genomic Alterations
According to the Consortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy, genomic events, such as
telomerase reverse transcriptase promoter (TERTp) mutation,
the combination of whole chromosome 7 gain and whole
chromosome 10 loss (chr 7+/10-), epidermal growth factor
receptor amplification, and O-6-methylguanine-DNA-
methyltransferase promoter (MGMTp) methylation status, are
closely related to survival outcomes (Geisenberger et al., 2015;
Brat et al., 2018). These markers could not be used to establish the
prognostic model in this study, as that would jeopardize
validation in the CGGA cohort. However, the relationship
between them and the risk signature was analyzed to explore a
more comprehensive potential network. In line with earlier
reports (Galbraith et al., 2020), the detection rate of TERTp
mutations was too low to allow direct evaluation of its prognostic
value in the TCGA cohort. To overcome this problem, we used
TERT gene expression as a proxy for TERTp mutation status
(Galbraith et al., 2020). Traditionally, MGMTp methylation
status is an important common biomarker, but the TCGA
cohort could not directly provide relevant information,
compelling the use of MGMT methylation level to represent
MGMTp status (Cai et al., 2021).

Identification of Subtypes in Different
Tumor Grades
By applying the risk signature to tumor grade data, we sought to
explore the relationship between the signature and tumor
severity, which could identify valuable subtypes. The reliability
of subtype information was assessed in the TCGA cohort and
verified in the CGGA cohort. Differentially expressed genes were
identified, and the potential pathways underscoring biological
differences were probed by ssGSEA.

Estimation of Influence in Gene Expression
by eRNA
To evaluate the contribution of eRNA in the regulation of gene
expression, we constructed a comprehensive linear model in
which the covariate variables were taken into account,
including age, grade, gender, radiotherapy, IDH mutation,
1p19q codeletion, gene methylation, CNV, and eRNA. The
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raw methylation data were transformed as beta values for each
gene. The partially explained sum of squares (ESS) that could be
used to explain how much of the variance was attributed to the
independent factor, was the main indicator to evaluate eRNA.

Cell Culture and Transfection
U251 and LN229 were the human glioma cell lines, commercially
purchased from the Cell Bank of the Chinese Academy of
Sciences (Beijing, China). U251 cell was cultured in DMEM-
6429 (Sigma, MO, United States) containing 5% fetal bovine
serum (FBS, HyClone, Logan, UT, United States), while LN229
cell was cultured in DMEM-5546 (Sigma, MO, United States)
containing 10% fetal bovine serum (FBS, HyClone, Logan, UT,
United States). siRNAs were obtained from the company of
Nantong Biomics Biotechnologies. The siRNA sequences
targeting PTPN6 and PSMB8 in this study included: si-
PTPN6-1, si-PTPN6-2: and negative controls (si-PTPN6-NC);
si-PSMB8-1, si-PSMB8-2 and negative controls (si-PSMB8-NC),
respectively. The sequences all were listed in Supplementary
Table S1. Lipofectamine 3,000 (Thermo Fisher Scientific, Inc.)
was used for transfection according to the manufacturer’s
instructions. The cells were harvested 48 h after transfection.

Protein Extraction and Western Blot
Analysis
Total proteins were extracted from the cells with RIPA buffer and
quantified by a BCA kit (Beyotime Biotechnology). About 30 μg of
extracted proteins were separated by SDS-PAGE and then
transferred to PVDF membranes (Merck Millipore). Soaked with
5% non-fat milk for 2 h at 25°C and incubated with PTPN6 (Abcam;
1:1,000; ab124942), PSMB8 (Abcam; 1:1,000; ab180606) and
GAPDH (Abcam; 1:5,000; ab9485), the PVDF membranes were
incubated with a secondary antibody (Cell Signaling Technology).

Cell Viability and Colony Formation Assays
EdU staining was used to assess the cell proliferation through a
commercial EdU Kit (UE, China) according to the
manufacturer’s protocols. Images were obtained using a
fluorescence microscope (Leika, Germany) and analyzed with
ImageJ. The colony formation assay was carried out to detect the
clonogenic capacity. The transfected U251 and LN229 cells were
seeded into 35 mm culture dishes at a concentration of 1,000 cells
per dish and cultivated for 8 and 14 days, respectively. Cell
colonies were fixed with paraformaldehyde and stained with
0.1% crystal violet (Beyotime) for 20 min, whose colony
counting was determined by microscope.

Transwell Assay
Cell invasion was evaluated by performing the Chamber matrigel
invasion 24-well units (Costar) according to the manufacturer’s
instructions. The transfected cells were suspended in a serum-free
medium and 1 × 105 cells per chamber were plated into the upper
chamber of the transwell system with a pore size of 8 µm. The
bottom chamber was filled with a medium containing 10% FBS.
After incubation for 24 h, the migrated/invaded cells in the lower
chamber (below the filter surface) were fixed in 4%
paraformaldehyde, stained with crystal violet solution, and
counted under a microscope.

Evaluation of Cell Apoptosis
Cell apoptosis was determined by Annexin V-FITC/PI
Apoptosis Detection Kit (BD Pharmingen, United States) by
flow cytometry. 1 × 105 cells of each group were harvested and
resuspended in 300 μl binding buffer containing 5 μl Annexin
V-FITC for 30 min at 4°C in the dark, followed by further
incubation with 5 μl PI for 5 min. Samples were analyzed with
a FACSCanto II equipped with FACSDiva software (BD
Bioscience). Live cells were identified as Annexin V-FITC-/
PI- (lower left quadrant), apoptotic cells as Annexin V-FITC+/
PI+ (upper right quadrant).

Knockdown of eRNA Using ASO
Locked nucleic acid (LNA)-modified ASOs complementary to
eRNA of PTPN6 and PSMB8 were designed and purchased
from GenePharma (Shanghai, China). The sequences are
listed in Supplementary Table S2. For the transfection of
U251 and LN229 cells, ASOs were mixed with Lipofectamine
3,000 in serum-free DMEM (Sigma) according to the
manufacturer’s protocols. At varying concentrations of
ASOs, dissolved DMEM was added, and the cells were
incubated in a growth medium for 4 h at 37°C and 5%
CO2. At 48 h after transfection, the cells were harvested
for further analysis.

The Human Protein Atlas
The Human Pathology Atlas project (https://www.proteinatlas.
org) contains immunohistochemistry (IHC) data using a tissue
microarray-based analysis on the different normal tissue types,
and proteome analysis of the major cancer types. Staining
intensity, quantity, location, and patients’ information in
patients with the respective types of cancer were available

FIGURE 1 | Flowchart of the study.
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online. In this study, protein levels of PTPN6 and PSMB8 in
glioma tissues and normal tissues analyzed with the IHC method
were analyzed at Human Protein Atlas.

Statistical Analysis
All statistical analyses were performed using R software (https://
www.r-project.org; version 4.0.3) and were two-sided. Results
with p < 0.05 were considered statistically significant. The main
statistical method used in this study included the Wilcoxon test,
correlation test, chi-square test, Little’s test, and proportional
hazards assumption test.

RESULTS

Selection of eRNA-Regulated
Immune-Related Genes
A total of 702 TCGA patients were selected as the training
cohort, and 1018 CGGA patients with gliomas were used as
the validation cohort. After adjusting for incomplete
information, 525 TCGA (p � 0.11) and 513 CGGA (p �
0.13) glioma patients were included. Their
clinicopathological characteristics are reported in
Supplementary Tables S3, S4. A flowchart of this study is
summarized in Figure 1.

Of the 461 eRNAs found to be expressed in gliomas, 274
affected survival (Zhang et al., 2019). Provided by previous
research, these eRNAs regulated 1721 genes, of which 51 were
immune-related (Zhang et al., 2019). To obtain a strong
association between eRNAs and their target IRGs, 24 genes
with rs < 0.3 were excluded, while 27 were included (Table 1;
Figure 2A, and Supplementary Figure S1).

Functional enrichment analyses of the 27 target genes
produced eight KEGG pathways and several GO terms
(Figure 2B). The KEGG pathways were involved in the
regulation of immune function, nervous function, and cell
signaling. They included “PD-L1 expression and PD-1
checkpoint pathway in cancer”, “neuroactive ligand-receptor
interaction”, and “JAK−STAT signaling pathway”. GO terms
indicated that IRGs were enriched in various signaling
pathways and “axonogenesis”, whose association with the
TME has been reported previously (Han et al., 2021).

Generation of a Prognostic Signature for
Gliomas
Filtering through the LASSO Cox analysis, returned 13 IRGs
(ADCYAP1R1, BMP2, BMPR1A, CD4, DDX17, ELN, FGF13,
MAPT, PDIA2, PSMB8, PTPN6, SEMA6C, and SSTR5)
significantly associated with survival outcomes. They were used to
construct a comprehensive prognostic tool for gliomas. The risk
scores for each patient were calculated using the parameters
generated by the LASSO Cox model (Supplementary Figure S2
and Supplementary Table S5) applied to the following formula (Risk
score� −0.16 pADCYAP1R1 − 0.37 p BMP2 - 0.31 p BMPR1A+ 0.03
p CD4 − 0.01 p DDX17 + 0.14 p ELN − 0.11 p FGF13 − 0.02 pMAPT
− 0.24 p PDIA2 + 0.11 p PSMB8 + 0.1 p PTPN6 − 0.05 p SEMA6C −
0.31 p SSTR5).

The distribution of the risk score pointed to two distinctive classes
(328 patients in the low-risk group and 197 patients in the high-risk
group) describing all glioma patients (Figure 3A). The two classes
could be distinguished with respect to several clinicopathological
features and gene expression profiles, including tumor grade,
radiotherapy, IDH mutation status, X1p19q co-deletion status,

TABLE 1 | The correlation analysis for eRNA and their target genes.

Gene type Gene eRNA enhancer site eRNA tissue ERG rs

specific-regulated ADCYAP1R1 ENSR00000210436 7 (31027263) gliomas 1 gene 0.787
specific-regulated FGF13 ENSR00000249159 X (1,39720349) gliomas 1 gene 0.531
specific-regulated PSMB8 ENSR00000195717 6 (32867500) gliomas multi-genes 0.309

ENSR00000195824 6 (33633665) multi-tumors multi-genes 0.254
seRNA-regulated MAPT ENSR00000094845 17 (44998305) multi-tumors multi-genes 0.480

ENSR00000283518 17 (44999600) multi-tumors multi-genes 0.426
ENSR00000094854 17 (45040640) multi-tumors multi-genes 0.265

seRNA-regulated BMPR1A ENSR00000031043 10 (87214200) multi-tumors multi-genes 0.408
ENSR00000031044 10 (87216296) multi-tumors multi-genes 0.415
ENSR00000260651 10 (87214700) multi-tumors multi-genes 0.411

seRNA- regulated DDX17 ENSR00000146066 22 (37782552) multi-tumors multi-genes 0.562
ENSR00000301859 22 (37781600) multi-tumors multi-genes 0.571

seRNA- regulated ELN ENSR00000213692 7 (74875000) multi-tumors multi-genes 0.366
ENSR00000326719 7 (73284800) multi-tumors multi-genes 0.417

seRNA- regulated BMP2 ENSR00000134110 20 (5817887) multi-tumors multi-genes 0.319
ENSR00000134111 20 (5821900) multi-tumors multi-genes 0.325
ENSR00000134112 20 (5823100) multi-tumors multi-genes 0.333

other SEMA6C ENSR00000013533 1 (150635378) multi-tumors multi-genes 0.428
ENSR00000013524 1 (150596300) multi-tumors multi-genes 0.278

other PDIA2 ENSR00000082228 16 (700964) multi-tumors multi-genes 0.360
other PTPN6 ENSR00000048324 12 (6613700) multi-tumors multi-genes 0.419
other SSTR5 ENSR00000082228 16 (700964) multi-tumors multi-genes 0.307
other CD4 ENSR00000048324 12 (6613700) multi-tumors multi-genes 0.366
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age, and survival outcome (Figure 3B; p < 0.05). The Kaplan-Meier
analysis demonstrated a clear difference in survival outcomes
between the two classes, with low-risk patients surviving longer
than their high-risk counterparts, regardless of development and
validation cohorts (Figure 3C; p < 0.05). The AUCs of time-
dependent ROC curves for the risk score were 0.91 and 0.88 in
the TCGA cohort, and 0.86 and 0.84 in the CGGA cohort at 3 and
5 years, respectively (Figure 3D).

Differences in the Immune Landscape
Between Low- and High-Risk Patients
Having established the glioma risk signature, we estimated the
proportion of tumor, stromal, and immune cells in the TME of
low- and high-risk patients (Figure 4A). In the latter, the
TME exhibited heavier immune and stromal cell infiltration,
but fewer tumor cells (Figure 4B; p < 0.05). The proportion of
22 immune cell types was calculated to determine the exact

FIGURE 2 | Identified target genes. (A1) Correlation between eRNA and its target gene. (B1) KEGG enrichment analysis. (B2) GO enrichment analysis.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7984456

Tian et al. Enhancer RNA in Gliomas

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


infiltration pattern between the two groups (Figure 4C; p <
0.05). In the low-risk group, activated NK cells, monocytes,
and activated mast cells were the main types of immune cells;
whereas CD8+ T cells, CD4+ memory resting T cells, M0 and
M1 macrophages, eosinophils, and neutrophils were enriched
in high-risk patients. Of note, only patients with p < 0.05 in
the CIBERSORT estimation were used to compare immune
infiltration (91 patients in the low-risk group and 59 patients
in the high-risk group). Visible differences in immune

infiltration levels were revealed by the ssGSEA method,
with most immune cell types being more abundant in the
high-risk group than in the low-risk group, except for
monocytes and activated B cells (Figures 4A–D; p < 0.05).
Except for the proportion of monocytes, the results in xCell
were highly similar to those in CIBERSORT (Supplementary
Figure S3A). Besides, the TIMER results also verified the
high-risk patients suffered from a heavier immune infiltration
burden in the local tumour patient’s microenvironment

FIGURE 3 | Clinicopathological differences with eRNA-related risk signature. (A) Distribution of the risk score. (B) Differences in expression profile, grade,
radiotherapy status, IDH status, X1p19q status, age and survival status. (C1-C2) Kaplan-Meier curves for the TCGA and CGGA cohort, respectively. (D1-D2) ROC
curves for the TCGA and CGGA cohort, respectively.
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(Supplementary Figure S3B). In addition, 19 members of the
HLA gene family were overexpressed in the high-risk groups
(Figure 4E; p < 0.05).

Predicting the Potential Effect of
Immunotherapy and Chemotherapy
PD-L1 and CTLA-4 were overexpressed in the high-risk group,
indicating that these patients would have a higher response rate

and more benefits from potential immunotherapy (Figure 5A;
p < 0.05). Furthermore, the differential expression of PD-L1 and
CTLA-4 were compared between lower-grade gliomas (LGGs;
tumour grade II ∼ III) and glioblastoma in the high-risk group,
and between different risk groups within the same tumour grade,
such as PD-L1-grade IV-Low risk V.S. PD-L1-grade IV-High
risk. There were no significant differential expressions of PD-L1
and CTLA-4 in the high-risk group (Supplementary Figures
S4A, B; p > 0.05). However, most gene expression comparisons

FIGURE 4 | Immune-related comparison. (A) The ssGSEA profile. (B1-B4) Comparison for immune cell, tumor cell, and stromal cell in TME. (C) Infiltration
comparison based on the ssGSEA algorithm. (D) Infiltration comparison based on the CIBERSORT algorithm. (E) Differential expression for HLA gene family.
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within the same tumour grade were significant (Supplementary
Figures S4C–H; p < 0.05). Only the CTLA-4 expression in grade
II or grade IV was insignificant, which may be attributed to the
sample size of grade II in high-risk, and grade IV in low-risk.
These analyses were to clarify whether the differential expression
of PD-L1 and CTLA-4 was merely ascribed to differences
between LGGs and GBM). To verify this from another point
of view, the two groups were compared with respect to TMB. This
comparison revealed that high-risk patients had a heavier TMB
(Figure 5B; p < 0.001). IC50 prediction for six main common
chemotherapeutics using the pRRophetic algorithm revealed that
all high-risk patients had significantly lower IC50 (Figure 5C; p <
0.05). However, for temozolomide, there was insignificance.
Taken together, these results indicated that patients in the
high-risk group would benefit more from potential
immunotherapy and chemotherapy.

Variation in Metabolic Pathways
Pathway analysis revealed that signaling pathways participating
in a variety of biological processes differed significantly between
low- and high-risk patients (Supplementary Figure S5A). The

high-risk group was associated preferentially with “WNT
signaling pathways”, “taste transduction”, “MORT signaling
pathway”, “long term depression”, “phosphatidylinositol
signaling system”, and other 12 biological processes
(Supplementary Figure S5B and Supplementary Table S6; |
log2FC| > 0.3, adjusted p < 0.05). The low-risk group was
associated primarily with “ECM receptor interaction”,
“glutathione metabolism”, “glycosaminoglycan degradation”,
“N-glycan biosynthesis”, “systemic lupus erythematosus”, and
other 47 signaling pathways.

Establishment and Validation of a
Prognostic Model
Based on univariate and multivariate Cox analyses for the risk
score and the clinicopathological indicators mentioned above, the
risk score, age, radiotherapy, tumor grade, and X1p19q co-
deletion status were considered as independent indicators in a
prognostic model (Figures 6A,B). A stepwise process was
executed in the multivariate Cox model. However, these
factors were not be used to establish a prognostic tool whose

FIGURE 5 | Drug sensitivity estimation. (A1-A2) Immunotherapy sensitivity estimation by PD-L1 and CTLA-4, respectively; and (B) TMB. (C1-C6) chemotherapy
IC50 estimation for Cisplatin, Bleomycin, Docetaxel, Doxorubicin, Gemcitabine, and Paclitaxel.
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proportional hazards assumption was not be met, because of the
radiotherapy status factor. To solve this problem, we introduced
an interaction between radiotherapy and tumor grade into the
established model, and its proportional hazards assumption was

satisfied (Supplementary Figure S6; Schoenfeld test p � 0.16)
(Wang et al., 2021a). Using 1,000 bootstrap iterations, the
concordance indices of the established model were calculated
as 0.87 (95% CI: 0.84–0.90) in the TCGA cohort and 0.80 (95%

FIGURE 6 | Nomogram to predict 3 and 5 years OS. (A) Univariate and multivariate analyses. The grade III HR and its CI were divided by 10 in the forest plot. (B)
Nomogram to predict the 3-, 5- and 10-years OS for LGGs patients. (C1) Time-dependent ROC curves; (C2-C3) Calibration curves; (C4-C5) DCA curves in TCGA
cohort. (D1) Time-dependent ROC curves; (D2-D3) Calibration curves; (D4-D5) DCA curves in CGGA cohort.
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CI: 0.78–0.83) in the CGGA cohort. Actual discriminative
performance was assessed by ROC curves at 3 and 5 years
(AUCs: 0.93 and 0.89 in the TCGA cohort; 0.90 and 0.89 in
the CGGA cohort) (Figures 6C,D). The robustness of the model’s
predictive ability was evaluated by the calibration curves and its
clinical utility by decision curve analysis in the TCGA and CGGA
cohorts (Figures 6C,D). Besides, we used our established
prognostic model to LGGs alone, to verify the robustness and
efficiency were not merely resulted from the differences between
LGGs and GBM. Similar performances were observed: Harrell’s
concordance index 0.85 (95% CI: 0.80–0.89); AUCs 0.87 and
0.79 at 3 and 5 years in the development cohort, 0.88 and 0.85 at 3
and 5 years in the validation cohort; robust calibration curves
(Supplementary Figure S7; p < 0.001).

Interestingly, the prognostic effect of radiotherapy status
contrasted between the univariate and multivariate Cox models.
We hypothesized that the discrepancy might be due to tumor
grade acting as an important confounding factor. Indeed, the
radiotherapy rate was higher for grade III-IV patients than grade
II patients in the TCGA cohort (Figure 7A; p < 0.05). Stratification
analysis confirmed that tumor grade was a confounding factor, and
radiotherapy was a protective factor for grade IV patients (Figures
7B–D; HR � 0.35, p < 0.05). Furthermore, we found that the
radiotherapy rate for grade II patients was higher in the CGGA
cohort than in the TCGA cohort (Figure 7C; p < 0.05), and verified
that radiotherapy had no obvious prognostic value for them
(Figure 7E; p � 0.36).

Comparison of Genomic Alterations
Chr 7+/10- was found to occur more frequently with a higher risk
signature (Supplementary Figure S8A; p < 0.001). Patients with
lower-risk signatures had higher MGMT methylation levels
(Supplementary Figure S8B; p < 0.001). A comparison of
TERT gene expression indicated that patients with higher risk
signatures were more likely to have accumulated TERTp
mutations (Supplementary Figure S8C; p < 0.001).

Difference Between Subtype Grade Groups
We found that grade III patients from both TCGA and CGGA
cohorts accounted for a large portion of both the high- and low-
risk groups, whereas the same was not observed for grade II and
IV patients (Figure 3B and Supplementary Figure S9). This
finding suggested the existence of potential subgroups within-
grade III patients, which we defined as high-risk grade III (H-III)
and low-risk grade III (L-III).

L-III and H-III patients displayed clear differences in gene
expression profiles, as well as survival outcomes (Figures 8A–D;
p < 0.05). A total of 230 differentially expressed genes were
identified between the two groups, including 141 upregulated
genes and 89 downregulated genes (Figure 8E; |Log2FC| > 1.5;
adjusted p < 0.05). GO analysis revealed significant enrichment
for “collagen fibril organization”, “extracellular matrix
organization”, “extracellular structure organization’, “negative
regulation of cell adhesion”, and “regulation of vasculature
development’ pathways (Figure 8F; p < 0.05). At the same

FIGURE 7 | Radiotherapy status comparison for grade III patients. (A) Frequency table in TCGA cohort. (B) Stratification analysis in TCGA cohort. (C) Frequency
table in CGGA cohort. (D) Stratification analysis in CGGA cohort. (E) Kaplan-Meier curve for the two cohort patients with tumor grade II.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 79844511

Tian et al. Enhancer RNA in Gliomas

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


time, “allograft rejection”, “asthma”, “ECM-receptor interaction”,
“leishmaniasis”, and “phagosome” pathways were significantly
enriched following KEGG analysis (Figure 8G; p < 0.05). To
identify potential signaling pathways explaining the discrepancy
between the two subtypes, GSEA was used to identify significant
KEGG pathways based on the results of differentially expressed
genes. The top five signaling pathways for the H-III group were
“Epstein−Barr virus infection”, “focal adhesion”, “human T-cell
leukemia virus 1 infection”, “influenza A”, and “lysosome”
(Figure 8H; enrichment score >0.3, p < 0.05); whereas for the
L-III group, the activated pathways were ‘cAMP signaling
pathway”, “coronavirus disease-COVID-19”, “dopaminergic
synapse” “neuroactive ligand-receptor interaction”, and
“olfactory transduction” (Figure 8I; enrichment score < −0.3,
p < 0.05). Many of these signaling pathways are involved in tumor
immune functions and HLA malfunction, which confirms the

need to explore potential mechanisms underlying the diverse
subtypes defined by eRNAs and their target genes.

Contribution of eRNA in Target Gene
Expression Variance
The main CNVs were concentrated in some most studied
genes, such as TP53, IDH1, ATRX, TTN, PTEN
(Supplementary Figure S10A). However, for IRGs, the
CNVs were too low to influence the gene expression
(Supplementary Figure S10B; mutation rate <1%).
Therefore, the CNVs were excluded from the multivariate
model. Besides, it was obvious that the eRNAs were
important factors to influence the target expression
(Table 2). Though eRNAs and methylation were all crucial,
eRNAs were more important factors to influence the IRGs

FIGURE 8 | Subclass analysis for tumor grade III. (A) Gene expression profile in TCGA cohort, and (B) in CGGA cohort. (C) Kaplan-Meier curve for TCGA cohort
patients, and (D) for CGGA cohort patients. (E) Volcano plot between high- and low-risk groups. (F) GO enrichment for differential genes. (G) KEGG enrichment for
differential genes. (H) GSEA in the high-risk score, and (I) in low-risk score.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 79844512

Tian et al. Enhancer RNA in Gliomas

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


expression. The eRNA even could explain 70.83% of the known
variance for the DDX17 gene. These could indicate that eRNAs
occupied an important position and were worth studying in
the gene regulation system.

Knockdown of PTPN6 and PSMB8 and Their
eRNAs
The si-PTPN6 and si-PSMB8 targeting PTPN6 and PSMB8
were transfected into the U251 and LN229 cells. According to
the western blot analysis, both of the two selected siRNAs
could significantly decrease PTPN6 and PSMB8 expression as
shown in both cell types (Figure 9A and Supplementary
Figure S11A; p < 0.001). Next, EdU staining and colony
formation assays were performed to assess the cell
proliferation. The results indicated that compared with the
control (si-NC), the silence of PTPN6 and PSMB8 significantly
suppressed cell growth (Figure 9B and Supplementary Figure
S11B; p < 0.05), and the formation of tumor cell colonies
(Figure 9C and Supplementary Figure S11C; p < 0.01).

We further explored the potential impact of PTPN6 and
PSMB8 on migration and invasion by transwell assays. U251
and LN229 cells transfected either with si-PTPN6 and si-
PSMB8 presented a dramatically inhibited migration and
invasion ability (Figures 9D,E and Supplementary Figures
S11D, E; p < 0.01). Consistently, the apoptosis rates were both
higher in the si-PTPN6 and si-PSMB8 silence group than in
the negative control (Figure 9F and Supplementary Figure
S11F; p < 0.0001). Those results suggested a critical role of
PTPN6 and PSMB8 in the cell proliferation and aggressiveness
of glioma cells. Knockdown of eRNA by ASO could
significantly suppress target gene expression (Figure 9G
and Supplementary Figure S11G; p < 0.001). Besides, the
IHC confirmed that high levels of PTPN6 and PSMB8
expression occurred in glioma tissues (Figure 9H and
Supplementary Figure S11H).

DISCUSSION

So far, it has remained unclear how IRGs alter the TME and how
this impacts survival outcomes. Numerous studies have
demonstrated that the TME and immune-related
characteristics are closely linked to disease prognosis, as
indicated by a faster tumor progression with increasing
invasiveness of tumor cells (Wang et al., 2017; Ma et al.,
2018). In this context, it is important to identify which gene is
dysfunctional and what is the cause of its malfunction. As pivotal
regulatory biomarkers, eRNAs have various tumor-specific
features such as the regulation of key immune checkpoints
(Zhang et al., 2019; Lee et al., 2020). In this study, eRNA-
regulated IRGs identified in glioma patients were used to
construct a comprehensive and highly robust risk signature
capable of predicting individual outcomes. Based on the
distribution of IRGs in the risk signature, patients were
divided into low- and high-risk groups. The characteristics of
their TME were compared to reveal potential mechanisms
explaining the heterogeneity in OS. Besides, we had found that
for IRGs, the eRNAs may make an important contribution to
gene regulation. Notably, the research approach used in this study
has great potential for identifying eRNA-regulated oncogenes and
other types of malignant cancers.

The TME of low-risk patients was significantly more pure,
meaning that tumor cells recruited fewer non-tumor cells, formed
a stable solid tumor, and became less invasive (Zhang et al., 2017).
In contrast, the high-risk phenotype was enriched in non-tumor
cells, such as macrophages and neutrophils, leading to greater
immune infiltration and worse survival outcomes. A hyperactive
immune response in local tumor tissues blocks attacks from
beneficial immune cells, such as NK cells and CD4+ T cells
(Cheng et al., 2016; Zhang et al., 2017). Although similar
findings have been reported in many types of malignant
tumors, such as gliomas and colorectal carcinoma, the
underlying mechanism remains largely unknown (Cheng et al.,

TABLE 2 | The contribution of eRNA in target gene expression variance.

Gene Coef-M p Coef-e p Con_M Con_e Con_T Pro_M Pro_e

ADCYAP1R1 1.08 0.14 1.80 <0.01 <0.01 0.26 0.51 <1.00% 50.98%
FGF13 — — 1.45 <0.01 - 0.12 0.23 - 38.24%
PSMB8 0.84 <0.01 1.72 <0.01 0.03 0.28 0.54 5.56% 51.85%
MAPT 1.00 0.98 1.09 <0.05 <0.01 <0.01 0.53 <1.00% <1.00%
BMPR1A 0.79 <0.01 0.82 0.24 0.04 0.04 0.38 10.53% 10.53%
DDX17 0.92 0.18 33.88 <0.01 <0.01 0.34 0.48 <1.00% 70.83%
ELN 0.73 <0.01 1.16 <0.05 0.06 0.07 0.38 15.79% 18.42%
BMP2 0.66 <0.01 1.13 0.34 0.07 0.02 0.77 9.09% 2.60%
SEMA6C 0.73 <0.01 1.20 <0.01 0.09 0.06 0.39 23.08% 15.38%
PDIA2 1.00 1.00 1.21 <0.01 <0.01 0.03 0.21 <1.00% 14.29%
PTPN6 0.71 <0.01 1.55 <0.01 0.13 0.15 0.60 21.67% 25.00%
SSTR5 — — 1.11 <0.01 — 0.01 0.37 — 2.70%
CD4 0.81 <0.01 1.53 <0.01 0.04 0.14 0.47 8.51% 29.79%

The table results were all collected from the multivariable model, including age, grade, gender, radiotherapy, IDH, mutation, 1p19q codeletion, target gene methylation level, and eRNA,
level. Coef-M: coefficient of methylation; Coef-e: coefficient of eRNA; Con_M: contribution of methylation in the explained sum of squares (ESS); Con_e: contribution of eRNA, in the ESS;
Con_T: total ESS; Pro_M: the ratio of Con_M in Con_T; Pro_e: the ratio of Con_e in Con_T. Please note the methylation level of FGF13 and SSTR5 was not be detected, so relevant
statistics were ignored.
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FIGURE 9 |Knockdown of PTPN6 suppressed the proliferation, migration, invasion, and increased cell apoptosis of U251 and LN229 cells in vitro. (A)Western blot
analysis to examine the efficiency of the PTPN6 knockdown. (B) EdU staining to assess proliferation ability. (C) Clonogenic assays to assess colony-forming abilities.
(D,E) Transwell assays to detect the migration and invasive capacities. (F) Flow cytometry to analyze the apoptosis of U251 and LN229 cells. (G) Relative quantitation of
PTPN6 protein expression levels in ASO-treated U251 and LN229 cells. (H) PTPN6 expression in glioma tissues and normal tissues. Magnification, ×200 (B,D, and
E). Scale bar, 100 μm (B,D, and E). *p < 0.05; **p < 0.001; ***p < 0.001; ****p < 0.0001. Data are shown as mean ± SD at least three independent experiments.
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2016; Zhang et al., 2017; Mao et al., 2018). Upon comparing
immune infiltration levels, it was found that most immune cells
were much more abundant in tumor tissues of high-risk patients.
Contradictory results on immune infiltration obtained by
ssGSEA and CIBERSORT might be ascribed to a smaller
sample size upon CIBERSORT analysis. Nevertheless, the
discrepancy in immune infiltration between the two risk
groups was very clear. In this study, macrophages were
extremely abundant in the local TME of high-risk patients.
Their recruitment contributes to immune escape and immune
resistance. In particular, macrophage subtypes M1 and M2 have
been related to tumor growth and invasion (Hambardzumyan
et al., 2016). A comparison of the TME between patient subtypes
points to a link between immune dysfunction and eRNA
malfunction, which singularly regulates IRGs, affects crucial
biological pathways and, ultimately, alters OS.

It is difficult to make an informed clinical decision about the
most beneficial course of therapy for malignant tumors, especially
refractory malignant gliomas. The differences identified here in
the TME highlight the potential benefits of immunotherapy for
glioma patients, particularly if aimed at immune checkpoint
inhibitors. Checkpoint expression levels and TMB are primary
indicators of the feasibility of immunotherapy (Chalmers et al.,
2017). A heavier TMB could be related to mismatch repair
defects, which could be treated with drugs targeting
specifically PD-1/PD-L1 (Le et al., 2017). Moreover, a higher
expression of checkpoint genes, such as PD-L1 and CTLA-4, in
these patients could improve the efficacy of immunotherapy. We
not only found that high-risk patients would benefit more from
potential immunotherapy, but we also show that this difference
derives in part from the malfunction of eRNAs. Though our study
found the differences of potential immunotherapy effects and
verify it was not merely attributed to the differences between
LGGs and GBM, we must emphasize that up to now, the failures
of PD-1/PD-L1 immunotherapy for glioma had been verified in
phase III clinical trial (Filley et al., 2017; Zhao et al., 2019a;
Reardon et al., 2020). However, researchers have proven that the
tumour microenvironment has enough immune cell infiltration
to activate the immune response (Louveau et al., 2015; Wang
et al., 2021b). Besides, in vitro experiment, the PD-1/PD-L1 or
CTLA-4 blockade have got suppression effect (Zhao et al., 2019b).
It reminded us that immunotherapy might benefit glioma
patients, but more effective immune targets were needed
(Wang et al., 2021a). Even though the higher sensitivity of
high-risk patients to common chemotherapeutic agents (e.g.,
temozolomide) could not be found, it is reasonable to assume
that a diverse drug susceptibility applies to different risk patients.
This study anticipates the differences in efficacy for potential
chemo/immunotherapy, which could inform clinicians on the
most rational decisions in clinical practice.

The present study revealed significant variations in the
biological pathways enriched in low-as opposed to high-risk
patients. Many complex pathways were identified by GSVA,
offering a broad spectrum of candidate genes involved in
tumorigenesis, progression, and therapeutic outcomes of
gliomas. Specifically, the different pathways were found to be
related mainly to cellular signal transduction, DNA replication

and damage repair, as well as metabolism. Many of them have
been proven to be inextricably linked to tumorigenesis, cell
proliferation, immune cell differentiation, and survival
outcomes (Zou et al., 2020; Colardo et al., 2021; Lou et al.,
2021). Pathway enrichment (GO and KEGG) analysis for
survival-related genes returned several pathways already found
by GSVA, further confirming their vital role in controlling the
biology of gliomas. Enrichment results support the involvement
of survival-mediating eRNA-targeted genes in biological
processes directly regulating the nervous system, such as
“axonogenesis”, “glial cell projection”, “neuroactive ligand-
receptor interaction”, and “axon guidance’.

The most prominent contribution of this study is the
identification of eRNA-regulated IRGs. Among the identified
genes, eight were controlled specifically by eRNA or seRNA.
This finding confirmed how specific eRNAs and seRNAs were
important factors affecting survival outcomes. Glioma-specific
eRNAs and their downstream genes have great potential as
therapeutic targets. One of the reasons preventing effective
treatment of gliomas is their huge heterogeneity, which makes
it difficult to formulate treatment and management plans.
Glioma-specific eRNAs provide novel opportunities to
overcome this problem. For example, the eRNA of
ENSR00000210436 located on chromosome 7 (from 31024263
to 31030263) was only expressed in gliomas and was strongly
correlated with its target gene (rs � 0.79, adjusted p < 0.05) (Zhang
et al., 2019). In addition, strong correlations were observed
among seRNAs, further supporting their identity as super-
enhancer RNAs not only because they were localized to
adjacent sites, but also because they were co-expressed in
tumor tissues.

In terms of potential clinical applications, this study used the
identified genes to construct an innovative prognostic model and
assess its robustness, specificity, and clinical utility. The model’s
performance showed elevated reliability. Quantitative indicators
of discrimination capacity (concordance index and AUCs) were
higher than in many previous studies (Zhang et al., 2017; Qian
et al., 2018), which may be related to the specificity and
effectiveness of eRNAs. Moreover, the risk signature was
closely related to genomic alterations, which reinforces the
notion that abnormally activated target genes do not act alone
but crosstalk with other important factors affecting survival
outcomes, including the TERTp mutation, MGMTp
methylation, and chr 7+/10- status. Previous studies have
reported a link between these genomic alterations and survival
outcomes, but the present results facilitate further investigation of
the mechanisms underlying tumor progression (Brat et al., 2018;
Galbraith et al., 2020; Heravi Shargh et al., 2021). Furthermore,
we found that radiotherapy failed to promote survival outcomes
in grade II patients, likely increasing only their financial and
social burden.

Based on the gene expression profile, diverse subtypes of grade
III patients were detected in the TCGA cohort and verified in the
independent CGGA cohort. Tumor grade II or IV patients were
not explored for additional subtypes because these accounted
only for tiny percentages in the TCGA or CGGA cohorts and,
thus, could not provide robust proof. GSEA was performed to
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identify relevant KEGGpathways, with which to explore the potential
mechanisms explaining grade III subtypes. Immune-related signaling
pathways were enriched in the H-III group, indicating that an
overactive local immune response was an important pathogenic
determinant, which led to more serious outcomes. For example,
HLA-related pathways were singularly activated, which may be an
important determinant causing biological differences, and has been
proven to be related to clinicopathological features and survival
outcomes of glioma patients (Wu et al., 2020).

In our study, the risk score was highly related to IDH status in
the TCGA cohort. Although the observed relationship was
weaker in the CGGA cohort, this fact supports the need to
exploit immune-related and survival-related mechanisms as
contributors to gliomas. A similar phenomenon was observed
with respect to X1p19q co-deletion status, explaining why only
the latter and not IDH status was included in the prognosis for
gliomas. The exact roles of IDH status and X1p19q co-deletion
status in gliomas could be elucidated by future work on eRNAs,
enhancers, or their target genes.

The tumor suppressor protein tyrosine phosphatase non-receptor
type 6 (PTPN6 or SHP1) is a tyrosine phosphatase involved in the
regulation of numerous intracellular signaling cascades that control
cell proliferation, differentiation, and apoptosis. Prior studies had
found that the dysregulation of its expression can cause abnormal cell
growth and promote tumor formation in leukemia (Wu et al., 2003).
Proteasome subunit beta type-8 (PSMB8) is a member of the 20S
proteasome (Kimura et al., 2015). The overexpression of PSMB8
contributes to the progression of gastric cancer, which is related to the
degree of gastric cancer differentiation, the depth of tumor invasion,
lymph node metastasis and depth of invasion (Kwon et al., 2016).
According to a series of bioinformatics analyses and experiments, we
found that silencing PTPN6 and PSMB8 in U251 and LN229 cells,
significantly decreased cell viability, clone formation, migration and
invasion ability, and induced cell apoptosis and the eRNAs were
important factors to regulate the gene expression.

The present report has also some limitations, which should be
addressed in future studies. First, more reliable evidence from
prospective studies should be provided prior to translation into
clinical practice. Second, the established model contains many
genetic determinants, which aggravates the economic burden on
patients and diminishes its usefulness. Third, the locations of
enhancers on chromosomes and the direct regulatory
relationships between eRNAs and target genes should be
confirmed in rigorous experiments. Fourth, only an eRNA-
regulated gene was robustly validated in our study, and the
rest should be accomplished similar validation in the future
study, especially for the specific-RNA/seRNA-regulated genes.
Finally, multi-omics data should be integrated to generate a more
complete biological regulatory network and reveal additional
information, such as long non-coding RNAs, micro RNAs,
and epigenetic mutations.

In conclusion, this study identified 13 eRNA-regulated
IRGs and integrated them in a comprehensive signature to
serve as an accurate prognostic factor. The risk signature
offered a good discriminative ability towards TME
characteristics, and patients with different risk levels
displayed significantly different sensitivities to chemo/

immunotherapeutic agents. The established model could be
used to predict survival outcomes with high specificity and
robustness, and aid clinicians in making more rational
decisions. Furthermore, specific eRNAs and their regulated
genes could be explored as therapeutic targets for refractory
tumors, as well as cancers other than gliomas.
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Supplementary Figure S5 | GSVA analysis. (A) The heatmap of GSVA result. (B)
Differential pathways.

Supplementary Figure S6 | Proportional hazards test figure.

Supplementary Figure S7 |Nomogram in subclass patients. (A-D) The calibration,
ROC curves, and Kaplan-Meier curve in the TCGA cohort. (E-F) The calibration,
ROC curves, and Kaplan-Meier curve in the CGGA cohort.

Supplementary Figure S8 | The comparison of genomic alterations. (A) Chr 7+/
10-; (B) MGMT methylation; and (C) TERT gene expression.

Supplementary Figure S9 | The gene expression profile of the CGGA cohort.

Supplementary Figure S10 | the CNAs of the target gene. (A) Top 20 CNA
genes; (B) The CNAs of target genes.

Supplementary Figure S11 | Knockdown of PSMB8 suppressed the
proliferation, migration, invasion, and increased cell apoptosis of U251 and
LN229 cells in vitro. (A) Western blot analysis to examine the efficiency of the
PSMB8 knockdown. (B) EdU staining to assess proliferation ability. (C)
Clonogenic assays to assess colony-forming abilities. (D and E) Transwell
assays to detect the migration and invasive capacities. (F) Flow cytometry to
analyze the apoptosis of U251 and LN229 cells. (G) Relative quantitation of
PSMB8 protein expression levels in ASO-treated U251 and LN229 cells. (H)
PSMB8 expression in glioma tissues and normal tissues. Magnification, ×
200 (B, D, and E). Scale bar, 100 μm (B, D, and E). * p < 0.05; ** p < 0.001; ***
p < 0.001; **** p < 0.0001. Data are shown as mean ± SD at least three
independent experiments.
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