

www.bioinformation.net **Volume 16(6)**

Research Article

Molecular docking analysis of docetaxel analogues as duel lipocalin 2 inhibitors

Rajagopal Ponnulakshmi¹, Umapathy Vidhya Rekha², Ramakrishnan Padmini³, Srinivasan Perumal³, Radhakrishnan Saravanan⁴, Veeraraghavan Vishnupriya⁵, Periyasamy Vijayalakshmi⁶, Jayaraman Selvaraj^{5*}

¹Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 078, India; ²Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India; ³Department of Biochemistry, School of life science, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-117, India; ⁴Department of Biochemistry, Karpaga Vinayaga Institute of Dental Sciences, Madhuranthagam, Chengalpattu District, Tamil Nadu, India; ⁵Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India; ⁶PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Trichy-620002, Tamil Nadu, India; Dr. Jayaraman Selvaraj - E-mail: jselvaendo@gmail.com; *Corresponding author

Contacts: Rajagopal Ponnulakshmi: ramgslaks@gmail.com; Umapathy Vidhya Rekha: drvidhyarekha@gmail.com; Ramakrishnan Padmini: velsuniv.ac.in; Srinivasan Perumal: perurex.mks@gmail.com; Radhakrishnan Saravanan: saravanabio@gmail.com; Veeraraghavan Vishnupriya: drvishnupriyav@gmail.com; Periyasamy Vijayalakshmi: pvijibi@gmail.com; Jayaraman Selvaraj: jselvaendo@gmail.com

Received February 22, 2020; Revised April 24, 2020; Accepted May 7, 2020; Published June 30, 2020

Declaration on official E-mail:

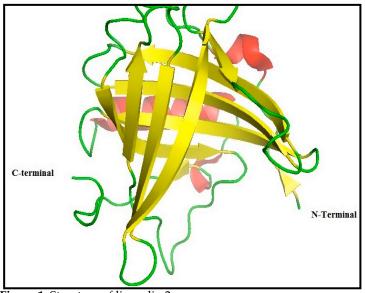
The corresponding author declares that official e-mail from their institution is not available for all authors

Declaration on Publication Ethics:

The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Abstract:

Lipocalin 2 (Lcn2, also called as neutrophil gelatinase-associated lipocalin) is a member of the lipocalin family and a known target for breast cancer. Therefore, it is of interest to use Docetaxel as a scaffold to design molecules with improved efficiency from naturally derived phytochemicals. We document 10 analogues (4Deacetyltaxol, 7Acetyltaxol, Cabazitaxel, Cephalomannine, Docetaxal, Deacetyltaxol, Docetaxeltrihydrate, Ortataxel, Paclitaxel, Taxoline) having optimal binding with Lipocalin 2 in comparison with Docetaxel. This data is highly useful for consideration in the design and development of drugs for breast cancer.


Keywords: Lipocalin 2, docetaxel, analogues, molecular docking

DOI: 10.6026/97320630016438

Background:

Breast cancer is an issue of medical importance worldwide **[1-3]**. Treatments such as radiation therapy, chemotherapy, surgery, immunotherapy, and hormone therapy are available with debatable efficiency. Known drugs in this context is under constant debate for efficiency and drug resistance **[4, 5]**. The use of an FDA approved drug docetaxel as a therapeutic agent in cancer patients are known **[6-10]**. Lipocalin 2 (Lcn2, neutrophil gelatinase-associated lipocalin (**Figure 1**) is a member of the lipocalin family and a known target for breast cancer **[11-18]**. Therefore, it is of interest to use Docetaxel as a scaffold to design molecules with improved efficiency from naturally derived phytochemicals.

Figure 1: Structure of lipocalin 2

Methods:

Protein preparation:

The X-ray crystallographic structure of the lipocalin 2 with 2.6Å resolution was retrieved from Protein Data Bank (PDB) with PDB ID: 1DFV was used in this study using standard procedure **[19]**.

Ligand preparation:

Structure of Docetaxel and its 10 analogues were downloaded from the PUBCHEM database in SDF format and converted to PDF file format with the help of the Online Smile Translator.

Molecular docking analysis:

Molecular docking analysis was completed using PATCHDOCK following standard protocols **[20, 21]**. The docked structure was examined using Ligplot **[22]**.

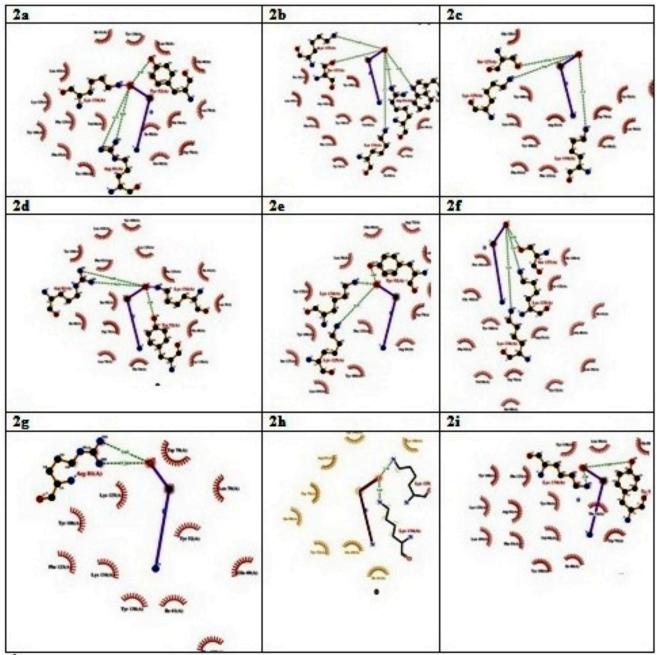

Results and Discussion:

Table 1 shows the Molecular docking analysis of Docetaxel analogues as duel Lipocalin 2 inhibitors. We document 10 analogues (4Deacetyltaxol, 7Acetyltaxol, Cabazitaxel, Cephalomannine, Docetaxal, Deacetyltaxol, Docetaxeltrihydrate, Ortataxel, Paclitaxel, Taxoline) with desirable binding with the Lipocalin 2 in comparison with Docetaxel (Table 1). Results of the analogue deacetyltaxol have the good binding energy (-132-89 kcal/mol). Figure 2 shows ligand-protein interaction drawn using LigPlot. The interacting residues with optimal hydrogen bonding patterns are shown. An increased amount of hydrophobic atoms in the active center of drug-target boundary enlarged the biological action of the lead [23].

Conclusion:

We document 10 analogues (4-deacetyltaxol, 7-acetyltaxol, cabazitaxel, cephalomannine, docetaxal, deacetyltaxol, docetaxeltrihydrate, ortataxel, paclitaxel and taxoline) with desirable binding features with the Lipocalin 2 in comparison with Docetaxel for further *in vivo* and *in vitro* validation.

Figure 2: Ligplot analysis of docked complex showing interaction of lipocalin 2 with (a) 4Deacetyltaxol; (b) 7Acetyltaxol; (c) cabazitaxel; (d) Cephalomannine; (e) Docetaxal; (f) Deacetyltaxol; (g) Docetaxeltrihydrate; (h) ortataxel; (i) paclitaxel; (j) taxoline

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 16(6): 438-443 (2020)

Table 1: Molecular docking analysis of docetaxel analogues as duel lipocalin 2 inhibitors

S. No	Compound name	Score	ACE	Atomic interaction	Ligand atom	Distance	No of non bonded interaction
1	Docetaxel	5804	-54.82	LYS 125	NZ-O	1.53	57
				LYS 134		3.02	
		Analog	ues of Doc				
1	4Deacetyltaxol	6474	-147.98	TYR 52	OH-O	2.87	117
				ARG 81	NH-0	1.49	
				LYS 134	NZ-O	3.32	
2	7Acetyltaxol	6252	-103.92	TRP 79	NE-O	2.30	114
				ARG 81	NH2-O	3.29	
				LYS 125	NZ-O	2.83	
				SER 127	OG-O	1.39	
				LYS 134	NZ-O	3.14	
3	Cabazitaxel	5952	-50.11	LYS 125	NZ-O	2.24	69
				SER 127	OG-O	2.44	
				LYS 134	NZ-O	3.29	
				LYS 134	NZ-O	3.03	
4	Cephalomannine	6794	-113.10	TYR 52	OH-O	2.62	110
	•			ARG 81	NH1-O	1.43	
				ARG 81	NH2-O	2.17	
				LYS 134	NZ-O	1.84	
5	Docetaxal	6404	-111.73	TYR 52	OH-O	3.00	108
				TYR 52	OH-O	2.81	
				LYS 125	NZ-O	3.28	
				LYS 134	NZ-O	2.63	
6	Deacetyltaxol	5694	-132.89	LYS 125	NZ-O	3.04	87
	5			SER 127	OG-O	2.68	
				LYS 134	NZ-O	2.05	
7	Docetaxeltrihydrate	6022	-63.23	ARG 81	NH1-O	2.39	84
	5			ARG 81	NH2-O	1.34	
8	Ortataxel	6204	-55.51	LYS 125	NZ-O	2.26	74
				LYS 134	NZ-O	3.05	
9	Paclitaxel	6438	-121.39	TYR 52	OH-O	2.40	148
				LYS 134	NZ-O	2.43	
10	Taxoline	6824	-74.36	TYR 52	OH-O	2.37	83
				ARG 81	NH1-O	2.78	
				ARG 81	NH2-O	2.94	
				LYS 125	NZ-O	2.87	
				LYS 134	NZ-O	2.65	

References:

- [1] Thun MJ et al. Carcinogenesis 2020 **31:**100. [PMID: 19934210]
- [2] Rampogu SDV et al. J Diabetes Metab Disord 2015 14:11. [PMID: 25806358]
- [3] Vardhini SR J Recept Signal Transduct Res 2013 34:174. [PMID: 24329533]
- [4] Clark R et al. Anticancer Res 2016 36: 837. [PMID: 26976969]
- [5] Brady SW et al. Nat Commun 2018 9:572. [PMID: 29402882]
- Jones SE et al. J Clin Oncol. 2005 23:5542. [PMID: 16110015] [6]
- [7] Bonneterre J et al. Br J Cancer 2002 87: 1210. [PMID: 12439707]
- Nabholtz JM et al. J Clin Oncol 1999 17: 1413. [PMID: [8] 10334526]
- [9] Sjostrom J et al. Eur J Cancer 1999 35: 1194. [PMID: 10615229]
- Chan S et al. J Clin Oncol 1999 17:2341. [PMID: 10561296] [10]

- [11] Mosche AR et al. Trends Endocrinol Metab 2017 28:388. [PMID: 28214071]
- [12] Sunil VR et al. Exp Mol Pathol.2007 83: 177. [PMID: 17490638]
- [13] Singer E et al. Acta Physiol. 2013 207:663. [PMID: 23375078]
- [14] Jung M et al. Pharmacol Res. 2017 120: 146. [PMID: 28342790]
- [15] Viau A et al. J Clin Invest.2010 120:4065. [PMID: 20921623]
- Asimakopoulou A et al. Front Physiol. 2016 7:430. [PMID: [16] 27729871]
- [17] Shi H et al. J Exp Clin Cancer Res. 2008 27:83. [PMID: 19077278
- Leng X et al. J Cell Physiol 2011 226:309. [PMID: 20857428] [18]
- Goetz DH et al. Biochemistry.2000 39:1935. [PMID: 10684642] [19]
- [20] Schneidman-Duhovny D et al. Proteins.2003 52:107. [PMID: 12784375]

ISSN 0973-2063 (online) 0973-8894 (print)

Bioinformation 16(6): 438-443 (2020)

[21] Schneidman-Duhovny D *et al.* Nucleic Acids Res. 2005 33:W363. [PMID: 15980490] [22] Wallace AC *et al. Protein Eng* 1995 8:127. [PMID: 7630882]
[23] Qian SB *et al. J Biol Chem* 2009 284:26797. [PMID: 19648119]

Edited by P Kangueane

Citation: Ponnulakshmi *et al.* Bioinformation 16(6): 438-443 (2020) **License statement**: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

