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Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between
local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven
approach is proposed formodeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic
(EEG) and near-infrared spectroscopic (NIRS) data. The approach uses gamma transfer functions to map EEG spectral envelopes
that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve
stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental
EEG-NIRS data measured from 3 human subjects. Results from the experimental data indicate that the neurovascular coupling
relationship can be modeled using multiple sets of gamma transfer functions. By applying cluster analysis, statistically significant
parameter sets were found to predict NIRS hemodynamics from EEG spectral envelopes. All subjects were found to have significant
clustered parameters (𝑃 < 0.05) for EEG-NIRS data fitted using gamma transfer functions. These results suggest that the use of
gamma transfer functions followed by cluster analysis of the resulting parameter sets may provide insights into neurovascular
coupling in human neuroimaging data.

1. Introduction

Neural activity is a complex biophysical process that involves
electrochemical and vascular interaction at the cellular level.
Modern neuroimaging technologies such as functional mag-
netic resonance imaging (fMRI), near infrared spectroscopy
(NIRS), and diffuse optical imaging (DOI) typically detect
changes in the local blood flow associated with the vascular
response to provide an indirect measure of neural activity.
A major limitation with these techniques is their inability to
map precisely the source of the underlying neural activity
[1, 2]. Consequently, understanding neurovascular coupling
or the relationship linking the underlying neural activity to
the local changes in cerebral hemodynamics remains a vital
area of research.

To date, noninvasive multimodal neuroimaging tech-
niques with electroencephalography (EEG) and fMRI have
been widely used to investigate the relationship between
neural activity and cerebral hemodynamics [3–5].These stud-
ies attempt to show quantitative aspects such as the degree

of correlation between electrical scalp potentials recorded
using EEG and the hemodynamic response measured from
fMRI after separately preprocessing the acquired data. Only
a few studies have investigated the direct link between
neural activity and the hemodynamic response by estimat-
ing transfer functions which map neural rhythms recorded
using EEG to fMRI blood-oxygen level dependent (BOLD)
signals reflecting the hemodynamic response. Despite being
informative, there are a number of methodological and
technical difficulties associated with multimodal EEG-fMRI
techniques. EEG data recorded during fMRI acquisitions
can be contaminated by gradient artifacts induced by the
changing magnetic field gradients used for spatial encoding
in MRI [6]. Electromagnetic interference could decrease
the signal quality in both modalities and therefore obscure
features of interest in the datasets being used to identify the
neurovascular coupling relationship. Moreover, EEG-fMRI
instrumentation can be fairly complex to set up and is not
readily accessible for conducting neuroimaging research in
smaller research facilities.
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Multimodal neuroimagingwith EEGandNIRS is increas-
ingly gaining popularity due to the portability of EEG-NIRS
instrumentation. EEG-NIRS systems can provide measure-
ments with high signal-to-noise ratio (SNR) since there
is no electrooptical interference. More importantly, NIRS
can measure the hemodynamic changes at the capillary
level while fMRI detects BOLD signal that is sensitive to
changes in venous outflow [7]. This makes NIRS potentially
advantageous for measuring hemodynamics associated with
neural activity as there is evidence which suggests that neu-
ronal function is supported by brain capillary oxygenation
[8]. A number of studies have used EEG-NIRS systems to
investigate neurovascular coupling from the measurement of
the electrical scalp potential and the vascular response in
stimuli evoked neural responses [9–11]. Although these prior
works show that neural correlates of EEG signals covary with
NIRS hemodynamics, there is still not a clear understanding
of how the signalsmeasuredwith EEG are predictive of NIRS.
Newer methods need to be established based on models that
relate neural activity to the hemodynamic response.

In this workwe introduce a neurovascular-couplingmod-
eling approach based on fitting gamma transfer functions and
then clustering the parameters into sets that most effectively
map the electrical scalp potentials recorded using EEG to the
cerebrovascular responsemeasured fromNIRS hemodynam-
ics. Gamma transfer functions have been used to represent
the hemodynamic response function (HRF) in fMRI analysis
methods [12–14]. Typically in fMRI data analysis, the BOLD
signal is regressed on a general linear model (GLM) con-
structed by convolving theHRFwith a boxcar function repre-
senting the temporal structure of the experimental paradigm
[15]. In recent years, NIRS studies have also adopted the GLM
framework to map brain activations [16]. Unfortunately, a
boxcar function convolved with a canonical HRF may not
accurately represent the cerebrovascular response since there
is variability in the neural response between brain regions
and different tasks [17, 18]. In addition, the shape of the HRF
will depend on the type of imaging modality used [19]. NIRS
hemodynamics, which have higher temporal resolution than
fMRI BOLD signals and different hemodynamic measures,
will require a different parameter set for the HRF compared
to parameters used in the BOLD fMRI. With respect to
the GLM modeling framework, our neurovascular-coupling
modeling approach takes advantage of the measured EEG
signal linked directly to neural rhythms in order to predict
the NIRS hemodynamic response. Moreover, we vary the
parameters of the gamma transfer function so that our model
predictions have improved fit. Finally, using our approach we
want to identify reliable gamma transfer function parameters
that can predict NIRS ΔHbO hemodynamic response from
EEG spectral envelopes within an individual.

2. Methods

We conducted an Institutional Review Board (IRB) approved
experiment that involved unilateral stimulation of themedian
nerve. Typically, stimulation of the median nerve on the
hand induces mu rhythm desynchronization in the 8–13Hz

range in the contralateral somatosensory area of the brain.
The cortical response can be detected as fluctuations in the
EEGmu band and is also known to produce positive changes
in ΔHbO calculated from NIRS optical measurements [20,
21]. Our experimental paradigm is designed in order to
facilitate detection of signal components that correlate with
the median nerve stimulus. In this way we have selected
for signals that are likely to have originated in the same
brain region, which makes it practical to study neurovascular
coupling.

In our study we use an EEG-NIRS head probe that was
designed to record neural activity from optimally placed EEG
electrodes and NIRS optodes, which cover the whole head
[22]. The positioning of the EEG sensors is configured so
that they are equidistant and close in proximity to a NIRS
optode.This ensures to somedegree that themeasured signals
from an EEG electrode and a NIRS optode have a common
source in the cerebral cortex.TheEEG-NIRS instrumentation
consists of 16 optical sources and 8 detectors interleaved with
EEG sensors, which are arranged according to the Inter-
national 10–20 system. The NIRS system emits continuous
wave (CW) near infrared light at four wavelengths (690 nm,
785 nm, 808 nm, and 830 nm). The source-detector spacing
is 33 mm, which allows for probing neural activation with
high sensitivity [23]. The EEG system measures the electrical
scalp potentials from 30 electrodes. The data acquisition
rates for the EEG and NIRS systems are 2048Hz and 25Hz,
respectively.

2.1. Data Preprocessing. EEG data is contaminated by ocular,
muscular, cardiac, and other physiological artifacts. For the
sampled EEG data, epochs containing aberrant waveforms
were manually discarded by visual inspection using the
EEGLAB TOOLBOX 10.2.2.4b (Swartz Center for Compu-
tational Neurosciences, La Jolla, CA; http://www.sccn.ucsd
.edu/eeglab/).We then applied independent component anal-
ysis (ICA) using the Infomax ICA algorithm [24], as imple-
mented in EEGLAB to remove ocular movement and blink
artifacts from the EEG data [25–27]. Empirical mode decom-
position (EMD)was next applied to themotion corrected and
noise artifact reducedEEGdata for extracting neural rhythms
linked to mu rhythm desynchronization. EMD decomposes
a signal into a set of band limited functions called intrinsic
oscillatory modes or integral mode functions (IMF) [28].
Each IMF represents oscillations in a narrow frequency band
and may reveal particular features of interest in the given
signal. The EMD method can offer better time-frequency
localization compared to traditional methods like short time
Fourier transform (STFT) and wavelet decomposition tech-
niques [29, 30]. STFT has fixed time-frequency resolution
due to the fact that it gives a global frequency distribution in
the processing time window. Wavelet analysis, on the other
hand, can provide variable time-frequency resolution com-
pared to STFT method. However, there is a trade off between
the temporal and spatial scales depending on choice of the
wavelet basis function. In EMD, one does not require any
basis functions and the signals do not need to be stationary, as
is assumed in STFT and wavelet analysis methods. As a result
EMD has gained considerable popularity for the analysis of
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Figure 1: Flowchart: EEG-NIRS data preprocessing.

EEG data, which exhibit a high degree of nonlinearity and
oscillatory rhythms in subband frequencies [31, 32].

NIRS optical signal can be contaminated by motion arti-
facts and sources of physiological noise such as cardiac sig-
nals. Motion artifacts were rejected by applying Chauvenet’s
criterion [33]. A deviation ratio (DR) at each time point
was calculated by dividing the NIRS signal deviations by the
standard deviation of the signal deviations. Signal deviations
were calculated as the difference between the raw data and
its smoothed version obtained by applying a moving average
filter with a span of 30 points (1.2 s duration). Data with a
DR greater than the standard Chauvenet’s criterion threshold
were eliminated and the discontinuous data segments then
spliced together. The resulting NIRS signal was then used
to calculate changes in hemodynamics by solving equations
of the modified Beer-Lambert law (MBLL), which relates
the attenuation of light to relative changes in concentration
of oxy-hemoglobin (ΔHbO) and deoxy-hemoglobin (ΔHbR)
[34]. ΔHbO and ΔHbR were then detrended and low pass
filtered using a zero-phase 3rd order Butterworth filter with
a cutoff frequency of 0.5Hz to remove cardiac oscillations,
which contaminate NIRS signal [35].

Figure 1 shows a flowchart of the preprocessing stream for
the simultaneously acquired EEG-NIRS data during median
nerve stimulation. EEG and NIRS data were sampled at
2048Hz and 25Hz, respectively, using the prototype EEG-
NIRS head probe. Both EEG and NIRS data were treated
for artifact rejection and were matched temporally across
sampled data points. The EEG recordings were bandpass
filtered (5–14Hz) using a zero-phase 4th order Butterworth
filter in order to contain the mu rhythm band (8–13Hz).
Hilbert transform [36] was then applied on the first IMF
signal component (IMF1) to generate EEG spectral envelopes,
which was later downsampled to 25Hz. The EEG spectral
envelope corresponding to IMF1 was chosen because it is
modulated by frequency components in the mu band and
is temporally correlated to the NIRS hemodynamic response
due to the median nerve stimuli. The EEG spectral envelope
and NIRS hemodynamics also have similar timing and
bandwidth in the frequency domain.

2.2. Neurovascular-Coupling Model. In our model of neu-
rovascular coupling, we assume that gamma transfer func-
tions can map EEG spectral envelopes containing neu-
ral rhythms to NIRS ΔHbO reflecting the hemodynamic
response linked to the underlying neural activity. This map-
ping can be expressed by

𝑓 (𝑡) = 𝑎 (𝑔 (𝑡) ∗ ℎ (𝑡; 𝜏, 𝑛, 𝑑)) + 𝑏, (1)

where 𝑔(𝑡) is an EEG spectral envelope, which is convolved
with a candidate gamma transfer function ℎ(𝑡; 𝜏, 𝑛, 𝑑) to
predict the hemodynamic response 𝑓(𝑡). The variables 𝑎 and
𝑏 are the gain and offset, respectively. Gamma transfer func-
tions can be expressed in exponential form with parameters
𝜏, 𝑛, and 𝑑 [37]:

ℎ (𝑡; 𝜏, 𝑛, 𝑑) =
[(𝑡 − 𝑑) /𝜏]

𝑛−1

𝑒
−(𝑡−𝑑)/𝜏

𝜏 (𝑛 − 1)!
, (2)

where 𝜏 determines the rise time to peak amplitude, 𝑛 is an
integer which governs the shape of the function, and 𝑑 is
a pure delay. In our method, we recover the parameters 𝜏,
𝑛, and 𝑑 of the gamma transfer function that produces the
best fit between the observed and predicted NIRS hemody-
namics. Identification of the gamma transfer function and
its parameters are carried out in two steps. In the first step,
a brute force technique is applied to calculate values 𝑎 and
𝑏 in (1) by least squares inversion for each gamma transfer
function constructed from a set of predefined parameters 𝜏,
𝑛, and 𝑑. These predefined parameter values (𝜏 = 0.1–0.6 s, 𝑛
= 1–4, and 𝑑 = 0.5–3 s) were empirically chosen based on the
observation of NIRS ΔHbO response time to median nerve
stimulation. Usually the delay in ΔHbO response time can
vary between 2 and 3 s, while the time to peak can be fairly
quick 0.1–0.5 s [38]. From the solution space, we then identify
𝑎, 𝑏, 𝜏, 𝑛, and 𝑑, which minimize the residual sum squared
error (SSE). In the second step, the identified gamma function
parameters (𝜏, 𝑛, and 𝑑) including the gain 𝑎 and offset 𝑏 are
jointly optimized using a simplex search method [39]. This is
performed using Maltab’s “fminsearch” routine in which we
specify SSE as the objective function.

2.3. EstimatingGammaTransfer Functions for Simulated EEG-
NIRS Data. We simulated EEG data reflecting mu rhythm
desynchronization associated with neural responses in the
somatosensory cortex [40]. The artificially produced EEG
data was in the form of an amplitude modulated sinusoidal
signal having a carrier frequency of 9Hz. A rectangular pulse
train with eight pulses having a width and period of 20 s and
40 s, respectively, was used to modulate the sinusoidal signal.
This pulse train was first convolved with a Kaiser window
having a size of 250 data points. This smoothed the edges of
the pulse train and introduced a time shift of approximately
5 s in the pulse onset times. The sign of the time shifted pulse
train was then reversed to represent the spectral envelope
for mu rhythm desynchronization events that diminish in
power during the stimulus. This was then used to generate
the simulated EEG signal by standard amplitude modulation
operation given by

𝑦 (𝑡) = [1 + 𝑚 (𝑡)] ⋅ 𝑐 (𝑡) , (3)
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where 𝑚(𝑡) is the modulation wave, 𝑐(𝑡) is the carrier wave,
and 𝑦(𝑡) is the modulated signal. The EEG signal thus
contained eight 20 s mu rhythm desynchronization events
with a latency of 5 s at each onset time.

NIRS ΔHbO was generated from the forward model
of (1). Gamma transfer functions were evaluated for five
different combinations of 𝜏, 𝑛, and 𝑑 that ranged in values
from 0.3–0.6 s, 2–4, and 2-3 s, respectively. The gain 𝑎 and
offset 𝑏 were set to 1 and 0. Each of the 5 gamma transfer
functions was next convolved with the amplitude signal of
the first IMF (IMF1) obtained from decomposition of the
simulated EEG by the EMD technique. IMF1 basically had
a spectral peak around the carrier frequency of 9Hz and its
amplitude signal was calculated from the Hilbert transform
[36]. Both the lMF signal and NIRS ΔHbO were normalized
in their amplitudes by dividing by their respective standard
deviations. We then titrated both the EEG IMF1 signal and
NIRS ΔHbO with varying degrees of white Gaussian noise
(WGN) at each epoch. In case of ΔHbO, we also added a
sinusoidal signal component of 0.5Hz frequency modulating
the WGN. The resulting ΔHbO were representative of more
realistic NIRS measurements, which contain physiological
noise such as cardiac oscillations that are in the 0.4–2.0Hz
range [41].The amplitude ratio (AR) of theWGNwas selected
to be in the range from −∞ dB (no noise) to 16 dB.

After generating the 5 EEG-NIRS datasets, we estimated
the known gamma transfer functions that were used tomodel
the NIRS data and recover the corresponding parameters 𝜏,
𝑛, and 𝑑. We applied the brute force and the simplex search
method to calculate the gamma transfer function parameters
for each EEG-NIRS epoch data segments that spanned the
pulse start times to 15 s past their end times. The parameters
𝜏, 𝑛, and 𝑑 identified at each epoch data segments were then
used in the forward model of (1) to predict the simulated
ΔHbO. The Pearson’s correlation between the simulated and
predicted ΔHbO was then evaluated at each amplitude ratio
of the WGN.

2.4. Estimating Gamma Transfer Functions for Experimen-
tal EEG-NIRS Data. Gamma transfer functions that pro-
vide insight into the neurovascular coupling relationship
in humans were estimated from EEG-NIRS data measured
from three right handed male subjects (mean age of 31) in
an IRB approved study. The subjects participating in the
study had no history of neurological or psychiatric disorders
and were in general good health. The left and right median
nerves were stimulated using an electrical pulse generator
that operated at 10Hz. Pulses were transmitted during a 15-
second block interval followed by 30 second rest interval
during each experimental run that lasted a total of 6 minutes.
Five recording sessions were carried out, two for each of the
left and right median nerve stimulation runs and and one for
which the subject was at rest and no stimulation was applied.

IMF1 spectral envelopes were derived for each of the
30 EEG channels. We then selected sets of IMF1 spectral
envelopes corresponding to EEG channels located in the left
and right hemispheres based on how strongly they correlated
with the electrical pulse sequence. Similarly, NIRS ΔHbO

signals were selected within each hemisphere if they showed
changes in concentrations above 0.5 𝜇M. For each EEG IMF1
spectral envelope and NIRS ΔHbO paired dataset within
a hemisphere, we extracted epochs spanning the stimulus
interval of 15 s including 5 s of pre- and poststimulus period.
The epoch data were later smoothed with a moving average
window having a time span of 4 s and normalized by dividing
by their standard deviation. Each of the epoch datasets
consisting of normalized IMF1 spectral envelope and NIRS
ΔHbO finally served as the neurovascular-coupling model
input and output, respectively. Gamma transfer functions
were then estimated for each epoch data segment using the
two-step method described in Section 2.2.

We next investigated whether the estimated gamma
transfer functions could be clustered into groups which are
statistically significant in their predictions of theNIRSΔHbO
hemodynamics. By clustering the estimated gamma transfer
functions, we hope to reduce the effect of overfitting in our
neurovascular-coupling model. In addition, the clustering
method is intended to identify reliable gamma transfer func-
tions which link the EEG input to the NIRS hemodynamic
output at the individual level. For each of the estimated
gamma transfer functions, the parameters 𝜏, 𝑛, 𝑑, gain 𝑎, and
offset 𝑏 were used to form a 5-dimensional feature vector
or data point. Since the features were scaled differently, we
standardized the feature space so that they have zero mean
unit variance. Hierarchical clustering was then applied on
the feature space derived from all the standardized parameter
feature vectors comprised of 𝑎, 𝑏, 𝜏, 𝑛, and 𝑑. We chose this
clustering method due to its relative ease of implementation
and also because it is widely used as a clustering tool. In
hierarchical clustering, data is grouped by linking feature
vectors in a binary tree called a dendrogram [42]. There are
a number of linkage methods to merge the feature vectors
into clustered parameter sets.We usedWard’s linkagemethod
as it has been shown to have better clustering performance
[43]. In this method the within-cluster variance is minimized
over all partitions obtainable by merging two clusters from
the previous generation.

By specifying threshold values for cutting off the den-
drogram at specific depths, we clustered the feature vectors
into cluster divisions 𝐶

𝑁
, where 𝑁 = 2, 3, . . . , 12. For

each clustered parameter set, we calculated the Pearson’s
correlation coefficient 𝑟 between the predicted NIRS ΔHbO
obtained using the forward model (Equation (1)) and the
measuredΔHbO.The correlationswere Fisher𝑍 transformed
to give 𝑧 values that are approximately standard normal in
their distribution. The mean 𝑧 value, 𝑧, was then computed
for each of the clustered parameter sets. The 𝑧 value was
next tested for statistical significance by performing a two-
sided 𝑍-test under the null hypothesis 𝐻

0
that 𝑧 = 0, which

corresponds to a correlation coefficient of zero.This was done
by first computing the 𝑍 score, 𝑧∗, from the relationship:

𝑧
∗

= √𝑛𝑧, (4)

where 𝑛 is the number of feature vectors in the cluster. This
𝑧
∗ value was then compared against the standard 𝑍 score
𝑧
𝛼
at the 5% significance level (𝛼 = 0.05). It is important
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Figure 2: (a) Simulated EEG IMF1 envelope (blue) and pulse (green) and (b) Gamma transfer functions used to generate NIRS ΔHbO.

to note that the 𝑃 values generated via this two-sided 𝑍-
test are only approximate, are likely biased towards more
extreme values, and should not be interpreted as accurate
measures of statistical significance. This inaccuracy is due
to both the fact that the underlying EEG-NIRS data does
not follow independent observations from a bivariate normal
distribution under the null hypothesis, giving the Fisher-
transformed Pearson correlation coefficients a distribution
different from𝑁(0, 1), and the fact that𝑍-statistics computed
for each gamma transfer function parameter vector within
a given cluster are not independent, increasing the variance
of the mean of the 𝑍-statistics. Despite this inaccuracy, the
computed 𝑃 values can still be successfully used to help to
select the optimal split level for the dendrogram and to iden-
tify clusters of gamma transfer function parameter vectors
that closely model the empirical EEG-NIRS relationship and
merit more detailed analysis and interpretation.

Due to the fact that we are performing 𝑁 significance
tests on 𝑧 values in 𝐶

𝑁
cluster divisions, the 𝑧

𝛼
values were

adjusted for multiple hypothesis correction (MHC) using
the Bonferroni correction [44]. For each cluster division 2
to 12, we also recorded the number of significant clusters
by counting 𝑧∗ values that exceeded 𝑧

𝛼
. From this count

we assessed the optimal 𝐶
𝑁

that the data can be divided
into using hierarchical clustering. Our approach to MHC
was to control the family-wise error rate (FWER) using
the Bonferroni method for the family of hypothesis tests
associated with the two-sided 𝑧-tests performed for each
of the clusters generated by one split of the dendrogram.
Although MHC for this problem could have been used to
control the false discovery rate (FDR) rather than the FWER
or been applied to the larger family of hypothesis tests

associated with all dendrogram splits, we choose the current
approach to facilitate selection of the optimal dendrogram
split level.

3. Results and Discussion

3.1. Simulated EEG-NIRS Data. Figure 2(a) shows an epoch
of the simulated IMF1 spectral envelope (blue) and the pulse
duration (green). The 5 gamma transfer functions that were
used to simulate NIRS ΔHbO are shown in Figure 2(b).
The parameters of the gamma transfer function were chosen
heuristically based on the notion that they reflect physiolog-
ically relevant NIRS hemodynamic response with respect to
latency, shape, and peak time behavior.

Figures 3(a)–3(h) show simulated noise titrated ΔHbO
epoch data (red) obtained from convolution of the IMF1
spectral envelope in Figure 2(a) with a gamma transfer
function having parameters 𝜏 = 0.3 s, 𝑛 = 2, and 𝑑 = 2 s (see
gamma function in blue, Figure 2(b)). For each of the 8ΔHbO
epoch data, the estimated ΔHbO are shown overlaid in black.
Perfect fit is obtained when the noise AR is −∞ dB, which
is practically zero noise level. At higher levels of noise, the
estimated ΔHbO has poorer fits with the simulated ΔHbO.
However, the estimated ΔHbO in Figures 3(b)–3(d) seems
to follow the dynamics of the noise-free simulated ΔHbO in
Figure 3(a). At noise AR of 9 dB and higher, the estimated
ΔHbOno longer exhibit the dynamics of noise-free simulated
ΔHbO. Similar trends are observed for ΔHbO epoch data
simulated using the other gamma transfer functions.

Figure 4 shows the Pearson’s correlation 𝑟 values between
the estimated ΔHbO and the simulated ΔHbO numbered
1 through 5 against noise AR in WGN. For the noise-free
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Figure 3: ((a)–(h)) Simulated NIRS ΔHbO (red) at different noise amplitude ratios (AR) forWGN; estimated NIRS ΔHbO (black). Note that
vertical scale of top row is different from bottom row.
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(AR =−∞ dB) simulatedΔHbOnumbered 1–5, 𝑟 = 1, indicat-
ing that the estimated and simulated ΔHbO are in agreement
with each other with a goodness of fit statistic 𝑅2 = 1.

There is a sharp drop in 𝑟 value from 1 to 0.6 as AR increase
from −∞ dB to 2.2 dB. At higher noise amplitude ratio from
2.2 dB to 11.5 dB, 𝑟 values drop almost linearly with a gentler
slope. BetweenAR values of 12 dB to 16 dB, the 𝑟 values can be
seen to level off. From this analysis we can note that reliable
estimates of NIRS ΔHbO, which is strongly correlated with
the simulatedΔHbO(𝑟 > 0.5) can be obtainedwhen the noise
AR is below 4 dB.

Figure 5 shows parameters recovered at different AR
values for the 5 sets of NIRS ΔHbO generated from the
known gamma transfer functions. We can note that, for
AR = −∞ dB, the parameters recovered from the gamma
transfer functions fits are identical to the original ones used to
simulate ΔHbO (see Figure 2(b)). However, all the recovered
gamma transfer function parameters vary from the original
ones for subsequent fits in which the AR values of the WGN
increase from 2.2 dB to 16 dB. However, a number of the
estimated gamma transfer function parameters remain stable
in their value up to certain noise AR ratio. For example,
the recovered parameters 𝜏, 𝑛, and 𝑑 for noise AR of 2.2 dB
to 6.86 dB agree closely with the known gamma transfer
function parameters with 𝜏 = 0.58, 𝑛 = 4, and 𝑑 = 2.6

(green dotted line). A similar observation can be made for
the gamma transfer function with parameters 𝜏 = 0.3, 𝑛 = 3,
and 𝑑 = 3 (orange dotted line) for which the parameter
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Figure 5: Recovered parameters of the fitted gamma transfer functions for the 5 simulated EEG-NIRS datasets at different noise amplitude
ratios: (a) 𝜏 (peak time), (b) 𝑛 (shape), and (c) 𝑑 (pure delay).

estimates of 𝜏, 𝑛, and 𝑑 agree closely with the known values
as the noise AR increases from −∞ dB to 4.57 dB. It is also
interesting to note that, in Figure 5(b), the shape parameter
for 4 of the 5 gamma transfer functions seems to level off at
around 𝑛 = 4 for noise AR greater than 6.86 dB. Despite the
differences between the recovered and known values of the
gamma transfer function parameter at increasing noise AR,
our neurovascular-coupling model is still able to predict the
dynamics of the simulated NIRS ΔHbO containing moderate
levels of WGN (see Figure 3).

3.2. Experimental EEG-NIRS Data. Figures 6(a)–6(d) show
sample results from fitting experimental EEG-NIRS data
from Subject 1. In each plot, the estimated NIRS ΔHbO
(purple) is overlaid on the calculated ΔHbO (red). The EEG
IMF1 spectral envelope is shown in blue and the pulse
duration (15 s) in green.TheEEG-NIRSdata displayed in each
plot have been normalized by their standard deviations. We
can note that, after the onset of the stimulus at 0 s, the EEG
IMF1 envelope decreases in amplitude while the NIRS ΔHbO
show a steady increase.

Figures 7(a)–7(k) shows cluster 𝑧∗ values computed for
cluster division 𝐶

𝑁
ranging from 2 to 12 in subject 1’s left

hemisphere during right median nerve stimulation.The total
number of feature vectors used in hierarchical clustering
for this subject and experimental condition was 216. The
statistical threshold 𝑧

𝛼
for the two sided 𝑍-test, which was

adjusted for multiple comparison by Bonferroni correction,
is indicated by the red line in each plot. The number of
significant clusters𝐶

𝑆
with 𝑧∗ exceeding 𝑧

𝛼
decreases with an

increasing number of cluster divisions. For cluster divisions 11
and 12, there are no significant cluster 𝑧∗ values.

Figure 8 shows the relationship between 𝐶
𝑆
and 𝐶

𝑁
,

which were obtained from the plots shown in Figure 7. Since

cluster divisions 2 to 5 have the highest number of significant
clusters (𝐶

𝑆
= 2), we take the optimal𝐶

𝑁
to be 5.This is based

on the assumption that a higher number of clustered gamma
transfer function parameters sets have greater flexibility for
modeling the EEG-NIRS relationship compared to fewer
clustered parameter sets.

Figure 9(a) shows the dendrogram obtained at optimal
cluster division 𝐶

𝑁
= 5 in subject 1 (Figure 8). The

representative gamma transfer functions for the clustered
parameters sets in the dendrogram are shown in Figure 9(b).
Each of these functions was generated by taking the mean of
the gamma transfer function parameters values correspond-
ing to individual cluster groups. Their amplitudes were then
scaled by dividing by the respective area under the curve.The
blue and the green gamma transfer functions correspond to
the cluster 𝑧∗ values that were statistically significant; that
is, 𝑧∗ > 𝑧

𝛼
. The gamma transfer function in blue has a

delay of about 2 s and peak time that is less than 0.5 s. In
contrast, the gamma transfer function in green has a larger
delay of approximately 3 s and a longer peak time of about
1 s.

Figure 10 shows subject 2 s statistically significant clusters
𝐶
𝑆
for each cluster division 𝐶

𝑁
. Hierarchical clustering was

performed on feature vectors obtained by fitting EEG IMF1
envelopes to NIRS Δ𝐻𝑏𝑂 sequences in the left hemisphere
during right median nerve stimulation.There were 96 feature
vectors for this subject and experimental condition. Based on
the graph of 𝐶

𝑁
versus 𝐶

𝑆
in Figure 10, the optimal cluster

division is 𝐶
𝑁
= 3 and the number of significant clusters is

𝐶
𝑆
= 1.
Figure 11(a) shows subject 2 s dendrogram for optimal

cluster division 𝐶
𝑁
= 3 identified in Figure 10. The represen-

tative gamma transfer functions corresponding to the three
visible clusters in the dendrogram are shown in Figure 11(b).
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Figure 6: (a)–(d) show results from fitting gamma transfer functions to 4 EEG-NIRS datasets or epochs, each of which corresponds to a pulse
period including 5 s of pre- and poststimulus interval.The EEG IMF1 envelope (blue), low pass filtered NIRSΔHbO (red), the estimated NIRS
ΔHbO (purple), and the pulse duration (green) are shown in each plot.

Table 1: Summary of the number of significant clusters 𝐶
𝑆
(𝑃 < 0.05) found for optimal cluster division.The number in parenthesis indicates

the number of significant clusters as proportion.

Subject Optimal 𝐶
𝑁
, left stim. 𝐶

𝑆
, left stim. Optimal 𝐶

𝑁
, right stim. 𝐶

𝑆
, right stim.

1 7 4 (0.57) 5 2 (0.4)
2 2 2 (1) 3 1 (0.33)
3 5 3 (0.6) 3 2 (0.67)

The gamma transfer function in red was identified as statis-
tically significant. It has a delay of approximately 2.5 s and a
peak time of about 1.5 s.

Table 1 shows the number of significant clusters 𝐶
𝑆

identified for an optimal cluster division 𝐶
𝑁
. The values

shown correspond to the results from clustering recovered
parameters of the gamma transfer function fit applied to
EEG-NIRS data measured contralateral to the side of the
median nerve stimulation.

4. Conclusion

Our mathematical model of neurovascular coupling is able
to show the relationship between NIRS ΔHbO and EEG
spectral envelopes based on gamma transfer function fits
with clustered parameter sets. In case of simulated EEG-NIRS
data, the correlations between the predicted ΔHbO and the
simulated ΔHbO are approximately 1 for zero WGN. The
recovered gamma transfer function parameters (see Figure 5)
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Figure 7: (a)–(k) Plot of cluster 𝑧∗ values (colored dots) against number of feature vectors (𝑥-axis) for each cluster division 𝐶
𝑁
for subject 1.

The statistical threshold for the two sided 𝑍-test at the 5% significance level is indicated by the horizontal red line.
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Figure 8: Number of cluster divisions (𝐶
𝑁
) versus number of

significant clusters (𝐶
𝑆
) for subject 1.

are identical to the original ones in the absence of WGN
(AR = −∞ dB). At higher noise amplitude ratios in WGN,
the correlations drop almost linearly for all 5 NIRS datasets
and we can still recover parameters of the gamma transfer
function fits.

From the analysis of experimental EEG-NIRS data, we
observed that multiple gamma transfer functions can sig-
nificantly predict NIRS ΔHbO hemodynamic response from
EEG spectral envelopes representing mu rhythm desynchro-
nization events. By clustering the recovered parameters of the
gamma functions including the estimated gains and offsets,
we found statistically significant gamma transfer functions
that can predict NIRS ΔHbO from EEG spectral envelopes.
Those representative gamma transfer functions are character-
ized by different onset times and peak latencies in individual
subjects (see Figures 9 and 11). These differences could be
attributed to variability in the neural and hemodynamic
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) for subject 2.

response across brain regions including individual trials as
suggested by previous studies [17, 19, 45].

This newmethod of analyzing the neurovascular coupling
relationship has several potential advantages. It offers greater
flexibility in modeling the relationship between EEG and
NIRS data based on gamma transfer functions that can vary
in their parameters. Using fixed transfer functions can intro-
duce bias in modeling the cerebrovascular response and lead
to inaccurate assessment of the onset times and latencies in
neural activation [46, 47]. Also in fitting the gamma transfer
functions, there are only five parameters to estimate. Hence,
there is less potential for error in estimating them compared
to models with a large number of parameters. Finally, we
are using a data driven approach requiring minimal assump-
tions about the underlying biophysical process associated

with neurovascular coupling. This makes the neurovascular
coupling modeling problem more tractable and applicable in
neuroimaging studies.

However, there may be some limitations in our approach
to modeling the neurovascular coupling relationship. There
is the potential for overfitting the data by allowing each
gamma transfer function to have distinct parameters. We
expect to overcome this problem by using the representative
gamma transfer function derived from taking the average of
the statistically significant parameter sets recovered from the
model fitting of EEG-NIRS data measured from individual
subjects. Due to the small number of human subjects, it is
not possible to generalize about the nature of neurovascular
coupling from the estimated parameters. However, the sta-
tistical testing was performed on an individual subject basis
with a large number of feature vectors for each subject. This
data was sufficient to allow us to develop this methodology.
Nevertheless, acquiring EEG-NIRS data from a larger pool
of subjects is necessary to validate neurovascular-coupling
parameters that can be computed with this method.

Our method could be eventually extended to study the
neurovascular coupling relationship in patients with neu-
rodegenerative disorders. Several studies have reported that
neurovascular coupling can be disrupted by brain disorders
like Alzheimer’s disease (AD), stroke, and epilepsy [48].
Certain brain disorders may cause changes in the chemi-
cal mediators of neurovascular coupling, which could lead
to abnormal patterns of vasodilation and prevent removal
of harmful byproducts of molecular metabolism. Ischemic
stroke in the brain for instance can limit adequate flow of oxy-
genated blood to active neurons leading to vasoparalysis and
impairing brain function [49].We hope that we can apply our
analysis method to detect abnormal neurovascular coupling
in clinical neuroimaging studies using multimodal EEG-
NIRS systems. Based on the data collected from patients,
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Figure 11: (a) Dendrogram for optimal 𝐶
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it will be possible to identify clustered gamma function
parameters that could be significantly different from normal
healthy populations.
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