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Abstract
There is a need for better estimators of population size in places that have undergone rapid

growth and where collection of census data is difficult. We explored simulated estimates of

urban population based on survey data from Bo, Sierra Leone, using two approaches: (1)

stratified sampling from across 20 neighborhoods and (2) stratified single-stage cluster

sampling of only four randomly-sampled neighborhoods. The stratification variables evalu-

ated were (a) occupants per individual residence, (b) occupants per neighborhood, and (c)

residential structures per neighborhood. For method (1), stratification variable (a) yielded

the most accurate re-estimate of the current total population. Stratification variable (c),

which can be estimated from aerial photography and zoning type verification, and variable

(b), which could be ascertained by surveying a limited number of households, increased the

accuracy of method (2). Small household-level surveys with appropriate sampling methods

can yield reasonably accurate estimations of urban populations.

Introduction

Background
The population of a region of interest must be estimated if one’s goal is to convert incidence
counts into rates. This conversion is not always necessary, because some epidemiological
parameters can now be estimated from incidence counts alone, including the interval between
successive cases, and the reproductive number R0, which is the average number of secondary
cases attributable to a primary cause [1, 2]. If these parameters are insufficient to evaluate the
models, it may be necessary to calculate the total population N. The 5 brief examples that follow
illustrate both the necessity of doing so, and some of the difficulties that may be encountered.
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In resource-limited environments, it may be possible to use both aerial imagery and limited
residential survey data to estimate the population of a region of interest, as shown in the first
two examples. Using ground truth data for the measured population of 20 sections in Bo City,
Sierra Leone, we compared the uncertainty of estimating the population using survey data for
either (1) occupants per residence or (2) rooftop area per resident. The latter variable was com-
puted by manually digitizing the rooftop areas of residential structures in 5 sections of Bo, and
calculating the ratio of rooftop area per occupant for each residence [3]. The ability to rapidly
estimate the population of both temporary and unplanned settlements is critical for planning
resource allocation for refugee and internally displaced populations as well as for places under-
going rapid unplanned urbanization, since in these settings there is usually not a stable residen-
tial population. Checchi et al. [4] have developed a two-step method for estimating a refugee
population that requires (1) estimating the number of temporary residential structures from
satellite imagery and (2) estimating the mean occupancy per structure. The product of the esti-
mate (1) “number of structures” and (2) “mean number of persons per structure” yields an esti-
mate of the total refugee population.

As shown in the next 2 examples, if salient population data are available either directly or by
interpolation; derived rates of infection, immunity, or morbidity may be calculated. The stan-
dard SEIR (Susceptible, Exposed, Infectious, Recovered) compartmental epidemiological
model [5, 6] requires N as a parameter. Glasser et al. [6] simulated the implementation of two
different influenza vaccination policies, in order to predict their effect on both the incidence of
infection and the rate of morbidity. They applied a SEIR model parameterized by demographic
parameters for the United States (2005), including the total population stratified by age. The
age-specific death rates attributable to pneumonia and influenza were estimated, as were the
death rates from all other remaining causes. Gomez-Elipe et al. [7] have developed a model for
forecasting the incidence of Malaria in Karuzi, Burundi (1997–2003). To convert the reported
instances of malaria to a rate, the investigators divided the rate by the 2006 population census,
after rescaling (decrementing) by the population growth factors for the intervals from 1995–
2000 (growth factor = 1.32) and 2000–2005 (growth factor = 3.29).

In demographically-diverse environments, different methods may be required to estimate
the population at different locations, as shown in our final example. The GRUMPv1 (Global
Rural-Urban Mapping Project, Version One), separates the urban population density estimates
from the population of the surrounding areas. In addition to enumerated city population data,
city footprints can be established by analyzing nighttime satellite images, but this approach
may fail to capture small informal settlements in Africa and rural Asia [8] (page 9). Accord-
ingly, several corrections are applied for poorly illuminated settlements [8] (page 9), and point
estimates are provided for settlement populations exceeding 1,000. Many models utilize
GRUMP for epidemiological modeling, including [8, 9].

Proposed analysis
In a previous study [3], a Finite Population Bootstrap (FPB) [10] (page 92) was used to compare
the relative uncertainty of two population estimators: an occupancy-based estimator and a roof-
top area-based estimator. For the region of interest, the former was estimated as the product of
(1) the average number of persons per residential structure multiplied by (2) the total number
of residential structures; and the latter was calculated as (1) the average number of persons per
rooftop area (i.e., persons perm2) multiplied by (2) the total estimated rooftop area inm2. Both
estimators were effective, but the uncertainty was about 20% less for the occupancy-based esti-
mator [3] (page 10). Both the occupancy-based and rooftop area-based population estimators
were evaluated by simulating simple random sampling without replacement (SRSWOR).
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The analysis in this current paper will evaluate the use of stratified sampling for population
estimation, and will demonstrate the reduction in the uncertainty of the population estimate
achievable relative to SRSWOR. Two different stratification designs will be explored: (1) opti-
mal stratification by “persons per structure” and (2) stratified single-stage cluster sampling.
The relative advantages and restrictions of both methods will be discussed. The city of Bo itself
is approximately 30.1 km2 in area, and is divided into 68 uniquely-shaped neighborhoods or
sections [11](see Fig 1 in [3] and Table 1). These sections vary in size from 0.02 km2 (Toubu) to
2.33 km2 (Bo Government Reservation). For 20 of the 68 sections, residential survey data are
also available [3] (see Table 1). The ground truth survey data for these 20 sections will provide
the basis for simulated sampling using different stratification protocols, and for quantifying the
reduction in the uncertainty of the population estimate achievable.

The first approach, optimal stratification by persons per structure, requires that the number
of persons per structure be already known for all residential structures; possibly from a prior
survey or census data. The objective is to exploit this prior data to design an improved stratifi-
cation protocol for re-estimating the population, and to demonstrate a significant reduction in
the uncertainty of the population estimate relative to random sampling. Single-stage cluster
sampling is useful if the number of sections that can actually be sampled is restricted, perhaps
because of cost or schedule limitations. In our examples, the simulated cluster sampling will be
restricted to 4 of the 20 available sections. We will investigate the reduction in uncertainty that
can be achieved by using a stratified cluster sampling protocol, rather than random selection,
to select the 4 sections on each simulation trial. Each section will be completely sampled.

Note that choice of population estimators is independent of the stratified sampling protocol
selected for simulated data collection. A stratified Horvitz-Thompson [12] population estima-
tor will be evaluated for all examples. We have also extended our original FPB model to support
stratified sampling [10], and partial results from the latter will be contrasted with estimates
obtained using the stratified Horvitz-Thompson estimator. Neither the stratified FPB nor the
Horvitz-Thompson estimator were used in the prior study.

More specifically, we will address the following 4 questions:

1. What reduction in the uncertainty of the population estimate can be achieved by stratified
sampling—relative to simple random sampling of all sections—if the residential survey rec-
ords are first partitioned into mutually-exclusive strata with non-overlapping ranges of
“persons per residential structure?”

2. Can any reduction in uncertainty be achieved—again relative to simple random sampling of
all sections—if the sections are partitioned into mutually-exclusive and exhaustive strata,
rather than partitioning the individual records (PSUs) into strata?

3. For single-stage cluster sampling, if the sections (clusters) are partitioned into mutually-
exclusive strata by “total residential structures per section,” what is the relative reduction in
uncertainty that can achieved using stratified cluster sampling, rather than unclassified clus-
ter sampling?

4. Does stratification by the “total persons per section”—if known—further reduce the uncer-
tainty of the single-stage cluster population estimates?

We will use a single dataset developed previously in [3] (see Table 1). This dataset contains
individual records for each of 1,979 residential structures surveyed. Each record includes the
number of persons in the structure, a variable that we will utilize in this paper. The survey
methodology and data collection methods used to construct the dataset analyzed in this manu-
script were all developed previously. The original articles [3, 11] should be consulted for a
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complete discussion. The current article complements and extends these prior studies, but
does not supplant them.

The utility of these methods for the 5 initial examples, which were presented to establish the
importance of estimating the population of a region of interest, will depend upon the availabil-
ity of partial survey data for occupancy, the existence of adequate estimates of the total number
of residential structures, and the presence of stable patterns of residential occupation. Neither
method is likely to be useful for improved estimation or re-estimation of the population of a
highly transient population living in temporary shelters as described by Checchi et al. [4].

Model development
The simulations described in this investigation were written in the programming language R
[13]. Supporting functions from multiple R libraries were used, including [14–16]. Additional
custom code was written and tested by the first author. The R package stratification [16, 17]
provides algorithms for finding the optimal boundaries for a variable Y, based on criteria pro-
posed by Lavallée and Hidiroglou [18]. This package supports several different heuristics,
including Kozak’s algorithm [19, 20] which can also find the optimized boundaries for a speci-
fied sample size n.

In all of the examples presented here, the true optimal boundaries were found through
exhaustive search. Given the relatively small size of the dataset (1,979 records), all possible

Table 1. Bomunicipal survey data tabulated by section.

(1) Section (2) Area (km2) (3) Residential Structures (4) Total Structures (5) Households (6) Persons (7) Mean Number of
Persons per Residence

Roma 0.04 4 52 22 139 34.75

Moibawo Farm 0.50 17 43 22 135 7.94

Dodo 0.05 26 88 85 597 22.96

Bo Central 0.07 33 103 51 273 8.27

Toubu 0.02 34 46 88 454 13.35

Kpetewoma 0.20 46 105 94 640 13.91

Komende 0.20 56 258 175 1103 19.70

Salina 0.47 59 231 110 580 9.83

Reservation 2.33 66 252 86 637 9.65

Kindia Town 0.15 102 278 206 1160 11.37

Lewabu 0.48 105 117 170 879 8.37

New York 1.51 116 605 176 1088 9.38

Njai Town 0.22 127 269 388 2298 18.09

New Site south 0.69 136 194 190 1248 9.18

Tengbewabu 0.68 136 233 185 1068 7.85

Yemoh Town 0.40 152 284 289 1858 12.22

Kissi Town 0.20 154 287 400 2490 16.17

Kulanda Town 0.29 197 314 637 3882 19.71

Nduvuibu 0.49 205 343 439 2552 12.45

New London 0.60 208 495 498 2873 13.81

Grand Total — 1979 4597 4311 25954 —

A summary of the residential and household survey data for 20 municipal sections of Bo (1), showing the area of each section (2); the total number of

residential structures, combined residential and non-residential structures, households, and persons per section (3–6); and the mean occupancy per

residential structure (7) [3, 11].

doi:10.1371/journal.pone.0132850.t001
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combination of strata boundaries were tested to determine which set minimized the uncer-
tainty of the population estimate as a function of sample size [17] (page 33).

Methods

Survey methodology and dataset development
Ethics Statement. All data collection involving human subjects was approved by a total of

three independent Human Subjects Research Institutional Review Boards: Njala University,
George Mason University, and the U.S. Naval Research Laboratory. Written informed consent
was obtained from each household representative who participated in the survey. Survey data
were obtained as part of a broader study to determine not only population demographics but
health metrics and health care utilization trends.

Terminology. Structures in Bo City were divided into two categories. “Nonresidential”
structures included governmental, commercial, and nonprofit organizational structures such
as places of worship. “Residential” structures included all structures used as sleeping quarters.
Fig 1 in [3] shows the 20 sections in which the surveys were conducted. Some surveyors were
staff of Mercy Hospital Research Laboratory (MHRL); most were Master of Public Health stu-
dents at Njala University. The surveyors received several days of training, including instruction
on geographic data collection using hand-held GPS units, interviewing techniques, and
research ethics—including an emphasis on confidentiality. During the interviews, one repre-
sentative—an adult of either sex—served as a representative of each household. Each residen-
tial record lists the number of persons reported living within the same residential structure,
and the number of separate households. No attempt was made to differentiate between persons
based on gender, age, or household affiliation.

Protection of human subjects. This field work was a joint task of Njala University, George
Mason University, and the U.S. Naval Research Laboratory. Institutional review boards (IRB)
at all three institutions approved the data collection methodology.

Bo City dataset. Our sampling frame is a list of 1,979 residential structures encompassing
20 of the 68 sections in Bo City. For each residential structure, there is a unique single record
listing the number of persons and households; because these records can be randomly selected,
this database will provide the basis for simulated sampling of residential structures. By defini-
tion, each residential structure is also a Primary Sampling Unit (PSU). A cluster is defined as a
logical collection of PSUs [21](page 24); in this study, a cluster and a Bo City section will be
treated as synonymous in the context of single-stage cluster sampling.

Overview of stratified sampling
The flowchart in Fig 1 summarizes the algorithms and simulations that will be developed in
the text. The objective of this study is to investigate alternative approaches for stratified sam-
pling of the residential structures in a resource-limited environment, and to determine the rela-
tive reduction in the uncertainty of the estimate of the total population—if any—that results.
In all cases, it is assumed that at least the number of residential structures in each section are
known. This flowchart may be referenced as the two major protocols are developed and simu-
lated in detail.

Optimal stratification by persons per residence. As with any stratified sampling scheme,
the PSUs (Primary Sampling Units)—the 1,979 individual residential structures (see Table 1)—
must first be divided into mutually-exclusive and exhaustive strata [21] (page 121). After the
stratification boundaries have been determined, simulated sampling can be executed. Based on
pilot studies, we determined that 4 levels of stratification would be sufficient for proof of concept.
The stratification and estimation algorithms will be summarized later. The survey variable X and
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the stratification variable Y are the same—specifically, the number of persons per residential
structure. For this reason, it was not necessary to model the relationship between Y, the mea-
sured survey variable (persons per residential structure), and X, the stratification variable [17].

On each simulation trial, a subset of the PSUs were randomly selected from each stratum as
a function of (1) the total sample size and (2) the allocation algorithm selected. This step cre-
ated a stratified sample of the PSUs. A stratified Horvitz-Thompson estimator was then used
to re-estimate the total population of the 20 pooled sections [12, 17, 21]. Referring to Fig 1, the
objective was to use the previously collected survey data to design a survey protocol that would:

1. reduce the uncertainty of the estimated population as a function of sample size relative to
random sampling without replacement:
(1)! (2)! (3)! (4a)! (5).

2. and/or find the minimum sample size needed to minimize the Coefficient of Variation (CV)
below some specified threshold:
(1)! (2)! (3)! (4b)! (5)

Fig 1. Flow chart for stratified sampling protocols. This figure summarizes all of the optimization and control protocols for stratified sampling developed in
this study. See text for a summary of each major protocol and its corresponding steps through the flow chart. The light brown parallelogram is the starting
point for all protocols, the yellow diamonds are decision boxes, and the light green squares denote the process end states.

doi:10.1371/journal.pone.0132850.g001
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Stratified single-stage cluster sampling. When schedule or resources restrict the survey
to a subset of sections within the region of interest, single-stage cluster sampling can be applied.
(If there is no restriction on the number of sections to be sampled, all sections can be sampled
without replacement for a given sample size.) Assume that the number of residential structures
per section is known, but not the number of persons per section. The 20 sections will first be
partitioned into the desired number of mutually-exclusive strata, using the section sizes (i.e.,
total residential structures per section) as the stratification variable; see Table 1 for these values.
Each residence in a section will be assigned to the same stratum. For each trial of the stratified
single-stage clustering protocol, one section will be selected from each stratum, and all of the
residences in the selected sections will be completely sampled. For the control case, the same
number of sections will be selected, but the stratification boundaries will be ignored. In effect,
in the control case, all sections will be assigned to a single stratum.

In Fig 1:

(1)! (2a)! (40a)! (50a)

If the total population of each cluster is known, “total persons per section” can be used as
the stratification variable, rather than “total residential structures per section.” The relative
uncertainty of the population estimate for single-stage cluster sampling will be further reduced.

(1)! (2)! (40b)! (50b)

Single-stage cluster sampling may also be executed without stratification, but in the simula-
tions that follow, the uncertainty of the population estimate will be roughly doubled for the
unstratified case. The cluster sampling protocol is appropriate when financial or schedule con-
straints impose limits on the number of sections to be sampled. The advantages of stratified
cluster sampling are:

1. No auxiliary data is required other than a count of residential structures in each of the 20
sections under consideration. If the total population of each section is available, an even
more efficient design can be realized.

2. A cluster design permits a trade-off between the size of the survey, the number of sections
sampled, and the uncertainty of the population estimate.

Optimal stratification. Let L strata be defined on the stratification variable X, the number
of persons per residential structure. Number the strata h = 1, 2. . ., L. Define the boundaries of
the strata as bh = 1, bh = 2, . . ., bh = L. Stratum h will include all values of X in the interval
[bh−1, bh) such that bh−1 < X� bh.

Assume that there is a total of N units or records that are being stratified. An optimal solu-
tion of the values b1 � b2 � bL−1 for a sample of size nminimizes the following objective func-
tion [19] (Eq 3):

n ¼ nðb1; b2; :::; bL�1Þ ¼ ð1Þ

NL þ
XL�1

h¼1

WhSh

 !2

�Y 2c2 þ 1=N
XL�1

h¼1

WhS
2
h

 !�1

ð2Þ

where

1. NL is the size of stratum h

2. Wh = Nh/N is the proportion of the total units (records) in N assigned to stratum h
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3. Sh is the standard deviation of the stratification variable Y in stratum h

4. Y is the population mean of the survey variable Y

5. c is the CV (coefficient of variation) of the survey variable Y

6. N is the total number of records or units being partitioned into strata

Allocation selection. When the strata boundaries are optimized for a given sample size n,
the coefficient of variation of Y is minimized [17]. Note that the constraint for optimization is
dependent not only on the distribution of the stratification variable Y, but also upon the alloca-
tion rule used. The allocation rule chosen will determine the weightsWh. The allocation rule
used in the R package stratification [16] is developed in [22].

Let ah be the proportion of samples assigned to the hth stratum. Then:

XL�1

h¼1

ah ¼ 1 ð3Þ

Given a total sample size n, the sample sizes for each “take-some” stratum will be:

nh ¼ ðn� NHÞah ð4Þ

where

ah ¼ gh=
XH�1

h¼1

gh ð5Þ

and

gh ¼ N2q1
h

�Y 2q2
h var½Y �2q3h ðpi ¼ 1; 2; 3Þ ð6Þ

Setting q1, q2 and q3 to (0.5, 0.0, 0.5) parameterizes Neyman’s allocation for each stratum,
while (0.5, 0.0, 0.0) corresponds to proportional allocation. When Neyman’s allocation is used,
a sample size nh may be equal to or greater than the number of available PSU’s Nh. The stratum
may then be categorized as a “take-all” stratum [17], and every record (i.e. PSU) in the stratum
will be selected, rather than a subset of the stratum records. If necessary, the sample sizes of
one or more of the remaining strata are transparently incremented to realize the desired total
sample size n.

Neyman allocation will minimize the variance (i.e. uncertainty) of the stratified population
estimator. The Neyman allocation for a sample of size n is equivalent to the expression below
[21] (page 158):

nh ¼
NhshyPL
h¼1 Nhshy

( )
ðnÞ ð7Þ

The Horvitz-Thompson estimator. The Horvitz-Thompson (H-T) estimator provides an
unbiased estimate of the total population from either a stratified or unstratified sample, pro-
vided the inclusion probabilities are greater than zero for each unit sampled [23]. Let the sam-
ple size be n, the value of the ith individual record or unit be yi, and define πi = nh/Nh as the
inclusion probability for the ith record in strata h. (For the important special case where all
units are assigned to a single stratum, πi = n/N, and all units are assigned the same probability
of inclusion. In the text, this is referred to as the control case.) For simple random sampling

Stratified Sampling of Neighborhood Sections for Population Estimation

PLOS ONE | DOI:10.1371/journal.pone.0132850 July 15, 2015 8 / 23



without replacement, the Horvitz-Thompson estimator is then:

Ŷ p ¼
XL
h¼1

X
i2nh

yi
pi

ð8Þ

This expression could be simplified, but the double summation makes clear that the total
population estimate is the sum of the weighted estimates for the individual strata.

Optimal stratification for resampling. In our first set of demonstrations, we evaluated a
design for resampling a known population for which complete survey data exists [19]. Using
the optimization approach described earlier, the 1,979 units were divided into 4 strata, using
the number of persons per residential structure as the sampling variate Y. The choice of L = 4
as a reasonable number of strata was based on the findings from preliminary simulation stud-
ies. Five different random sample sizes were selected: 330, 660, 990, 1,320, and 1,650 records,
out of the total 1,979 records available. Simulations were run using both proportional and Ney-
man allocation.

For each sample size, 1,000 random trials were run. In each trial, a stratified sample was
selected, and the Horvitz-Thompson population estimate calculated. The inclusion probability
πh for each record in the sample was calculated as shown in Table 2.

Stratified finite population bootstrap. The samples drawn for each stratum were also
concatenated and resampled [10, page 97], [14, 24] creating a bootstrap sample of size nh for
each strata. The nh samples from each strata were then combined to create a single sample of
size n (330, 660, 990, . . .), and the total population was estimated using the FPB. For the con-
trol group and the proportional allocation case, the estimated population obtained using the
FPB was compared with the results from the Horvitz-Thompson estimations. (Neyman alloca-
tion could not be compared, since the individual bootstrap estimates for each stratum required
proportional allocation.)

The FPB model mirrored the decrease in uncertainty observed with the H-T estimator
using optimal proportional allocation, but the variance of the FPB is greater. The average
ratio of the 0.95 confidence intervals between the H-T estimator and FPB estimator was
approximately 0.70 for the control group, and 0.58 when comparing the estimators for opti-
mal proportional allocation. A paired t-test was used to compare the intervals, and P< 0.001
in both cases. For the control case, 67% of the H-T estimators fell within the 0.50 confidence
interval for the FPB, quantifying the greater uncertainty of the FPB estimator. Likewise, com-
paring the proportionally-allocated 4 strata case, 76% of the H-T estimators fell within the
0.50 confidence interval for the FPB. The FPB used is one of a family of finite population
bootstrap algorithms. A recent study [24] compared the variance characteristics of different
implementations of the FPB, and proposed a new FPB algorithm may present reduced uncer-
tainty relative to the implementation used here.

Relative uncertainty of the population estimates. Fig 2 illustrates the [0.25, 0.75] quantile
boxplots as a function of sample size for the H-T estimator for the single-stratum control case
(A), and using proportional (B) and Neyman (C) allocation, respectively. The mean ratios of
the 0.95 confidence intervals were 0.58 and 0.19, respectively (P< 0.001 and P< .005). In sum-
mary, the uncertainty using optimal stratification with Neyman allocation was roughly 20% of
the uncertainty observed for the single stratum control group, averaged over 1,000 simulations.

Coefficient of Variation optimization. A single example will be provided for optimizing
the Coefficient of Variation, as illustrated schematically in Fig 1. The CV is equal to the
RRMSE, the Relative Root Mean Squared Error. The target value of the CV was set to
be� 0.01. When 4 levels of stratification were requested, Neyman allocation was enabled, and
“persons per residential structure” was selected as the stratification variable. The critical
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minimal sample size returned by the stratification algorithm was 456. The upper stratification
boundaries (persons per residential structure) were:

1. stratum 1: 9.5

2. stratum 2: 17.5

3. stratum 3: 31.5

4. stratum 4: 86.0

Table 2. Neyman-optimized allocation as a function of sample size and stratum.

A

nh[h] = sample per size per stratum[h]

sample size nh[1] nh[2] nh[3] nh[4] ∑(nh)

330 75 67 72 116 330

660 102 103 110 345 660

990 126 134 94 636 990

1320 143 138 128 911 1320

1650 114 1 1 1534 1650

B

Nh[h] = total houses/stratum[h]

sample size Nh[1] Nh[2] Nh[3] Nh[4] ∑(Nh)

330 694 649 439 197 1979

660 569 611 454 345 1979

990 445 520 378 636 1979

1320 314 380 374 911 1979

1650 180 134 131 1534 1979

C

πh = h[h]/Nh[h]

sample size h = 1 h = 2 h = 3 h = 4

330 0.11 0.10 0.16 0.59

660 0.18 0.17 0.24 1.00

990 0.28 0.26 0.25 1.00

1320 0.46 0.36 0.34 1.00

1650 0.63 0.01 0.01 1.00

D

upper boundary limits (persons per residence)

sample size h = 1 h = 2 h = 3 h = 4

330 8.50 14.50 24.50 86.00

660 7.50 12.50 19.50 86.00

990 6.50 10.50 14.50 86.00

1320 5.50 8.50 11.50 86.00

1650 4.50 5.50 6.50 86.00

Table 2a: Optimal samples per stratum as a function of sample size. Table 2b: Optimal allocation of residential structures per stratum as a function of

sample size. Table 2c: The inclusion probability πh = h[h]/Nh[h] as a function of sample size. Table 2d: The upper strata boundaries as a function of

sample size.

Table 2a lists the number of residential structures to be sampled in each stratum for optimal stratification of the variable “persons per residential structure.”

Table 2b is the total number of residential structures per stratum, while Table 2c specifies the ratios of samples per stratum divided by the total number of

residential structures per stratum. These ratios are not constant for each sample size because the optimization was constrained by Neyman allocation,

rather than proportional allocation. Table 2d lists the upper boundary limits as a function of sample size.

doi:10.1371/journal.pone.0132850.t002

Stratified Sampling of Neighborhood Sections for Population Estimation

PLOS ONE | DOI:10.1371/journal.pone.0132850 July 15, 2015 10 / 23



Single-stage cluster sampling. Table 3 shows the results of applying the Neyman stratifi-
cation algorithm. For a sample of some specified number of clusters (sections), the recom-
mended number of sections to select are given for each stratum. The variable bh[h] specifies
the upper boundary in “residential structures per section” for each stratum h. The stratification
algorithm actually returns the first three boundaries, since the upper boundary of the 4th stra-
tum is the maximum possible value of the stratification variable, which is 208—the number of
residential structures in the New London section. The variable nh[h] indicates the allocated
number of clusters that should be selected from each stratum for a balanced sample of a given
size in clusters (sections). Given 4 stratification levels, the minimum number of clusters that
can be selected is 4, and the recommended sample allocation is (1, 1, 1, 1). A comparable table
was generated for proportional allocation, and for an allocation of (1, 1, 1, 1) sections per stra-
tum, the stratification partition was identical. Table 4 shows the stratification by section for the
4-section allocation (1, 1, 1, 1), which was used in the simulations, and the 10-section allocation
(2, 1, 6, 1) provided for comparison.

In our implementation of simulated single-stage cluster sampling, the allocation used on
each trial was (1, 1, 1, 1), because the objective was to estimate the population while minimizing
the number of sections sampled. A single section was selected from each stratum, as discussed
previously. In the control protocol, 4 sections were selected randomly without replacement
from the unconstrained population of 20 sections. The form of the Horvitz-Thompson for

Fig 2. Relative uncertainty of optimized Horvitz-Thompson population estimates.Quantile boxplots (0.25, 0.75) showing the distribution of the stratified
Horvitz-Thompson population estimates as a function of sample size and stratification protocol. The bar in each box is the median value of the estimate, while
outliers deviating by one or more quantiles from the median are denoted as discrete points. (A) control—all 20 sections are placed in a single stratum (B) 4
strata, with proportional allocation for sample selection (C) 4 strata, with Neyman allocation for sample selection. Persons per residence was used as the
stratification variable, and there were 1,000 simulations for each boxplot.

doi:10.1371/journal.pone.0132850.g002
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single-stage cluster sampling is [21] (page 336):

Ŷ HTE ¼
Xv

i¼1

X
i2nh

yi
pi

ð9Þ

1. yi = the total number of persons for ith cluster (section)

2. πi = the probability of the ith cluster being sampled during this trial

3. v = the total number of clusters sampled (i.e., 20)

This estimator provides an unbiased estimate of the total population.

Results

Optimal stratified sampling
The relative efficiency of optimal stratification by persons per residential structure has already
been discussed. As shown in Fig 2, the uncertainty of the population estimation with Neyman
allocation was roughly 20% of the uncertainty observed for the unstratified control group, aver-
aged over 1,000 simulations. Table 5 compares the variance and standard error of the mean

Table 3. Optimal cluster allocation as a function of sample size.

(1) Number of
Clusters Selected

(2) Minimum Number of
Records Per Sample

(3) nh[h] = sample size in
clusters (sections) for

stratum = h

(4) Nh[h] = total number of
clusters (sections) for

stratum = h

(5) bh[h] = upper boundary
for stratum[h].

– – h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

4 373 1 1 1 1 6 5 6 3 51.0 110.5 175.5 208.0

5 454 1 1 2 1 5 4 8 3 40.0 84.0 175.5 208.0

6 570 1 1 3 1 5 4 8 3 40.0 84.0 175.5 208.0

7 697 1 1 4 1 5 4 8 3 40.0 84.0 175.5 208.0

8 714 2 1 4 1 5 4 8 3 40.0 84.0 175.5 208.0

9 850 2 1 5 1 5 4 8 3 40.0 84.0 175.5 208.0

10 986 2 1 6 1 5 4 8 3 40.0 84.0 175.5 208.0

11 1138 2 1 7 1 5 4 8 3 40.0 84.0 175.5 208.0

12 1164 3 1 7 1 5 4 8 3 40.0 84.0 175.5 208.0

13 1780 1 1 1 12 2 3 3 12 21.5 40.0 62.5 208.0

14 1839 1 1 1 13 2 3 2 13 21.5 40.0 57.5 208.0

15 1883 1 1 1 14 2 2 2 14 21.5 33.5 51.0 208.0

16 1895 1 1 13 2 2 3 13 2 21.5 40.0 201.0 208.0

17 1929 1 1 6 10 2 2 6 10 21.5 33.5 103.5 208.0

18 1886 2 2 2 12 2 3 3 12 21.5 40.0 62.5 208.0

19 1946 2 1 6 10 2 2 6 10 21.5 33.5 103.5 208.0

20 1979 2 2 2 14 2 2 2 14 21.5 33.5 51.0 208.0

Stratification variables for selecting clusters (sections) for one-stage stratified cluster sampling with 4 levels of stratification (L = 4). The entries in each

column are (1) the number of clusters to be selected (2) the minimum number of PSU’s (i.e. residential structures) spanned by the selected clusters if the

allocation nh[h] is drawn (3) the number of clusters (sections) nh[h] to be drawn from each stratum (4) the total number of clusters Nh[h] in each stratum

and (5) the upper boundary bh[h] in units of “residential structures per cluster” for each of the four strata. A comparable table was constructed for

stratification by population per section, but is not shown for the sake of brevity.

doi:10.1371/journal.pone.0132850.t003
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Table 4. Neyman stratification of Bo sections by “residential structures per section” and “persons per section.”

Stratification variable:
“residential structures per

section”

Stratification variable:
“persons per section”

(1) Section (2) Residential structures per section (3) Persons per section (4) allocation
= (1, 1, 1, 1)

(5) allocation
= (2, 1, 6, 1)

(6) allocation
= (1, 1, 1, 1)

(7) allocation
= (2, 1, 6, 1)

Roma 4 139 1 1 1 1

Moibawo Farm 17 135 1 1 1 1

Dodo 26 597 1 1 1 2

Bo Central 33 273 1 1 1 1

Toubu 34 454 1 1 1 2

Kpetewoma 46 640 1 2 1 2

Komende 56 1103 2 2 2 3

Salina 59 580 2 2 1 2

Reservation 66 637 2 2 1 2

Kindia Town 102 1160 2 3 2 3

Lewabu 105 879 2 3 2 3

New York 116 1088 3 3 2 3

Njai Town 127 2298 3 3 3 4

New Site south 136 1248 3 3 2 4

Tengbewabu 136 1068 3 3 2 3

Yemoh Town 152 1858 3 3 3 4

Kissi Town 154 2490 3 3 3 4

Kulanda Town 197 3882 4 4 4 4

Nduvuibu 205 2552 4 4 3 4

New London 208 2873 4 4 4 4

4-level Neyman stratification boundaries for the cluster (section) list stratified by the number of residential structures per section (cols. 4–5), and the

number of persons per section (cols. 6–7). In practice, the latter may be unknown. An allocation of (1, 1, 1, 1) sections per stratum is optimal for a sample

size of 4 sections, which was used in our examples. The (2, 1, 6, 1) allocation, shown for comparison, is optimal for a 10-section sample. See Table 3.

doi:10.1371/journal.pone.0132850.t004

Table 5. A comparison of uncertainty for unstratified, proportional-, and Neyman-allocated population estimates.

(1) Optimal re-estimation of
total population (1000
simulation trials)

(2) Number of
residential structures
per sample

(3) Mean value of H-T
estimator for 1000
trials

(4) Standard
deviation of the H-T
estimator

(5) Variance of
the H-T estimator

(6) Standard Error
of the Mean (SEM)

(A) Unstratified 990 25942 412.18 169892.35 9.26

(B) Proportional allocation 990 25950 142.23 20229.37 3.20

(C) Neyman allocation 990 25956 71.53 5116.54 1.61

A comparison of the variance σ2 and the SEM (Standard Error of the Mean) of the Horvitz-Thompson (H-T) estimator for 1,000 simulated sampling trials,

and a fixed sample size of 990. For the unstratified control case (A), all sections were assigned to a single stratum, in contrast to 4-level optimal

stratification using either proportional (B) or Neyman allocation (C). The stratification variable is “persons per residential structure” and Table 2, subtable

2a, specifies the samples per stratum.

doi:10.1371/journal.pone.0132850.t005
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(SEM) of the Horvitz-Thompson estimators for 1,000 simulated single-stage cluster sampling
trials, selecting a fixed sample size of 990 records.

SEM ¼ s=
ffiffi
ð

p
nÞ � FinitePopulationCorrection ð10Þ

¼ s=
ffiffi
ð

p
nÞ �

ffiffi
ð

p
ðN � nÞ=ðN � 1ÞÞ ð11Þ

¼ s=
ffiffi
ð

p
990Þ �

ffiffi
ð

p
ð1979� 990Þ=ð1978ÞÞ ð12Þ

The Levene test [25, 26]was used to compare the variances of the stratified protocols with
the variance of the unstratified control group. The paired comparisons were blocked by sample
size. The null hypothesis for the Levene test is that the ratio of 2 specified variances is equal to
1.0. For all tests, σxjN = n

2 was the variance for 1,000 simulated trials for sample size of n (e.g.,
330, 660, 990 . . .) using 4-level Neyman or proportional allocation, and σcjN = n

2 the variance
1,000 simulated trials for the comparable unstratified control case. The differences between the
variances were statistically significant, with p< 0.001 for all comparisons, and the hypothesis
that the ratio σxjN = n

2/σcjN = n
2 = 1.0 was rejected for all tests.

Single-stage cluster sampling
Fig 3 shows the box histograms for the single-stage cluster sampling simulations. The uncer-
tainty of the population estimation using stratified cluster selection is about 48% of the uncer-
tainty of the estimation based on random cluster selection, as measured by comparing the
[0.25, 0.75] quantile intervals. This difference is significant at P< 0.001 (paired t-test).

In single-stage sampling, if a section is selected from one of the four strata, all residences in
the section are then included in the sample. Each stratum contains a mutually-exclusive subset
of the 20 sections, with non-overlapping ranges of buildings per section between the strata.
Because a single section is selected from each stratum for each one-stage survey sample, the
sample allocation is balanced with respect to the stratification variable “residential structures
per section.” See Table 4, column 4.

Table 6 compares of the variance and standard error of the mean (SEM) of the Horvitz-
Thompson estimator for 1,000 simulated sampling trials, selecting 4 sections on each trial. The
average number of residences selected per trial are shown in the table. For the unstratified con-
trol case, all sections were assigned to a single stratum, in contrast to 4-level optimal stratifica-
tion using either proportional or Neyman allocation. The variance ratios were again compared
between all three protocols using the Levene test. The differences between the variances were
statistically significant, with p< 0.001 for all comparisons.

If the 4 sections for the single-stage protocol are chosen at random, rather than in accor-
dance with the stratification partition, the uncertainty of the population estimate for 1,000 sim-
ulation trials is roughly doubled (Fig 3). This occurs because the sampling protocol is no longer
balanced with respect to the number of buildings per section. The probability of selecting a sin-
gle section from each of the 4 strata is now 11%, rather than 100% (Eq 13). Conversely, almost
90% of the samples drawn will consist of sections drawn from 3 strata or fewer. The theoretical
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Fig 3. Single-stage cluster sampling.Quantile boxplots for 1,000 stratified 4-level simulated single-stage cluster sampling trials using H-T estimation. The
bar in each box is the median value of the estimate, while outliers deviating by one or more quantiles from the median are denoted as discrete points. Four
selected sections are completely sampled on each simulation trial. (1) “Survey” is the measured value of the population of the 20 sections (25,954 persons).
(2) 4L/4C (pers.)—4 cluster sample, sections stratified by “persons per section.” (3) 4L/4C (strs.)—4 cluster sample, sections stratified by “residential
structures per section.” (4) 1L/4C—4 clusters selected at random from the 20 available sections.

doi:10.1371/journal.pone.0132850.g003
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probability that a section will be selected from each of the 4 sections on a given trial is:

Pn¼4ðstrata ¼ 1 ^ 2 ^ 3 ^ 4Þ ¼ ð13Þ

¼ ð6� 5� 6� 3Þ= 20

4

 !
ð14Þ

¼ 540=4845 ð15Þ

¼ 0:1115 ð16Þ

The above calculation is consistent with the simulation results, in which 119 balanced
4-strata samples were drawn in 1,000 random trials. A comparable argument applies to the
simulations using the number of persons per section as the stratification variable.

Stratification by section for non-cluster sampling
If “persons per structure” are known, optimal stratification boundaries and allocations can be
found [18]. Each stratum will contain residences from one or more sections. In single-stage
cluster analysis, the sections are partitioned into strata by either “(a) residential structures per
section” or “(b) total persons per section,” and one or more sections are selected on each trial
from each stratum for complete sampling. As a third possibility, if “persons per structure” are
unknown, we may ask whether either of the stratification variables (a) or (b) could be used to
efficiently partition the 20 sections into mutually-exclusive strata for non-cluster sampling. All
of the residences in a given section would be assigned to the same stratum, and a given stratum
would contain all of the residential records from the subset of sections assigned to it. A sample
of residential records would be drawn from each stratum on a given trial, usually without
completely sampling any one section. This protocol could prove advantageous if the proposed
partitioning is more efficient than simple random sampling without replacement, even if it is
less efficient than optimal stratification by “persons per structure.”

There are two difficulties with attempting to stratify the data at the section level, rather than
at the level of the individual record. For any stratification plan to be viable, the units within a
stratum must be relatively coherent with respect to the stratification variable selected. If the
stratification variable is “persons per section,” this goal will be difficult to achieve. Fig 4 shows

Table 6. A comparison of simulation results for single-stage cluster sampling.

(1) 1-Stage Cluster
Method-1000 trials

(2) Average residences
sampled per simulation
trial

(3) Mean value of H-T
estimator for 1000
trials

(4) Variance of H-T
estimator for 1000
trials

(5) Standard Error
of the Mean (SEM)

(6) Number of
sections
sampled

(A) Unstratified 396 26,270 84,413,782 256 4

(B) Stratify by number
of buildings per section

443 25,935 16,983,502 115 4

(C) Stratify by number
of persons per section

506 25,909 5,503,716 65 4

Comparison of the standard deviation σ, the variance σ2, and the SEM (Standard Error of the Mean) for the single-stage sampling protocol. The

uncertainty of the Horvitz-Thompson population estimate decreases as a function of the protocol used to partition the 20 sections of Bo City into 4 strata:

(A) unstratified single-stage sampling (B) stratification by number of buildings per section (C) stratification by the total number of persons per section.

There are 1,979 residential structures in the 20 sections, and a measured population of 25,954 persons.

doi:10.1371/journal.pone.0132850.t006
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the quantile boxplots for the number of buildings per section, arranged from left to right in
order of decreasing number of persons per section. The upper and lower “hinges” correspond
to the first and third quartiles (the 25th and 75th percentiles), and the band inside the box is
the 2nd quartile (i.e., the median) value of the number of persons per residential structure. The
width of each box is proportional to the square root of the number of residential structures
(i.e., records) in the section [27]. Roma appears to be anomalous because, although there are

Fig 4. Quantile boxplots for each of the 20 sections. For each section, a quantile boxplot (0.25, 0.75) shows the distribution of the number of persons per
residence, arranged in descending order of total section population. The bar in each box is the median value, while outliers deviating by one or more
quantiles from the median are denoted as discrete points. The width of each box is proportional to the square root of the number of residential structures (i.e.,
records) in the section. Roma is an anomaly with 4 residential structures, and 139 total persons.

doi:10.1371/journal.pone.0132850.g004
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only 4 residential structures in this section, there are a total of 139 persons, because these struc-
tures are apartment complexes, rather than individual homes. As can be seen, there will be sig-
nificant overlap between the the ranges of persons per structure for virtually any partitioning
of the 20 sections used.

To clarify the above discussion, two experimental simulations were run. The same 4-level par-
tition used for the single-stage cluster sampling was used to define a non-clustered random sam-
pling protocol. Every record in a section was then assigned to the same designated stratum. For
example, all records for Kulanda Town, Nduvuibu, and New London were assigned to stratum 4
—see Table 4. Residences were then randomly selected from all 4 strata, and the number of resi-
dences selected from each stratum was proportional to the total number of residences the stratum
contains. 1,000 simulated sampling trials were run, using the same sequence of 5 sample sizes
used for the optimal stratification analysis (see Table 2). Because each stratum contained records
frommultiple sections, each sample typically contained records frommultiple sections. Con-
versely, none of the sections were completely sampled on a given trial, in contrast to the protocol
for the single-stage cluster model. For a second simulation, the stratification variable “persons per
section” was used, rather than “residential structures per section.” See columns 4 and 5 in Table 4.
The results are summarized in the next paragraph, but are not presented in a table or figure.

Relative to simple random sampling without replacement of all strata, which was also simu-
lated as a control, the reduction in uncertainty for section-based non-cluster stratification was
minimal and statistically insignificant. Levene’s test was again used to compare the ratio of the
σ2s. The ratio of σx

2/σc
2, where x denotes the stratification variable, and c denotes the unstrati-

fied control case, was 0.95 for stratification by “total persons per section,” and 0.98 for stratifi-
cation by “residential structures per section,” averaged over the 5 sample sizes. For either
stratification method, the hypothesis that the σ2 were the same for the 1,000 trial comparisons
of the stratified and unstratified population estimates could not be rejected for p< 0.05 for any
of the 5 sample sizes.

This approach failed to reduce the uncertainty of the estimate because:

1. By design, all residences with a stratum were subsampled, rather than selecting a single sec-
tion from each stratum to achieve balanced sampling across strata, as was done using a sin-
gle-stage cluster sampling protocol.

2. There will be considerable overlap in the variable “persons per residential structure” for any
possible partition (see Fig 4), although the range of section sizes (i.e., number of residences
per section) for each stratum was distinct in the constructed example.

In this context, it is also instructive to compare Figs 5 and 6. Fig 5 shows the distribution of
the unit records (i.e., persons per residence) as a function of the stratification boundaries for a
Neyman allocation for a sample of size 990. See Table 2. All 1,979 records are shown in the
box histograms. In each stratum, the records can be selected from any of the 20 eligible sec-
tions. Note that there is complete separation between the 4 stratum-specific distributions of the
stratification variable “persons per residence.” In contrast, Fig 6 shows the comparable distri-
butions of the unit records as a function of the 4-level stratification by residential structures per
section (A) and persons per section (B) to support single-stage cluster sampling. In both cases,
the records within a section are assigned to a single stratum, which results in considerable over-
lap between the number of persons per residence within the same stratum. Although there is
an apparent grouping, the coherence within the strata is relatively weak, and the strata are not
well separated, as in Fig 5. Stratification by “persons per section” is relatively efficient for sin-
gle-stage cluster sampling because a single section will be completely sampled from each stra-
tum, and the ranges of residential structures per section are non-overlapping between strata.
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The second difficulty is operational, and not specific to this dataset. The stratification
boundaries were determined as a function of the number of residential structures per section.
But all sections contain both residential and non-residential structures, as shown in Table 1. If
a survey of all sections is first required to enumerate the number of residential and non-resi-
dential structures, the apparent simplicity of the single-stage cluster sampling design is
reduced. In our previous paper, [3] we discuss this issue is more detail.

Summary and Conclusions
We have developed and modeled two different but complementary approaches for stratified
sampling in resource-limited environments. Their relative efficiencies have been discussed, and
illustrated graphically and numerically. It does not seem likely that significant additional
improvements can be achieved with respect to the stratification of the variable “persons per
residential structure” demonstrated herein. Conversely, the single-stage cluster sampling
method could well be the subject of additional research and application.

The stratification approach used for the latter was based on the partitioning of sections
(clusters) into strata as a function of the number of residential structures per section. Alterna-
tive stratification variables could also be explored. As a hypothetical example, the section data
available in this study encompasses 20 randomly-selected sections of the 68 sections compris-
ing Bo City. Given data for all 68 sections, it would be possible to divide Bo City into a complete

Fig 5. Quantile boxplots for optimal 4-level stratification by “persons per residence.” The 4-level stratification variable is “persons per residence”
(Table 2-d). The quantile boxplots [0.25, 0.75] show the partitioning of the records by stratum for all 1,979 records. The bar in each box is the median value of
persons per residence, while outliers deviating by one or more quantiles from the median are denoted as discrete points. The samples in a given stratummay
be assigned from any of the 20 eligible sections. The optimized Neyman allocation has completely separated the 4 strata with respect to overlapping values
of the stratification variable.

doi:10.1371/journal.pone.0132850.g005
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68 section grid. Sections could then be assigned to strata as a function of the radial distance
from the center of the city, or some other rule relating to geographical location or proximity.

Answers to Key Questions
The objective of the current study was to examine methods for either re-estimating the popula-
tion following a complete survey, or for estimating the population in a new environment under
conditions which—for reasons of schedule or funding—preclude undertaking similar surveys.
The ground truth data used for the simulations came from a larger field survey that collected
data for the 20 municipal sections described in this paper [28–30]. The first method used pro-
portional and Neyman-allocated optimal stratification, and the latter achieved a reduction in
uncertainty of the population estimation of about 80% in 1,000 simulated sampling trials. For
proportional allocation only, the simulations were also validated by comparing the estimates
obtained using a stratified finite population bootstrap with comparable estimates using an
unbiased Thompson-Horovitz estimator. The second method explored the use of single-stage
cluster sampling. The uncertainty of the population estimates for the latter protocol was signifi-
cantly improved by first stratifying the 20 sections into 4 strata as a function of section size
(i.e., number of residential structures per section). If the total number of persons per section
was used as the stratification variable, a further reduction in uncertainty was observed, but this
variable may not be known prior to conducting a survey.

We can now briefly answer the 4 questions raised in the section “Proposed Analysis.”

1. If the 1,979 residential survey records are first partitioned into mutually-exclusive strata
using “persons per residential structure” as the stratification variable, there is a reduction in

Fig 6. Quantile boxplots for single-stage cluster stratification by (A) “residential structures per section” and (B) “total persons per section”. (A)
For the single-stage cluster sampling, the 20 sections were partitioned into 4 proportionally-allocated stratification levels. Within each stratum, the sections
are arranged in descending order of total persons. The stratification variable is the total number of residential buildings per section (see Table 4). The quantile
boxplots show the partitioning by stratum of the 1,979 records in the database, although only a subset of 4 sections will be drawn on a single simulation trial.
The bar in each box is the median value of “persons per residence,” while outliers deviating by one or more quantiles from the median are denoted as discrete
points. (B) Quantile boxplots showing stratification by total persons per section. This stratification approach requires that the population of each section be
known, in contrast to stratification by residential structures per section.

doi:10.1371/journal.pone.0132850.g006
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uncertainty of about 80% relative to the estimate obtained using random sampling. The strata
are cleanly separated by non-overlapping ranges of “persons per structure,” as shown in Fig
5. Because the variable “persons per residential structure’must be known in advance, presum-
ably from prior survey data, this protocol is potentially useful for re-estimating a population.

2. If the strata are created by partitioning the 20 sections into mutually-exclusive groups, using
either residential structures or individual persons per section as the stratification variable,
no statistically significant reduction in uncertainty is observed. The distributions of “per-
sons per residential structure” overlap significantly between strata, and the strata are no lon-
ger well separated. Compare Fig 4 with Fig 5.

3. For 4-section single-stage cluster sampling, if the 20 sections are partitioned into mutually-
exclusive strata by “total residential structures per section,” the uncertainty (H-T variance)
of the population estimate is about 50% of the uncertainty for unstratified sampling. See
Table 6 and Fig 6A.

4. If the sections are instead stratified by “total persons per section” the uncertainty of the pop-
ulation estimate is reduced to about 6% of the uncertainty of the unstratified case for single-
stage cluster sampling. See Table 6 and Fig 6B.

Future applications and research
For the single-stage cluster sampling, the sections were stratified by either total number of
buildings per section, or by total persons per section. As an alternative, Bo could divided up
into equal squares using a grid. There is a reasonably well-defined center of Bo, just are there
are reasonably well-defined high-population-density centers that could be visually identified
from aerial photographs of most cities. It is clear that if a grid was overlaid on a map of Bo, the
cells farther from dense population areas would have fewer residential structures and a lower
population density. If a Neyman stratification algorithm were to be applied, we would hypothe-
size that cells would be assigned to strata as a rough function of their distance from the center
of the city. It would be interesting to compare the efficiency of this protocol for stratification
with our existing results for single-stage cluster sampling, looking for possible improvement.
At this time, we do not have sufficient data to test this hypothesis.

In summary, the ability to quickly estimate the total population size with reasonable preci-
sion in resource-limited environments can be of high value for demography, epidemiology,
and health and social services research. The two approaches analyzed here are both of potential
value in achieving these goals. Although the optimal stratification by residential occupancy is
highly efficient, a single-stage cluster sampling protocol requires minimal data in advance,
while minimizing the number of sections that must be surveyed.
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