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Low-density lipoprotein cholesterol (LDL-C) plays an important role in the formation,

incidence, and development of atherosclerosis (AS). Low-density lipoproteins can be

divided into two categories: large and light LDL-C and small, dense low-density

lipoprotein cholesterol (sdLDL-C). In recent years, an increasing number of studies

have shown that sdLDL-C has a strong ability to cause AS because of its unique

characteristics, such as having small-sized particles and low density. Therefore, this has

become the focus of further research. However, the specific mechanisms regarding the

involvement of sdLDL-C in AS have not been fully explained. This paper reviews the

possible mechanisms of sdLDL-C in AS by reviewing relevant literature in recent years. It

was found that sdLDL-C can increase the atherogenic effect by regulating the activity of

gene networks, monocytes, and enzymes. This article also reviews the research progress

on the effects of sdLDL-C on endothelial function, lipid metabolism, and inflammation; it

also discusses its intervention effect. Diet, exercise, and other non-drug interventions can

improve sdLDL-C levels. Further, drug interventions such as statins, fibrates, ezetimibe,

and niacin have also been found to improve sdLDL-C levels.

Keywords: small dense low-density lipoprotein-cholesterol, atherosclerosis, lipid metabolism, inflammation,

endothelial injury, review

INTRODUCTION

Atherosclerosis (AS) is the formation of fibrofatty lesions within the arterial wall, and it causes
widespread morbidity and mortality worldwide together with heart muscle infarction, stroke, and
disabling peripheral artery illness (1). AS could be a major condition that seriously harms human
health and is understood as the major cause of mortality not only in developed countries, but
globally (2). At present, inflammatory reactions (3), lipid metabolism disorders (4), and oxidative
stressare the most important and widely recognized pathogenic causes of AS (5). In the field of
lipid metabolism, a number of irrefutable pieces of evidence have proven the pathogenic role of
low-density lipoprotein cholesterol (LDL-C) in AS, so we have extremely effective tools to reduce
LDL-C levels, thus reducing the occurrence of cardiovascular events (2). Some studies have shown
the correlation between different low-density lipoprotein (LDL) subgroups and the occurrence of
AS, in which small, dense low-density lipoprotein cholesterol (sdLDL-C) is closely related to and
has a stronger effect on AS (6). This study aimed to explore the relationship between sdLDL-C levels
and AS.
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DETECTION METHOD AND SOURCES OF
SDLDL-C

LDL is a lipoprotein with a density between 1.006 and 1.063
g/mL. It is composed of many heterogeneous particles. They
can be separated using various experimental methods. Krauss
et al. used ultracentrifugation to classify LDL into four types
according to density: large and light LDL- I (1.025–1.034 g/mL),
intermediate density LDL- II (1.035–1.044 g/mL), low-density
LDL- III (1.045–1.060 g/mL), and very low-density LDL-IV (7).
Another method widely used to identify low-density lipoproteins
is gradient gel electrophoresis (GGE), which separates low-
density lipoprotein particles by electrophoretic mobility. In
studies using GGE, LDL particles have been separated into
four major subfractions, LDL I (large LDL, peak diameter
26.0–28.5 nm), LDL II (intermediate LDL, 25.5–26.4 nm), LDL
III A and B (small LDL, 24.2–25.5 nm), and LDL IV A and
B (very small LDL, 22.0–24.1 nm) (8). The Lipoprint LDL
subcomponent rapid analysis system (Hitachi 7180) is the
only diagnostic equipment certified by the United States Food
and Drug Administration for the separation and detection of
LDL subcomponents. Based on the charge and particle size
of LDL-C, they can be divided into seven subcomponents
within a short time via polyacrylamide gel electrophoresis, in
which components 3–7 were defined as sdLDL-C (Figure 1)
(9). In addition, foreign enzyme-linked immunosorbent assay
(ELISA, Millipore, St. Louis, MO) kits can quickly detect the

FIGURE 1 | Classification of lipoprotein cholesterol. Lipoprotein with density <0.95 g/ml, diameter of 80–500 nm is chylomicrons, density of 0.95–1.006 g/ml,

diameter of 25–80 nm is very low density lipoprotein, density of 1.063–1.21 g/ml, diameter of 8–15 nm is high density lipoprotein, density of 1.006–1.063 g/ml,

diameter of 18–28 nm is low density lipoprotein, Among them, low-density lipoprotein is divided into seven subtypes. The third to seventh subtypes are small and

dense low-density lipoprotein with density >1,004 g/ml and diameter <25.5 nm.

concentrations of sdLDL-C but do not rule out the possibility
of cross-reactions, so it remains to be verified whether they
can be used in clinical settings (10). The homogeneous method
(11) can be used to measure sdLDL-C levels by removing
lipoproteins other than sdLDL-C using a surfactant and
sphingomyelinase, and it is a better technique compared to the
traditional detection method of LDL subfraction. Its correlation,
accuracy, and stability are high, which provided a cornerstone
for the popularization and application of clinical sdLDL-C
detection. Other analytical methods to detect sdLDL-C include
gel filtration column chromatography, high performance liquid
chromatography (HPLC), ion mobility analysis, and dynamic
light scattering. In clinical practice, it is important to accurately
analyze LDL subclasses thorough analytical methods.

For the detection of sdLDL-C, Mauree et al. developed a new
equation to calculate the content of sdLDL-C {the formula of
sd-LDL-C is as follows: ElbLDL-C = 1.43 × LDL-C −[0.14 ×

(ln (TG) × LDL-C)] − 8.99; EsdLDL-C = LDL-C−ElbLDL-
C}. Equations for sdLDL-C was generated with least-squares
regression analysis using the direct Denka sdLDL-C assay as
reference (n = 20,171). This equation can be widely used for all
patients with standard lipid groups without incurring additional
laboratory testing costs. The limitation of the study is that the
study population is not universal. The equation developed is
based on fasting subjects. Therefore, whether this equation can
be used in experiments or clinical applications remains to be
verified (12).
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About the detection method of sdLDL-C (8),
ultracentrifugation involves multiple steps and requires
specialized equipment and expertise to separate LDL subsets,
which is more error-prone, time-consuming, laborious and
costly. The resolution of gradient gel electrophoresis is very
high, but it requires a lot of manpower, material and financial
resources, and the sample flux is low. The polyacrylamide
gel tube electrophoresis method is simple to operate and
shows a satisfactory coefficient of variation between samples,
but the disadvantage is that the equipment is expensive. The
homogeneous method can be fully automated and can be used in
the high-throughput integration platform, which is helpful for
the large-scale testing of sdLDL-C.

At present, it is generally believed that there are two ways
to produce sdLDL-C (7, 13). First, when the triglyceride (TG)
content in the liver is high, the liver directly secretes VLDL1
(large particles and high TG content) and VLDL2 (low TG
content), when the level of TG synthesized by hepatocytes
decreases, the liver secretes VLDL1 (small particles and high
TG content) and intermediate density lipoprotein2 (low TG
content). TG-deficient lipoproteins are the precursors of larger
LDL (LDL I and LDL II), while TG-rich lipoproteins are
converted into sdLDL (LDL III and LDL IV) after being defatted
by lipoprteinlipase (LPL) and hepatic lipase (HL). Second,
there is a very active and dynamic lipid exchange between
various lipoproteins in the plasma, which is mainly catalyzed
by cholesterol lipid transport proteins. The total cholesterol
(TC) of LDL is transferred to VLDL and the TG of VLDL
is transferred to LDL, but the total amount and synthesis of
LDL remains unchanged. When the TG levels in LDL increase
to a certain extent, LDL will be hydrolyzed by liver lipase to
remove TG, the LDL particles become smaller, then the TC
content decreases, thus promoting the formation of sdLDL-C.
When the plasma concentration of TG exceeds 1.5 mmol/L, lipid
exchange is accelerated; higher TG levels accelerate the lipid
interaction between VLDL and LDL, producing more sdLDL-
C. It has been reported in the literature that the change in
gene locus is also significantly related to sdLDL-C levels. In
2009, Musunuru et al. (14) proved that four genes, CEPT,
LIPC, APOA1/A5, and LPL are related to the particle size and
distribution of LDL or HDL. Hoogeveen (15) showed that 127
single nucleotide polymorphisms (SNPs) are considerably related
to sdLDL-C. These SNPs are distributed in eight different sites
on chromosomes 1, 2, 7, 8, 11, and 19, and are distributed in
14 different genes. The genetic variation of these genes is related
to lipid metabolism and inflammatory pathways. This study also
found that the genetic variation of the new locus PCSK7 was also
associated with sdLDL-C levels.

RELATIONSHIP BETWEEN SDLDL-C AND
AS

AS mainly affects the intima of the large- and medium-sized
arteries, characterized by lipid deposition, focal fibrosis, and the
formation of atherosclerotic plaques, resulting in thickening,

hardening, and lumen stenosis of the vessel wall, ultimately
leading to ischemic changes in the corresponding organs. In
recent years, some studies have confirmed that the ability
of LDL-C to induce AS varies with different densities, and
there is a stronger relationship between sdLDL-C and the
stability of AS plaques (16, 17). Ikezaki (18) followed 2,030
men and women [median age 59 years old, no cardiovascular
disease (CVD) and not taking cholesterol-lowering drugs] for
five years and performed univariate, multivariate regression
and least squares analysis to examine the relationship between
direct sdLDL-C and other lipoproteins with the progression of
carotid intimal medial thickness (cIMT). The plasma levels of
direct sdLDL-C and other lipoproteins were measured using
a homogeneous detection kit obtained from Denka-Seiken.
The results showed that compared with LDL-C, sdLDL-C had
a stronger correlation with the progress of cIMT. However,
the scale of this line-up study is small and all subjects are
Japanese. A larger population of different races is needed to verify
this study.

Duran et al. conducted a prospective case cohort study to
study the relationship between sdLDL-C and cardiovascular
events. The sdLDL-C concentration in this study was directly
measured using a two-stage automatic homogenization test
also developed by Denka Seiken Co (Niigata, Japan). A total
of 27,552 participants provided sufficient blood samples when
they entered the group after taking into account the missing
key exposure data, the final sample included 480 women with
total CVD and 496 women whose age and smoking frequency
matched. The study found that the concentration of sdLDL-C
in women with myocardial infarction (MI) was much higher
than that in the control group, suggested that there was a
significant correlation between plasma sdLDL-C concentration
and MI (17).

Balling et al. measured sdLDL cholesterol using Denka
Seiken’s assay in 38,322 individuals participating in the
Copenhagen General Population Study from 2013 to 2017.
The death and immigration information comes from the
Danish civil registration system. Individuals are followed up
from baseline to December 2018 for MI and atherosclerotic
cardiovascular disease (ASCVD). events, death, immigration,
or the end of follow-up, whichever occurs first. Covariates
were measured at baseline, including smoking, lipid-lowering
therapy, blood pressure, body mass index, diabetes, blood sample
analysis, total cholesterol, high-density lipoprotein cholesterol,
triglycerides and apolipoprotein B. The Cox regression restricted
cubic spline model with multivariate adjustment was also
used to examine the association between sdLDL cholesterol
and the risk of MI. The median follow-up time was 3.1
years. In the multivariate adjusted spline curve, as the
concentration of sdLDL cholesterol increased, the risk of
myocardial infarction was observed to increase (6). A large
amount of experimental data (9, 15, 19–25) showed that sdLDL-C
is closely related to the occurrence of cardiovascular events, so it
is necessary to monitor clinically and reduce the concentration
of sdLDL-C to reduce the occurrence of cardiovascular events
(Table 1).
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TABLE 1 | The relationship between sdLDL-C and AS.

References Research type Detection

method of

sdLDL-C

Number of participants Age Follow-up

time/years

Conclusions

Tsai et al. (9) Retrospective analysis Homogenous

assay

4,387 atherosclerotic

participants

Not mentioned 8.5 sdLDL-C was associated

with CVD

Hoogeveen et al.

(15)

Retrospective analysis Homogenous

assay

9,882 atherosclerotic

participants

45–64 11 sdLDL-C was associated

with CVD

Higashioka et al.

(19)

Prospective study Homogeneous

assay

3,080 without prior CVD >40 8.3 SdLDL-C was associated

with CVD

Zhou et al. (20) Single-centre retrospective

observational study

Lipoprint LDL

system

368 AIS and 165 non-AIS

patients

>40 None SdLDL-C was risk factors

for increased IMT

Siddiqu et al. (22) Ancillary study Qualitative assay

kits

130 liver transplant

recipients

>47 4 sdLDL-C independently

predicted CVD

Goel et al. (23) Observational, single centre,

cross sectional case control

study

Enzymatic analysis 150 CAD patients and 40

healthy adults

Not mentioned None CAD have higher sdLDL

levels compared to

individuals without CAD

Williams et al. (24) Double-blind randomized

controlled clinical trial

Gradient gel

electrophoresis

160 patients selected for

clinical coronary disease

Men <70,

Women <65

2 SdLDL-C was related to

changes in coronary artery

stenosis and cardiovascular

events in patients with CAD

and low HDL-C

Arai et al. (25) Prospective study Homogenous

assay

2030 without cardiovascular

disease

Not mentioned 11.7 sd-LDL-C was significantly

associated with CVD

SdLDL-C, small, dense low-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL, high-density lipoprotein; CAD, coronary artery disease; CVD, cerebrovascular

disease; AIS, acute ischemic stroke.

MECHANISM OF AS INDUCED BY
SDLDL-C

The term “induration of the arteries” refers to a condition where
lipids and alternative substances deposit in and on the artery walls
(referred to as “plaques”) that limit traditional blood flow (26).
AS and the pathology of related ischemic organs are the primary
causes of mortality worldwide (27). Currently, there are many
theories regarding the mechanisms of AS. It is generally believed
that AS is a chronic inflammatory process involving multiple cell
types and cytokines (3, 28). AS begins with the deposition of LDL-
C, endothelial dysfunction, the accumulation of foam cells under
the endothelium, and the formation of fat streaks through the
activation of pro-inflammatory f actors (1).

sdLDL-C Promotes AS by Regulating Lipid
Metabolism
The metabolism of cholesterol esters (CEs) is regulated by the
macrophage gene network. Studies have shown that genes such
as ATF3 (activating transcription factor 3) and EGR2 affect AS
by regulating lipid metabolism (29–32). ATF3 is a member of
the mammalian activation transcription factor/cAMP response
element binding (CREB) family (33, 34). SdLDL-C can reduce
the ability of ATF3 to induce type B scavenger receptor (SR-BI)
by down-regulating the expression of ATF3, and promote hepatic
cholesterol 12α hydroxylase (CYP8B1) by interacting with p53
and hepatocyte nuclear factor 4α, thus reducing the uptake of
high-density lipoprotein, promoting visceral fat and cholesterol
absorption, and inhibiting the reverse cholesterol transport of
phagocytes (32). EGR2 is another gene related to cholesterol

metabolism, which is involved in the synthesis of free cholesterol
(FC) and lipid droplets (LD) (35).

There were some differences in the content of components
in different subgroups of LDL-C. SdLD-C showed a significant
decrease in free cholesterol (FC), cholesterol ester (CE) and
phospholipid (PL) than large and light LDL-C. The study
of biofilm and lipid bilayer shows that the incorporation of
cholesterol affects the permeability of metabolites. With the
increase of FC content, the accessibility of oxidants to lipid
core decreased, which may be a reasonable explanation for the
protective effect of LDL particles on oxidation susceptibility. The
increase of FC content in LDL particles may directly regulate
the susceptibility to oxidative stress and help to prevent LDL
particles from undergoing subsequent oxidative modification
(36). Studies have shown that the introduction of sdLDL-C
into traditional M2 macrophages can inhibit the expression
of EGR2, resulting in the increase of CE production and
FC efflux (29), therefore, the sensitivity of sdLDL-C to lipid
peroxidation increased with the decrease of FC content in each
particle. Ohmura evaluated the sensitivity to lipid peroxidation
modification of low density lipoprotein by the formation of
conjugated diene induced by copper, which also confirmed that
sdLDL-C was more sensitive to lipid peroxidation modification
(36). On the other hand, due to the efflux of FC, when
macrophages accumulate a large amount of FC, it is a powerful
apoptosis inducer, which will lead to the release of intracellular
contents and thrombosis (37). In addition, studies have shown
that the plasma retention time of apolipoproteinB-100 (apoB-
100) on the surface of sdLDL-C is significantly longer than
that of apoB-100 on the surface of IbLDL, which increased
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FIGURE 2 | Mechanisms of atherosclerosis induced by sdLDL-C. (A) Lipid metabolism: SdLDL-C reduces the expression of ATF3 and EGR2, ATF3 decreases the

ability of SR-BI by interacting with p53 and 4α and promotes CYP8B1 to inhibit cholesterol reverse transport; EGR2 leads to an increase in CE production and FC

outflow, thus increasing the oxidation sensitivity of sdLDL-C. On the other hand, the low affinity of apoB-100 on the surface of LDL-C receptors and sdLDL-C makes it

difficult for the receptors to recognize sdLDL-C and is more easily absorbed by phagocytes to form foam cells and promote the occurrence and development of AS.

(B) Oxidative stress: The increase of sdLDL-C level reduces the production of VLCFA and miR-126, which affects lipid metabolism and fatty acid β oxidation; miR-126

affects HDL uptake, and enhances signal transduction resulting in AS. In addition, ox-sdLDL can also increase the expression of adhesion molecules and induce

excessive production of ROS and RNS, resulting in the enhancement of oxidative stress to cause AS. (C) Fibrinolytic system: SdLDL-C increases the levels of PAI-1

and TXA2. PAI-1 inhibits the function of u-PA and t-PA, which easily leads to thrombosis. TXA2 activates TP receptor and activates RhoA/Rho21 kinase pathway

through its G protein coupled receptor, and increases calcium levels in hepatic stellate cells, resulting in vasoconstriction, platelet aggregation, thrombosis and AS. (D)

Inflammation: SdLDL-C levels reduces IDO, causing a decrease in vascular tolerance by affecting the Kyn pathway; LP-PLA2 increased that activated TRPC1/TRPC3

channels, calcium influx, Bax and caspase-3 pathways to cause apoptosis; increased expression of inflammatory cytokines and the formation of foam cell, suggesting

an inflammatory response. SdLDL-C, small, dense low-density lipoprotein cholesterol; AS, atherosclerosis; CE, cholesterol ester; FC, free cholesterol; VLCFA,

very-long-chain fatty acid; ATF3, activating transcription factor 3; LDs, lipid droplets; IDO, indoleamine 2,3-dioxygenase; LP-PLA2, lipoprotein-associated

phospholipase A2; LPCs, lysophosphatidylcholine; ROS, reactive oxygen species; RNS, reactive nitrogen species; PAI-1, plasminogen activator inhibitor 1; TXA2,

thromboxane A2; t-PA, tissue type plasminogen activator; u-PA, urokinase type plasminogen activator.

the possibility of oxidation (38). LDL is cleared after binding
to LDL-C receptors, but apoB-100 on the surface of sdLDL-
C molecules and LDL-C receptors has a low affinity, which
makes it difficult for the receptors to recognize sdLDL-C, and
is more likely to be absorbed by phagocytes, which develop into
foam cells and promote the occurrence and development of
AS (39).

Current research shows that the increase of sdLDL-C level
will reduce the generation of very-long-chain fatty acid (VLCFA),
the ability to regulate peroxisome function and interact with
peroxisome proliferator activated receptor (PPAR) was weakened
(40), thus affecting lipid metabolism, fatty acid β oxidation,
plasminogen (PL) biosynthesis and so on (41). This may also be
one of the reasons why sdLDL-C has a stronger ability to cause
AS. In addition, quantitative reverse transcriptase polymerase
chain reaction (qRT-PCR) was used to detect serum miR-126

and 122 levels in 78 patients with CAD and 60 patients without
CAD in one study. There, it was suggested that miR-126may play
a role in the cholesterol metabolism of sdLDL-C. However, the
mechanism by which the decrease in circulating miR-126 levels
in patients with CAD is proportional to the increase in sdLDL-C
is not fully understood (42). In 2012, miRNAs were reported to be
important regulators of HDL metabolism and reverse cholesterol
transport, including direct targeting of cellular cholesterol efflux,
HDL biogenesis, liver high-density lipoprotein uptake, and the
synthesis of bile acid and secretion-related genes (43). It has also
been reported that miR-126 attenuates oxidized LDL (ox-LDL)-
induced endothelial cell injury by inhibiting signal transduction
to delay AS (44, 45). Therefore, a larger sample cohort is needed
to further explain the role of miR-126 in sdLDL-C cholesterol
metabolism and to understand the development of the disease
(42) (Figure 2).
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sdLDL-C Promotes AS by Inducing
Inflammation
Monocytes play an important role in the early formation and
maturation of plaques. They are drawn to the arteries by
chemokines, such as CCL2, which are secreted by activated
epithelial tissue cells (46–49) and take up lipids among the
subendothelial tissue to differentiate into foam cells (50). In
addition, they can also engulf precipitated cholesterol crystals
(51) and oxidized lipid species (52–54) that activate the
inflammasome, resulting to cell death in a highly inflammatory
form called prolapse, as well as the induction of innate immune
responses (51). Human monocytes are mainly divided into three
types: classical (CD14+CD16−), non-classical (CD14−CD16+),
and intermediate (CD14+CD16+) (55). Supported by proof from
murine studies (56, 57), as well as current human observations
(58), classical monocytes are believed to have the ability to
differentiate intomonocyte-derivedmacrophages andmonocyte-
derived dendritic cells (59) and play an indispensable role in
the formation and regression of tissue inflammation. Related
studies have shown that the production of sdLDL-C is related
to an increase the number of non-classical monocytes and a
decrease in the number of classic monocytes (60). The specific
mechanism has not been detailed, but we speculate that the effect
of sdLDL-C on AS may be related to the inflammatory response
of monocytes. In 2017, monocytes from healthy people (stenosis
degree <5%) and patients (stenosis degree >70%; single-vessel
disease, two-vessel disease, three-vessel disease) were separated
using a Rosette Sepkit, andmacrophage colony stimulating factor
(M-CSF) was used to induce them to differentiate into M2
macrophages. qRT-PCR and ELISA were used to detect MRC1
gene expression and histamine levels, respectively. After sdLDL-
C treatment, the expression level of MRC1 in normal human M2
macrophages was significantly increased (P = 0.05), while the
expression level of MRC1 gene was decreased in patients with
single-vessel disease (P = 0.05), two-vessel disease (P = 0.01),
and three-vessel disease (P = 0.9). The histamine levels secreted
by M2 macrophages (after treatment for 7 day) in the case group
were higher than that in the healthy control group (>3-fold, P
= 0.02). The results illustrated that sdLDL-C granules decreased
the expression of MRC1 in differentiated M2 macrophages from
patients with CHD. In addition, they have a strong ability to
secrete histamine (61).

Hassanpour et al. detected the effect of sdLDL-C on the
changes in IDO in differentiated macrophages using RT-
qPCR, colorimetric, and ELISA methods. Their results show
that sdLDL-C reduces the expression and activity of IDO in
macrophages (62), IDO is the first and rate-limiting enzyme in
the tryptophan (Trp)-degraded kynurenine (Kyn) pathway, and
its downstreammetabolite is collectively called kynurenines (63).
The expression of IDO was inhibited, the metabolic pathway
of Trp was blocked, the formation of Kyn was decreased, the
ability of cell death mediated by kyn through reactive oxygen
species (ROS) pathway in natural killer (NK) cells decreased
(64), vascular tolerance decreased, and promoted the occurrence
and development of inflammation and AS (65, 66). In addition,
ATF3 (67, 68) and EGR2 (69, 70) play crucial roles in signal

transduction in the process of anti-apoptosis, anti-migration,
and anti-inflammation. sdLDL-C also promotes inflammation
and accelerates AS by inhibiting the expression of AFT3 and
EGR2 (32).

Lipoprotein-associated phospholipase A2 (Lp-PLA2)
hydrolyzes phospholipids and releases pro-inflammatory
products; therefore, it is considered to be a new biomarker of
vascular risk (71–74). Among the phenotypes of LDL, Lp-PLA2
preferentially binds to small, dense LDL particles (72) to produce
lysophosphatidylcholine (LPC). LPC can promote the expression
of inflammatory factors (75), damage arterial relaxation, increase
oxidative stress, induce endothelial activation and atherosclerosis
(76). SdLDL-C granules contain more Lp-PLA2. Studies have
confirmed that LPC can induce apoptosis of human coronary
artery smooth muscle cells by activating TRPC1/TRPC3
channels, calcium influx, Bax and caspase-3, and lead to
atherosclerosis and coronary artery disease (77), which may also
be a mechanism of AS induced by sdLDL-C. In addition, higher
concentrations of LPC can destroy the integrity of mitochondria
and enhance the release of cytochrome C in hepatocytes (78). We
speculate that sdLDL-C may lead to AS through mitochondrial
damage, which may be a potential mechanism (Figure 2).

sdLDL-C Promotes AS by Enhancing
Endothelial Injury
Vascular epithelial tissue cell pathology plays an important role
in the initiation and development of AS (79, 80). Endothelial
cell injury increases intimal permeability and leukocyte adhesion,
promoting thrombus formation and rapid malady progression
(81). Both ox-LDL and cholesterol cause functional damage to the
arterial intima, change the surface characteristics of endothelial
cells and leukocytes (monocytes and lymphocytes), and increase
the expression of adhesion molecules. The number of monocytes
adhering to endothelial cells increases and gets transferred from
endothelial cells to subintimal macrophages, which are then
transformed into foam cells via scavenger receptor phagocytosis
of ox-LDL, forming the earliest lipid streaks of atherosclerotic
lesions (82–88).

Ox-LDL induces an excessive production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS) in vivo, which
induces antioxidant defense; however, the degree of oxidation
exceeds the scavenging ability of oxides, resulting in tissue
damage (89–92). SdLDL-C particles have the characteristics of
a small size, low density, large surface area, long retention time
in vivo, and induces great damage to endothelial cells, which
leads to their increased permeability, chemotaxis of monocytes
in blood vessels to form macrophages, and phagocytosis of
oxidized LDL-C to form foam cells, thus further supporting
the formation of AS (93). In addition, there are a few polar
molecules on the surface of sdLDL-C particles, and their affinity
with proteoglycans on arterial intima is enhanced, so they can
easily adhere to the vascular wall and enter vascular endothelial
cells, resulting in vascular endothelial damage and promoting the
occurrence and development of AS (38, 94). This was verified
by an experiment on the modification of LDL by methylglyoxal
(MG). The modification of LDL by MG resulted in a significant
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decrease in the particle size of LDL similar to that of sdLDL.
Vortex-stimulation showed that sdLDL-C showed higher PG
aggregation rate and degree than unmodified LDL (95).

SdLDL-C not only injures the vascular endothelium but
also activates the fibrinolytic system and produces plasminogen
activator inhibitor 1 (PAI-1) (96–99) and vasoconstrictor
thromboxane A2 (TXA2) (100, 101), thus promoting AS (93).
A previous study found that plasma PAI-1 levels were positively
correlated with the concentration of sdLDL-C (102). PAI-1
inhibits the function of t-PA and u-PA by binding to tissue-type
plasminogen activator (t-PA) and urokinase-type plasminogen
activator (u-PA) in a ratio of 1:1, The increase of PAI-1
expression in vivo will inhibit the normal fibrinolytic system,
which is easy to lead to thrombosis (103). TXA2 activates
TP receptors, activates RhoA/Rho kinase pathway through its
G-protein coupled receptors, and increases calcium levels in
hepatic stellate cells (HSC), resulting in vasoconstriction, platelet
aggregation, thrombosis and atherosclerosis (104). Therefore,
compared with LDL-C, sdLDL-C has a stronger effect on AS, and
the damage it induces to the blood vessel wall lasts longer (105)
(Figure 2).

ANTI-AS INTERVENTIONS INVOLVING
SDLDL-C

Non-medicinal Interventions
SdLDL-C levels are closely associated with meal compositions
and dietary habits. Almonds have been shown to reduce
LDL-C levels; however, there is limited data regarding their
effects on dyslipidemia characterized by accrued levels of VLDL
and sdLDL-C particles that are related to abdominal fat and
high carbohydrate intake (106). A current meta-analysis of
randomized controlled clinical trials found that consumption of
almonds can reduce plasma TC concentration by 0.15 mmol/L,
TG concentration by 0.07 mmol/L, and LDL-C concentration
by 0.12 mmol/L (107). Studies have shown that almonds and
almonds with dark chocolate and cocoa ingested for four
weeks have a good effect on the levels of lipids, lipoproteins,
and apolipoproteins, and the combined consumption of dark
chocolate, cocoa, and almonds significantly reduces levels of
sdLDL-C, apoB, and the ratio of apoB/apoAI, which in turn
are expected to reduce the risk of CHD (108). Avocados are
a nutritious source of monounsaturated fatty acids (MUFAs),
which are rich in antioxidants. Avocados have an extra effect
of reducing LDL-C levels, especially sdLDL-C particles, which
are prone to oxidation in the body and are associated with an
increased risk of CVD (109). In another randomized, crossover,
controlled feeding study of patients with elevated LDL-C levels,
comparedwith a daily intake of pistachios (32–63 g), a twice-daily
intake of pistachios (63–126 g) significantly decreased sdLDL-
C levels within four weeks. This experiment adopted a double-
blind crossover design in which 30 postmenopausal women
with moderate hypercholesterolemia were randomly assigned
to two 35-day diets supplemented with corn oil or partially
hydrogenated soybean oil to diets providing energy intake for
weight maintenance. The results illustrated that the decrease in

sdLDL-C concentration was positively correlated with a decrease
in TG (110). In a randomized, double-blind, crossover study,
subjects ate 10 grams of flaxseed oil or corn oil at dinner once
a day, containing 5.49 and 0.09 g α-linolenic acid, respectively.
Blood samples were collected at 0.4 and 12 weeks for the
analysis of serum lipids, lipid-related proteins, serum fatty acids
and serum sdLDL-C. Flaxseed oil supplementation significantly
decreased the concentration of sdLDL at 4 and 12 weeks (111).

A study by Mendoza et al. strengthened the relationship
between weight loss and reduced sdLDL-C levels. After weight
loss, the concentration of apoC-III decreased, and the average
BMI decreased from 27 to 25 kg m2, which was related to an
increase in the peak particle diameter of LDL and a decrease
in serum concentration of sdLDL-type (112). In addition to
dietary intervention, exercise can effectively reduce the risk of
cardiovascular disease (113). One hundred participants from the
RESOLE trial (ages 50–70) were followed up for a year, starting
with a three-week accommodation program that combined high
exercise (15–20 h per week), diet restriction (500 kcal/day), and
education. Forty age-matched healthy controls were recruited
as a baseline reference. Lipoprint R© electrophoresis was used
to evaluate the distribution of lipoprotein subfractions in these
subjects, allowing separation, and the results showed that sdLDL-
C concentration decreased significantly after a 3-week residence
plan (114). Another study conducted a six-month intervention
on 30 hyperlipidemic subjects (12 males, 18 females; mean age,
64 years), focusing on moderate increases in physical activity.
Clinical data before and after the intervention were observed.
In addition to determining the average particle size of LDL
and diacron reactive oxygen metabolites (d-ROMs) via gel
electrophoresis, the risk factors for AS were also determined.
The average LDL particle size after intervention was significantly
larger than that before intervention (26.9± 0.3 vs. 27.1± 0.4 nm,
mean ± SD, P < 0.01), whereas the level of sdLDL-C decreased
significantly (115) (Table 2).

Medicinal Interventions
Statins
It is well-known that statins can effectively regulate blood lipid
levels and delay the process of atherosclerosis. A study recruited
12 white men with metabolic syndrome. All subjects were treated
with pitavastatin (4 mg/day) and their blood lipid levels were
measured after 180 days. The results found that pitavastatin
not only lowered LDL-C (−38%), sdLDL-C (sd-LDL4) and (sd-
LDL5) are also effectively reduced (−27 and−33%, respectively).
However, the sample size of this experiment is too small, and
the sample size needs to be expanded to prove this point of
view (116). A prospective, randomized, open-label, multicenter,
parallel grouping comparative trial was conducted in Japan from
October 2011 to November 2012. Eligible subjects (people at high
cardiovascular risk over the age of 20) were treated with high-
dose statins and conventional statins, respectively. The high-dose
treatment group took 5mg of rosuvastatin a day for the first four
weeks, and then 10mg a day for 8 consecutive weeks, and the
low-dose statin group took 2.5mg of rosuvastatin a day for 12
consecutive weeks. Lipid measurements were taken before, 4 and
12 weeks. The results show that both groups can reduce oxidized
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TABLE 2 | Studies of non-medicinal intervention of sdLDL-C against AS.

Intervention Method Subjects Targets Effect References

Diet Almond Atherogenic dyslipidemia sdLDL-C, TC↓ Help in the maintenance of

healthy blood lipid levels

(101)

Almonds or dark chocolate Overweight and obese

individuals

sdLDL-C, LDL-C, TC↓ Improves lipid profiles (103)

Avocados Overweight and obese

individuals

oxLDL, sdLDL-C↓

plasma lutein↑

Reduce ox-LDL concentration

and prevent AS

(104)

Pistachios Healthy adults sdLDL-C, TG↓,

HDL↑

Reduce cardiovascular risk (105)

Flaxseed oil Healthy men TC, LDL-C, ApoB SdLDL-C↓ Reduce sdLDL-C concentrations (106)

Exercise Weight loss or high

carbohydrate

Overweight men ApoB, ApoC, TG, sdLDL-C↓ Reduce sdLDL-C generation (107)

Physical exercise Participants

(50–70 years)

LDL-C, sdLDL-C↓,

HDL↑

Improve carotid-intima-media

thickness

(109)

Moderate physical activity 30 hyperlipidemic

subjects

d-ROM, sdLDL-C↓ Improve blood lipids (110)

SdLDL-C, small, dense low-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL, high-density lipoprotein; oxLDL, oxidized low-density lipoprotein; TG,

triglyceride; TC, total cholesterol; ApoB, apolipoprotein B; ApoC, apolipoprotein C; d-ROM, diacron reactive oxygen metabolites.

low-density lipoprotein cholesterol and sdLDL-C, and the effect
of the high-dose group is more obvious (117). Although the high-
dose group of statin therapy is effective in improving blood lipid
levels, some cardiovascular events continue to occur. Therefore,
high-dose statin therapy is recommended for the initial treatment
of patients with high risk of atherosclerotic vascular disease (118).
Another in vitro experiment evaluated the effect of combination
therapy of Eicosapentaenoic Acid (EPA) and atorvastatin on
endothelial cell function under oxidative stress conditions by
measuring the release of NO and peroxynitrite (ONOO–) from
human umbilical vein endothelial cells (HUVECS) to examine
the comparative and time-dependent effects of these agents
on endothelial dysfunction. Data shows that the combined
treatment of EPA and atorvastatin can effectively reduce the
level of sdLDL-C, thereby improving endothelial dysfunction,
which may be because EPA contains substances that inhibit the
oxidation of ApoB particles, which has a stronger antioxidant
effect (119). However, some studies have shown that compared
with patients who received atorvastatin for <6 days, patients
who received atorvastatin for more than 90 days had significantly
lower total cholesterol and LDL-C levels, but slightly lower
sdLDL-C levels increased, but not significant (p= 0.06) (120).

Fibrates
Fibrates are agonists of peroxisome proliferator-activated
receptor-α (PPAR-α), which regulate lipoprotein metabolism
through transcription factors. Fibrates have shown effects in
reducing fasting and postprandial TG and TG-rich lipoprotein
residual particles (121). A meta-analysis of 13 studies illustrated
that fibrates can reduce triglyceride levels, increase HDL-C levels,
reduce the proportion of sdLDL-C, fibrates could be effective
in secondary prevention considering a compound objective of
non-fatal stroke, non-fatal myocardial infarction, and death of
cardiovascular origin, and have fewer side effects; themost widely
used drug of this class is fenofibrate (122). Other studies have
also proved this point (123, 124). A retrospective study included

72 patients with type 2 diabetes. All patients received pemafibrate
0.2mg (0.1mg twice daily) for 24 weeks. During the entire study
period, all patients did not change their exercise or diet regimens.
The results show that Pemafibrate significantly reduces the
levels of TG and sd-LDL-C, improves the composition of LDL
and may reduce the risk of cardiovascular disease (125). It also
has a better benefit-risk balance than conventional fibrates and
can be applied to patients who find it difficult to use existing
fibrates, such as those taking statins or those who have renal
insufficiency (126).

Ezetimibe
Ezetimibe is a novel drug used for the treatment of dyslipidemia,
which resists cholesterol absorption by inhibiting Niemann
pick C1 like protein (NPC1L1) (127). Ezetimibe alone or in
combination with statins can reduce the level of sdLDL-C (128).
From October 2014 to November 2015, the author recruited
patients with type 2 diabetes who had normal LDL-C levels
and received statin therapy at the outpatient clinic of their
institution. A total of 50 patients (31 men and 19 women) were
enrolled in this study, and all subjects were randomly assigned
to receive statins (statin group) or fenofibrate (160 mg/day)
and ezetimibe treatment (10 mg/day), the results showed that
the combination of fenofibrate and ezetimibe can effectively
control the levels of sdLDL-C and TG, increase the level of
HDL-C, and improve the vascular function of patients with type
2 diabetes. The effect of this combination is even better than
treatment with statins alone (129). Therefore, to reduce the level
of blood lipids using ezetimibe, it may be more beneficial if it
is combined with other drugs. Current studies have illustrated
that fenofibrate combined with ezetimibe can improve sdLDL-C
levels and vascular function compared with statins (129).

Niacin
Niacin inhibits AS by activating the anti-inflammatory G protein-
coupled receptor Gpr109a, also known as hydroxycarboxylic acid
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receptor 2 (HCA2), expressed on immune cells, inactivating the
immune response and adventitious inflammatory cell infiltration
(130). Niacin treatment was shown to decrease total cholesterol,
triglyceride (20–50% decrease), and LDL-C levels. Additionally,
niacin decreased sdLDL-C levels, leading to a shift to massive
buoyant LDL particles, delaying the progression of AS (7).
However, the negative effects of nicotinic acid were in accordance
with the results of the HPS2THRIVE and AIM-HIGH trials,
which suggests that its clinical application requires further study
(131, 132).

Omega-3 Fatty Acids
Omega-3 fatty acids are essential fatty acids found in certain fish
and vegetables. These are necessary for growth and development.
Numerous studies have reported that omega-3 fatty acids scale
back plasma triglycerides and increase HDL levels. They have
been reported to inhibit blood platelet aggregation, improve
endothelial function, decrease oxidative stress, and act as a potent
medication agent (133). Changes in blood lipid and lipoprotein
profiles were also observed after omega-3 fatty acid treatment
for 8 weeks. The results of one study also showed that sdLDL-C
levels decreased significantly after intake of omega-3 fatty acids
(134). The omega-3 fatty acid EPA has substiantial antioxidant
activity and can protect the membrane structure, which may
promote scavenging of free radicals in sdLDL-C and membrane
bilayers (135).

Other Western Medicine
Proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs
to the proprotein convertase family of enzymes that degrades
LDL-R, which directly mediates the degradation of LDL-R in
lysosome, which in turn increases plasma LDL level (136, 137).
PCSK9 is positively correlated with sdLDL-C levels (138). At
present, PCSK9 inhibitors (PCSK-9i) have been clinically used
to reduce cholesterol levels and cardiovascular events in patients
(139). In addition, resin and orlistat can also reduce sdLDL-C
levels (140). Baricitinib treatment can also increase LDL levels
and reduce sdLDL-C particles. One of the mechanisms by which
baricitinib and related interventions increase the particle size
of LDL-C may be the increased activities of phospholipase A2,
liver lipase, lipoprotein lipase, and endothelial lipase. It has been
reported that these enzymes are increased in a state of chronic
inflammation (141).

CONCLUSION AND PERSPECTIVES

Lipid metabolism disorder is an important factor leading to
AS. A large amount of evidence shows the pathogenic role
of increased LDL-C in AS, and SdLDL-C, as a subgroup
of LDL-C, has been proved to be a specific index for the
detection of AS. Compared with traditional lipid monitoring,
sdLDL-C monitoring has better sensitivity and specificity,
and has better clinical value in predicting AS (7, 9). At
present, there are many methods for the detection of sdLDL-
C, but most of them have some limitations which cannot be
widely used in the laboratory and clinic because they require
expensive equipment, are time consuming, labor-intensive, and

other reasons. The Lipoprint LDL system is currently the
mainstream method for detection of sdLDL-C because it utilizes
linear polyacrylamide gel electrophoresis to separate low-density
lipoprotein according to particle size and charge, which has
advantages of high efficiency, high speed, and low materials
consumption (6).

Because of its small size and higher density compared to
larger LDL-C particles, sdLDL-C has a greater ability to penetrate
the artery wall, in addition to having a longer half-life and
greater susceptibility to oxidative modification. Cardiovascular
diseases caused by abnormal sdLDL-C are reflected in many
clinical cases. SdLDL-C plays a variety of roles in the process
of AS, such as affecting lipid metabolism, promoting the
release of inflammatory factors leading to inflammatory reaction,
releasing excessive ROS and RNS to produce oxidative stress,
activating fibrinolytic system to produce thrombus. At present,
there are non-drug interventions, such as regulating diet (low
carbohydrates, soybeans, corn oil, etc.). Proper exercise can
effectively improve the level of sdLDL-C in patients. Medical
interventions, such as statins, fibrates, ezetimibe, niacin and
omega-3 fatty acids, can reduce sdLDL-C levels in the body.
The main mechanism is to improve the level of blood lipids
and vascular endothelial function. In recent years, Pemabet and
PCSK9 inhibitors have become the focus of current research as
new interventions to prevent AS.

The specific mechanism of atherosclerosis caused by sdLDL-C
has not been fully explained, and it is still being explored. Further
exploration of the specific mechanism and interventionmeasures
of sdLDL-C may provide a new direction for clinical prevention,
evaluation and treatment of AS. Some studies have shown that
the concentration of sdLDL-C is related to the changes of gene
loci, and we speculate that gene detection may provide a new
reference for the study of sdLDL-C. We know that intestinal
microflora is significantly associated with lipid metabolism.
A randomized controlled trial shows that changing intestinal
microflora in patients with hyperlipidemia can effectively reduce
sdLDL-C levels in patients with hyperlipidemia (142). However,
the related research on the effect of intestinal flora on sdLDL-
C is insufficient, whether it can reduce the level of sdLDL-C
by improving intestinal flora, so as to reduce AS, is worthy of
further study. In conclusion, these studies on the role of sdLDL-
C in AS may provide information regarding new targets for the
prevention and treatment of AS.
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