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ABSTRACT

In the study of DNA methylation, genetic variation
between species, strains or individuals can result
in CpG sites that are exclusive to a subset of sam-
ples, and insertions and deletions can rearrange the
spatial distribution of CpGs. How to account for this
variation in an analysis of the interplay between se-
quence variation and DNA methylation is not well un-
derstood, especially when the number of CpG differ-
ences between samples is large. Here, we use whole-
genome bisulfite sequencing data on two highly di-
vergent mouse strains to study this problem. We
show that alignment to personal genomes is nec-
essary for valid methylation quantification. We intro-
duce a method for including strain-specific CpGs in
differential analysis, and show that this increases
power. We apply our method to a human normal-
cancer dataset, and show this improves accuracy
and power, illustrating the broad applicability of our
approach. Our method uses smoothing to impute
methylation levels at strain-specific sites, thereby
allowing strain-specific CpGs to contribute to the
analysis, while accounting for differences in the spa-
tial occurrences of CpGs. Our results have implica-
tions for joint analysis of genetic variation and DNA
methylation using bisulfite-converted DNA, and un-
locks the use of personal genomes for addressing
this question.

INTRODUCTION

DNA methylation is a key epigenetic mark that has be-
come widely implicated in human development and disease
(1,2). Accurate determination of methylation at CpG dinu-
cleotide positions across the genome is critical for under-
standing its association with functional regulation. Mul-
tiple techniques currently exist to perform this measure-
ment, each with varying degrees of genomic coverage and
depth. One gold-standard method is whole-genome bisul-
fite sequencing (WGBS), which pairs bisulfite conversion of
cytosine residues with next-generation sequencing (3). To
quantify methylation in WGBS, bisulfite converted reads
are compared to an in silico bisulfite-converted genome se-
quence, referred to as the reference genome (3–5). At each
CpG site in the reference genome, an aligned read is called
as unmethylated if the sequence is TG (indicating bisulfite
conversion) and methylated if the sequence is CG (indicat-
ing protection by the methyl group). Statistical packages
such as BSmooth (4) can then integrate this data across
larger regions to estimate and compare overall methylation
patterns between sample groups.

It is well understood that a CG-to-TG mutation is the
most common dinucleotide mutation in the mammalian
genome, due to the high rate of spontaneous deamination
at methylated CpGs (6–8). This effect becomes particularly
pronounced in animal models such as mice: inbred strains
can be separated by up to millions of nucleotide variants
and indels, a large proportion of which affect CpG dinu-
cleotides. This presents a substantial pitfall when analyz-
ing bisulfite converted DNA: if the sample genome has a
CG-to-TG (or CG-to-CA) variant relative to the reference
genome sequence, reads aligning to the variant using stan-
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dard alignment approaches will produce unmethylated calls
without inducing any alignment mismatches (9). This will
result in an excess of 0% methylated ‘sites’ at locations where
there is actually no CpG sequence.

The problematic effect of C/T variants on methylation
quantification is widely recognized, and various methods
exist to compensate. While it is possible to identify vari-
ants in bisulfite converted data by considering reads aligned
to the opposite strand (9,10), it is self-evident that the best
solution is to simply align each sample to its own genome
sequence, assuming such sequence is available. Variants of
this strategy are indeed commonly used in analysis, i.e. with
alignment to approximate personal genomes; this has been
done both in plants (11–13) and mammals (14,15). How-
ever, while both the problem and the optimal solution are
recognized, the magnitude of bias is not well understood or
described. Filling this gap in understanding is especially im-
portant for experiments involving a large number of distant
or mixed genotypes. In these experiments, knowing whether
CpG variation presents a substantial enough bias to ne-
cessitate generating tens to hundreds of personal genomes,
which can demand substantial computational resources, is
of high importance.

But the effect of C/T variants goes beyond alignment.
Specifically, if each sample is aligned to a separate genome,
a critical issue arises on how comparisons should be made
across different genomes, whose coordinates will be sep-
arated by insertions and deletions, as well as how strain-
or sample-specific CpGs (that is, CpGs only existent in a
subset of individuals) should be handled in analysis. Com-
mon methodologies treat sample-specific CpGs as incom-
parable and either drop CpGs not covered in all samples,
or drop samples for which a CpG does not exist. However,
in the face of mounting evidence that sites of hypervariable
CpG mutation are strongly related to species-specific dis-
ease and phenotype (16), failing to account for the impli-
cations of CpG loss on DNA methylation may instead rep-
resent a substantial loss of information. As a recent exam-
ple, a study in humans (14) produced approximate sample-
specific genomes by substituting single nucleotide variants
into a common reference genome, then analyzed methyla-
tion differences at individual CpGs; for each of these CpGs,
samples in which the CpG was lost were discarded from
analysis. In an analysis that drops sample-specific CpGs,
however, a genomic location where half the samples had a
CpG with high methylation, while the other half had lost
the CpG, would not be identified as a position of variable
methylation, a questionable conclusion.

Here, we address two basic questions. First, how essential
is it to use personalized genomes, since acquiring such data
comes at a cost? Second, how should different coordinate
systems across reference genomes be reconciled, and how
can strain- or sample-specific CpGs be factored into com-
parisons? We examine sequence variation and methylation
data from two inbred but highly divergent mouse strains:
C57BL/6J, upon which the mouse reference genome is
based, and the wild-derived CAST/EiJ. We describe pat-
terns in strain-specific CpG variation, and quantify the sub-
stantial effect of ignoring this variation when performing
alignment and methylation quantification. Next, we pro-
pose a smoothing-based method that allows strain-unique

CpGs to contribute to identification of differentially methy-
lated regions (DMRs), and show that doing so increases
power. At last, we apply our method to a human disease
context using publicly available cancer data.

MATERIALS AND METHODS

Short-read alignment

Alignment and CpG read-level measurement were per-
formed using Bismark version 0.16.1 (5) and Bowtie2 ver-
sion 2.1.0 (17). Reference genomes for BL6 and CAST
were generated from their corresponding FASTA files
(build 37), obtained from UNC Systems Genetics. Sequenc-
ing reads were first trimmed using Trim Galore! version
0.3.7 using default options, then aligned with Bismark us-
ing options --bowtie2 --bam. BAM output files were
merged and sorted in preparation for methylation extrac-
tion using Samtools version 1.3 (18). Read-level measure-
ments were obtained using the Bismark methylation ex-
tractor, with options -p --ignore 5 --ignore r2 5
--ignore 3prime 1 --ignore 3prime r2 1. Read
measurements were modmapped if applicable (see section
below), then converted to BSseq objects in R version 3.3.0
using the bsseq package (4). When creating BSseq objects,
forward- and reverse-strand reads were combined for each
CpG. Deduplication rates were measured using Bismark
deduplicate bismark. Bisulfite conversion efficiency was
calculated for each sample by subtracting the mean methy-
lation across the spike-in lambda sequence from 100%.

As alternatives to Bismark, we also performed align-
ments with bwa-meth version 0.2.2, which uses BWA ver-
sion 0.7.12 (19) as its aligner, and BSMAP version 2.90 (20),
using the same reference FASTA files and trimmed sequenc-
ing reads. Read-level measurements were quantified using
MethylDackel version 0.3.0-3-g084d926, which is an equiv-
alent to Bismark’s methylation extractor for the BWA and
BSMAP pipelines.

Coordinate mapping between strains

To facilitate direct comparison of CpGs between strains,
we converted genomic coordinates using the ‘modmap’
package from UNC Systems Genetics (21). This package
functions similarly to the liftOver tool (22) on the UCSC
Genome Browser, and was used to convert CpG locations
in the CAST genome to their corresponding coordinates in
the BL6 genome, and vice versa. CpGs containing negative
positions on either strand in the modmap output (indicat-
ing the location resided within an insertion or deletion in
the other strain) were discarded.

Focal methylation analysis

We used the BSmooth pipeline as implemented in the bsseq
package from Bioconductor (4), as employed previously
(23,24). For small DMR analysis, the data was smoothed
using BSmooth with default parameters (ns = 70, h = 1000,
maxGap = 108). For large-scale block analysis, data were
smoothed with parameters (ns = 500, h = 20 000, maxGap
= 108). Following smoothing, we used t-statistics (cutoff =
4.6, maxGap = 300) to obtain putative DMRs and (cutoff
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= 2, maxGap = 10 000) to obtain putative blocks, only an-
alyzing CpGs where at least three samples in each group
had a coverage of at least 2. Significance was assessed using
a stringent permutation approach as described previously
(24). Specifically, we used permutations which balanced the
two strains (i.e. each permutation has two BL6 and 2 CAST
samples in each group); there are 18 such permutations.
For each DMR we calculated how many permutations con-
tained a better null DMR; dividing by the total number of
permutations gives us the quantity we call gFWER. To be
precise we say one DMR is ‘better’ than another if it has a
greater number of CpGs as well as a greater total sum of t-
statistics across all CpGs in the DMR. By comparing each
putative DMR to all null DMRs in all permutations we con-
trol for multiple testing and familywise error rate. The inter-
pretation of a gWER of 1/18 for a given DMR is that in 1
out of 18 permutations do we see a better null DMR any-
where in the genome.

Analysis of human cancer-normal methylation

Sequencing reads for human brain and U87MG cell line
samples were obtained from GEO accession GSE52272
(25). Variant information on the U87MG cell line was ob-
tained from GEO accession GSE19986 (26). As indicated
by a 2018 correction, this variant data applies to a distinct
U87 cell line obtained from ATCC; this was the same cell
line used by the methylation study.

Using the U87MG variant data and the hg19 genome
FASTA, we generated a pseudogenome for U87MG via
the modmap tool suite. Sequencing reads were trimmed
and aligned as described in short-read alignment; the nor-
mal sample was aligned to hg19, and the U87MG sample
was aligned separately to hg19 and to the U87MG pseu-
dogenome. Samples were placed into the hg19 coordinate
system via modmap, heterozygous CpG sites removed and
smoothed over all remaining CpGs, including remaining
genotype-specific CpGs, with parameters (ns = 70, h =
1000, maxGap = 108).

RESULTS

WGBS data on mouse strains

As an extreme example of massive CpG variation between
genomes, we examined sequence and methylation data from
two inbred mouse strains. C57BL/6J (BL6) is the stan-
dard laboratory strain and the basis of the mm9 reference
genome, whereas CAST/EiJ (CAST) is wild-derived and
highly divergent, as evidenced by a large number of single
nucleotide variants (20 539 633) and indels (8 171 218) in its
reference sequence (Supplementary Methods). Methylation
data were generated via WGBS on liver samples from each
strain (n = 4 per strain); the initial purpose of this experi-
ment was to identify DMRs between strains. We generated
sequencing data at relatively low coverage and high bisulfite
conversion, and aligned all samples to both genomes using
Bismark (‘Materials and Methods’ section, Supplementary
Methods, Tables 1 and 2).

Table 1. Number of reads and alignment statistics

Sample nReads aRatea CpGc aRatea CpGb

BL6 1 165 455 305 55.7 5.8 49.2 4.7
BL6 2 155 446 345 55.1 5.5 48.6 4.5
BL6 3 165 687 191 60.3 6.8 52.9 5.5
BL6 4 172 926 402 58.9 6.7 52.0 5.5
CAST 1 171 357 014 62.8 6.3 71.0 6.4
CAST 2 161 768 892 55.8 6.1 63.1 6.3
CAST 3 154 973 730 56.0 5.5 63.4 5.7
CAST 4 188 134 260 48.1 6.0 54.5 6.2

aalignment rate, bcoverage of CpGs.

Table 2. Sequencing quality measures

Sample Conv %a Dup %b (BL6) Dup %b (CAST)

BL6 1 99.7 9.41 9.10
BL6 2 99.7 7.44 7.16
BL6 3 99.7 15.26 14.49
BL6 4 99.8 9,80 9.40
CAST 1 99.7 5.26 5.44
CAST 2 99.7 9.17 9.61
CAST 3 99.7 7.82 8.11
CAST 4 99.7 7.82 8.09

aconversion efficiency using lambda spike-in, bduplication rate of aligned
reads.

CpG variation across the mouse genome

We first examined differences between the DNA sequences
of BL6 and CAST in order to quantify and characterize
CpG variation. To facilitate accurate sequence comparisons
between these two genomes, which do not share coordinate
systems, we used the modmap tool (21). This tool functions
similarly to UCSC’s liftOver (22) to convert a set of ge-
nomic locations to their corresponding coordinates in an-
other strain. Using this tool, we can determine whether a
CpG in one strain retains its sequence in the other strain,
contains a mutation or cannot be accurately mapped, which
occurs when an indel over a CpG results in an ambiguous
position after modmap conversion (Figure 1A).

Using modmap and the FASTA files for mm9 (BL6) and
CAST, we extracted and tabulated the forward-strand din-
ucleotide sequences corresponding to the 21.3 million CG
dinucleotides in BL6 (Table 3). Approximately 19 million
CGs from BL6 are shared by CAST; 1.64 million are mu-
tated to either TG or CA, with another 0.54 million mutated
to GG/CC and AG/CT. Another 100k CpGs could not be
accurately mapped from BL6 to CAST due to strain indels
over the sequence. We observed similar results when we per-
formed the reverse analysis: of 21.4 million CGs in CAST,
about 2.3 million are unique to CAST, with a differing or
unmappable sequence in BL6 (Table 3).

Based on our observations, we calculated the ratio of
strain-unique to total CpGs, or CpG ‘mutation rate’, at
roughly 2.3M/21.3M=10.7%, compared to the overall ge-
nomic mutation rate of 1.2% (Methods). This high rate of
CpG mutation is consistent with the tendency of methylated
C positions to undergo spontaneous deamination to T (6–
8). The CpG mutation rate is not uniform throughout the
genome, but can fluctuate across local regions. Interestingly,
however, the proportion of BL6-unique CpGs in any given
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Figure 1. Characteristics of strain-specific CpG mutations. (A) A representation of whole-genome alignment between two strains, A and B. The CpGs
present in the two strains can be represented in both coordinate systems; CpGs are either shared between strains (red), mutated (yellow or blue) or ‘lost’
due to indels that render the coordinate unmappable (rightmost yellow). (B and C) The CpG mutation rate (proportion of strain-specific CpGs relative to
total CpGs) calculated in 100 kb bins, is comparable between BL6 and CAST strains, both genome-wide (B) and locally (C). (D) The CpG mutation rate
across different genomic features.

Table 3. Number of CpGs in different strains

Autosomes Allosomes

BL6 CAST BL6 CAST

Common CG 18 140 628 916 392
TG/CA in other
strain

1 601 446 1 669 901 43 330 45 041

Lost in other
strain

522 845 535 219 15 394 15 838

Unmappable 99 781 90 356 2676 2438
Total 20 364 700 20 436 104 977 792 979 709

region tends to closely match that of CAST-unique CpGs
(Figure 1B and C). The CpG mutation rate also varies be-
tween different functional regions, for example being much
lower in CpG islands and somewhat lower in promoter and
CTCF sites (Figure 1D).

Not using strain specific genomes induces dramatic bias

To show the impact of not using personalized genomes
for alignment, we first aligned sequencing reads from
both strains to the standard BL6/mm9 reference genome,
which represents an analysis pipeline making no adjustment
for genotype differences. When we computed the average
methylation across all read-covered autosomal CpGs in the
reference, which we call global methylation, the two strains

showed a large difference, with the CAST strain’s estimates
lower by over 7.6% (Figure 2A, P < 1.3 × 10−6). This dif-
ference is comparable in magnitude to levels previously ob-
served between tumor and normal colon (23) and associated
with EBV-mediated oncogenesis (24), and is far larger than
what we could realistically expect from a comparison be-
tween strains or individuals. Note that global methylation
is an average across millions of CpGs, and thus unlikely to
be affected to this extent by local differences in coverage.
This observation was reversed when samples were aligned to
the CAST genome (Figure 2A), confirming this was caused
purely by the choice of reference genome used for align-
ment. We term this bias ‘quantification bias’; in this case,
quantification bias introduced by using the wrong genome
can be estimated at 7–9%.

As expected, the observed discrepancy in global methy-
lation can be explained by CpG sequence variation. When
we categorized CpGs by whether they were present in both
strains, we observed a large methylation difference only in
the CpGs unique to BL6, with the computed methylation
levels of CAST samples in those CpGs being virtually 0%
(Figure 2B). This is consistent with the observation that
most BL6-unique CpGs have a TG/CA sequence in CAST
(Table 3), and shows that the bias in global methylation
is predominantly caused by assigning a methylation per-
centage of 0% to these ‘lost’ CpGs. Unsurprisingly, this
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Figure 2. Effect of CpG variation on global methylation. (A) Global methylation estimated for four samples each of two different mouse strains (BL6 and
CAST) aligned to either of the two reference genomes. Samples aligned to the strain-specific genome display higher global methylation compared to the
same sample aligned to a distant reference genome. (B) Average methylation for different subsets of CpGs within BL6 and CAST samples, all aligned to
the BL6 reference genome. In CAST samples, CpGs unique to BL6 are quantified as having 0% methylation.

bias is addressed by alignment to personalized reference
genomes: CAST samples aligned to the CAST reference
have a global methylation roughly equivalent to that of BL6
samples aligned to mm9 (Figure 2A).

Because the bias introduced by using an incorrect refer-
ence genome derives from the methylation estimation step
of an alignment pipeline, rather than some property of the
sequencing reads themselves, it occurs regardless of the
alignment method used. We confirmed this by performing
alignment of the same sequencing reads from all samples,
to both BL6 and CAST reference genomes, via two alter-
native aligners, BWA (19) and BSMAP (20). In both cases,
global methylation remained highly skewed, with samples
aligned to a distant reference consistently showing 8–9%
lower methylation (Supplementary Figure S1).

As with global methylation, analysis of focal changes was
also strongly impacted by quantification bias. We used the
BSmooth pipeline (4) to identify small DMRs between BL6
and CAST; these range from hundreds to a few thousand
bases in width. Performing this analysis on mm9-aligned
samples, without adjustment for CpG variation, identified
2865 DMRs that passed our cutoff criteria, which includes a
measure of family-wise error rate (‘Materials and Methods’
section, Supplementary Table S1, Figure 3A). However, the
vast majority of these DMRs were artifacts of misleading
0% methylation measurements in CAST samples: when we
simply removed BL6-unique CpGs prior to smoothing as a
rudimentary form of adjustment, many observed mean dif-
ferences in DMRs were diminished or absent entirely––only
554 (19.3%) were still identified as significant by the new
analysis (Figure 3C).

As further evidence of the impact of bias, many DMRs
reversed in direction when we aligned all samples to the
CAST genome, as BL6 samples now had a disproportionate
number of 0% methylation measurements (Figure 3B). In
all of these cases, the magnitude of a given DMR’s methy-
lation discrepancy was highly correlated with the number
of unique CpGs in the region (Figure 3D). This analysis
shows that quantification bias can cause false positives that
vastly outnumber the potential true positive strain differ-
ences. It also suggests the presence of a modest number of
genomic regions which are truly differentially methylated

between the two strains––the original purpose of generat-
ing the data.

We have previously described an analysis method for
identifying large-scale changes in DNA methylation, at the
scale of 100 kb or more (23). Applying this method to data
aligned to BL6 identified 2354 regions comprising 347 Mb
and covering 1.9M CpGs. For data aligned to CAST, we
found 4199 regions comprising 1101 Mb and 6.4M CpGs.
Again, the direction of change reversed entirely with choice
of reference genome: 98.6% of regions were hypermethy-
lated in BL6 when aligned to BL6, whereas 99.3% were hy-
permethylated in CAST when aligned to CAST (Supple-
mentary Figure S2). This is unsurprising given that such
large regions contain a large number of strain-unique CpGs,
mirroring the consistent bias of global methylation calcula-
tions. Unlike the result for small scale changes, this analysis
suggests that there are no true large-scale changes in DNA
methylation between BL6 and CAST.

Based on these observations, we conclude that the use of
an incorrect reference genome introduces clear and substan-
tial quantification bias into DMR finding strategies. There-
fore, usage of personalized reference genomes, or at least
careful consideration of adjustments for CpG variation, is
imperative when performing WGBS analysis on samples
with distant genotypes.

Regional smoothing over strain-unique CpGs increases power
for focal analysis

We now discuss potential strategies for dealing with sites
of CpG variation. Essentially, two options exist: remove all
CpG sites only present in one genotype, or somehow in-
clude those sites indirectly. The former strategy is straight-
forward to implement and widely used (27), but (as we have
noted above) sacrifices a substantial amount of informa-
tion. In contrast, a method that could incorporate strain-
unique CpG data into regional finding would increase ana-
lytical power.

Fortunately, existing methods for regional analysis are al-
ready primed to handle data from genotype-unique CpGs.
For example, BSmooth (4) smooths methylation data over
all covered CpGs by default, without a need to manu-
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Figure 3. Quantification bias causes false-positive focal methylation changes. The example region pictured in (A) is identified as a DMR in mm9-aligned
analysis, due to multiple BL6-unique CpGs (downwards ticks) that are read as having near-0% methylation in CAST samples. The DMR is reversed in
direction if all samples are aligned to CAST due to the same effect occurring with CAST-unique CpGs (B), and no differential methylation is observable
once these sites are removed from analysis (C). The magnitude of bias in such false-positive DMRs (i.e. the change in apparent differential methylation
when unique CpGs are removed) is highly correlated with the regional level of CpG variation (C).

ally designate genotype-unique CpGs: CpG sites that are
nonexistent in a certain sample are simply treated as zero-
coverage, and thus are excluded from smoothing in that
sample. The BSmooth process yields a set of continuous
methylation curves across the whole genome, which can
then be evaluated within just a set of common CpGs; how-
ever, data from nearby genotype-unique CpGs influence the
imputed methylation values at these common CpGs, and in
this way contribute to the final analysis.

Therefore, we propose a smoothing-based algorithm that
integrates strain-unique CpGs as an improvement to exist-
ing methods. Specifically, what we will refer to as the unique-
removed and unique-included pipelines can be outlined as
follows:

i. Map reads to personalized genomes and quantify
methylation.

ii. Using whole-genome alignment tools, such as modmap
or liftOver, place CpGs from each sample into a com-
mon coordinate space.

iii. Filter out any CpGs that are not shared across all sam-
ples (unique-removed); or, retain all strain-unique CpGs
(unique-included).

iv. Smooth methylation values to obtain personalized, con-
tinuous methylation profiles for analysis.

To test and compare our method, we applied the unique-
removed and unique-included analysis pipelines to the same
WGBS data of BL6 and CAST mice from previous sec-
tions. We aligned all samples to their own reference genome,
quantified methylation, and used modmap to place all sam-
ples in the mm9 coordinate system. For the unique-removed
analysis, we removed the 4.4 million CpGs unique to either
BL6 or CAST, then smoothed over the remaining 19 mil-
lion CpGs. In contrast, all 23.4 million CpGs were retained

and smoothed in the unique-included analysis, as per the
algorithm outlined above.

As before, focal analysis was performed to identify
small DMRs between strains. The unique-included analy-
sis found 976 DMRs passing our cutoff criteria (Methods,
Supplementary Table S2). DMRs were strongly enriched
for overlaps with various histone marks, transcription fac-
tors and other genomic features of interest obtained from
ENCODE, suggesting that these represent true regions of
interest for investigating strain differences between BL6
and CAST (Supplementary Tables S3 and 4). We selected
two top DMRs for pyrosequencing validation (around the
Aldh16a1 and Tdgf1 genes), confirming large and signifi-
cant strain differences in both regions (Supplementary Fig-
ures S3 and 4, additional comments in Supplementary Dis-
cussion, Supplementary Methods and Supplementary Ta-
ble S5).

We next observed that less differential methylation was
identified in the unique-removed analysis, which found only
716 DMRs (Supplementary Table S6). This supported our
assertion that integrating all available CpG data would re-
sult in a higher identification rate. Interestingly, however,
there was no complete overlap between analyses. 655 DMRs
were shared between unique-included and unique-removed
DMRs, as defined by simple regional overlap (at least one
CpG in common); 321 DMRs in the unique-included anal-
ysis were not present in the unique-removed analysis, and
61 unique-removed DMRs were similarly not identified by
unique-included analysis.

As an example of a DMR only identified by unique-
included analysis, we plotted a region within the Eif2ak3
gene (Supplementary Figure S5), whose variants have been
associated with Wolcott-Rallison syndrome and diabetes
(28). In the unique-removed analysis, smoothing imputes
only a 7% methylation difference between BL6 and CAST,
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which is below the 10% detection threshold for DMR find-
ing (Figure 4D); in contrast, the unique-included analysis
annotates a 14% difference (Figure 4E). Notably, this re-
gion contains three strain-unique CpGs, two in BL6 and
one in CAST, between which there is a 47% difference in
raw methylation levels, and which thus contribute strongly
to the calculated strain difference across the region. Pyrose-
quencing validation across this region confirmed significant
methylation strain differences, including between two of the
strain-unique CpGs (Supplementary Figure S5).

By definition, the difference in DMR finding between
analyses must be exclusively attributable to the presence
or absence of strain-unique CpG contributions to regional
methylation. One potential mechanism by which this might
occur would be strain-unique CpGs exhibiting larger dif-
ferences between strains compared to nearby shared CpGs,
as is suggested to occur by our example region above (Fig-
ure 4D and E). These differences would contribute to im-
putation across the region only if included; thus, the re-
gion would register a methylation difference passing the cut-
off in the unique-included analysis, but not in the unique-
removed analysis. Conversely, strain-unique CpGs with
comparable methylation levels, across a region with other-
wise large differences in shared CpGs, might drive a reduc-
tion in the overall strain difference of the region. However,
this reduction would be missed by a unique-removed anal-
ysis.

Using this reasoning, we took the full list of DMRs iden-
tified across both analyses; then for each genomic region, we
obtained raw methylation values across that region from the
unique-included BSmooth object, which contains all CpGs.
This allowed us to characterize and compare methylation
differences in shared versus strain-unique CpGs for all
DMRs, including those from the unique-removed analysis.
Mean differences across shared CpGs were comparable in
DMRs identified in only one analysis, and somewhat higher
in DMRs identified in both analyses (Figure 4A); this could
indicate that DMRs identified by both analyses had high
enough methylation differences in shared CpGs alone to
consistently pass our cutoff. In strain-unique CpGs, how-
ever, DMRs identified only in the unique-included analy-
sis had a relatively higher proportion of large strain methy-
lation differences; in contrast, those DMRs identified only
in the unique-removed analysis had consistently low strain-
unique differences, and DMRs identified in both analyses
were evenly distributed (Figure 4B).

As a final way of measuring the contribution of strain-
unique CpGs to DMRs, we calculated a value that we
termed ‘unique-shared disparity’, defined as (mean differ-
ence of unique CpGs)––(mean difference of shared CpGs).
That is, a unique-shared disparity >0 would indicate that
the mean difference in strain-unique CpGs was greater
across a region than the mean difference in shared CpGs,
and vice versa. Our visualization of unique-shared dispar-
ity solidified our prediction: most unique-included-only
DMRs had disparity >0, while the majority of unique-
removed-only DMRs had a disparity <0 (Figure 4C). From
this result, we conclude that our unique-included algorithm
increases power: a sizable number of regions in the genome
had differential methylation driven mainly by strain-unique
CpGs, and thus could only be identified via our method.

Table 4. BS-SNP results on pooled CAST samples

BL6-unique CpGs 2 285 477
BL6-unique CpGs identified by
BS-SNPer

542 642

CAST-unique CpGs 2 266 009
CAST-unique CpGs identified by
BS-SNPer

1 153 611

Conversely, strain-unique CpGs could also mitigate methy-
lation differences across a region; a unique-removed anal-
ysis would fail to account for this and calculate an inflated
mean difference, resulting in false-positive identifications.

Strategies for methylation analysis in the absence of personal
genomes

In the previous sections, we have discussed methylation
analysis of divergent genomes under the assumption that
accurate reference genomes exist for each unique genotype.
Though this is the case for most inbred mouse strains, which
are extensively curated, we can envision situations (e.g. stud-
ies in other species) where such personal references are un-
available; in these cases, other measures must be taken to
mitigate quantification bias.

One possibility for addressing CpG variation is geno-
typing of samples using bisulfite converted data, for which
various methods exist (9,10,29). However, these methods
have been evaluated on human data, where the number
of variants in an individual is roughly an order of mag-
nitude smaller than that between the more distant mouse
strains––3.3 million SNPs in human (30), compared to
20.5 million SNPs between BL6 and CAST (‘Materials
and Methods’ section). Furthermore, these methods require
high coverage to work. Nevertheless, we proceeded to assess
this approach for our data.

To test the feasibility of bisulfite genotyping in our data,
we pooled our four genetically identical CAST replicates
into one meta-sample with 24× coverage, aligned to the
BL6 genome and genotyped using BS-SNPer (10); we then
examined how much of CAST’s CpG variation was ac-
curately identified. From our CAST alignment data, we
know that CAST-unique CpGs in the meta-sample are well-
covered by reads, with 2.17M of 2.26M covered at the rec-
ommended 10× or higher; despite this, however, BS-SNPer
performed poorly at identifying these CpGs, only calling
1.15M (51%) correctly (Table 4). Identification of BL6-
unique CpGs, which are lost in the CAST metasample, was
even less efficient, with only 542K of 2.29M (24%) iden-
tified by BS-SNPer as non-CpG; this is largely expected,
given that at a CG-to-TG mutation half of the reads are un-
informative for genotyping under bisulfite conditions. Ac-
cordingly, even after adding and removing CpGs called by
BS-SNPer, our calculated global methylation for the CAST
metasample (68.2%) remained markedly lower than those
obtained from personal alignments (72–73%), indicating
quantification bias was incompletely addressed. Together,
our results suggest that bisulfite genotyping was insufficient
for addressing CpG variation between our divergent strains,
at our sequencing depth.

Another potential approach to dealing with CpG vari-
ation is to align to the standard reference, then filter out
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Figure 4. Including strain-unique CpGs identifies additional DMRs in focal analysis. (A) A density of the mean methylation differences across three sets
of DMRs. For each DMR, the mean methylation difference was computed using unsmoothed methylation values for CpGs present in both strains. (B)
Like (A) but the mean difference is computed only using CpGs unique to either strains. (C) A density of the difference between the mean methylation
differences in (B) and (A). (D and E) An example DMR chosen from those only identified in the unique-included analysis shows no observable difference
between strains in the unique-removed analysis (D) but a larger difference in the unique-included analysis (E).

known variation based on an external database, such as db-
SNP. For example, one could exclude any CpG overlap-
ping known variants of certain criteria (high-population
frequency, CG-to-TG, etc.). Assuming a sample has a rela-
tively small number of private SNPs, this method would the-
oretically remove the main source of hypomethylation bias
and indeed this method has been previously used in litera-
ture, albeit on much less distant genotypes (31). However,
stringent filtering could overestimate the amount of varia-
tion and remove a proportion of CpGs that remain in the
sample, in addition to truly lost CpGs. Furthermore, non-
CpG differences from the reference would not be addressed
by this method.

To test this ‘variation filtering’ approach, we aligned
CAST samples to the BL6 reference genome, then removed
all BL6-unique CpGs from the dataset prior to smooth-
ing; this represents a ‘perfect’ adjustment, in which all CpG
variation is removed with no overestimation. As expected,
this method removed the bias in global methylation, with
estimates close to those obtained with personal genomes
(Figure 5A). Focal analysis identified 622 DMRs (Supple-
mentary Table S7); of these, 529 overlapped with the 716
DMRs identified in the personal, unique-removed analy-
sis, indicating that differential finding under this method
is at least somewhat comparable, though with some loss
of power. However, care must still be taken when exam-
ining results obtained with this approach, as non-CpG-
related alignment errors can still produce false-positive re-
gions. As an example, we found a region on chr10 contain-
ing no strain-unique CpGs which appeared to be greatly hy-
pomethylated in CAST samples when aligned to the BL6
reference, but showed no methylation difference when sam-
ples were aligned to personal references (Figure 5B and C).
We discovered that this result was due to thousands of un-
methylated CAST mitochondrial reads, which aligned pref-

Figure 5. Variation filtering mostly, but not completely, removes quantifi-
cation bias. Filtering out strain-unique CpGs from the BL6 reference suf-
ficiently addresses global methylation bias (A). However, an example 11
kb genomic region, despite containing no CpGs unique to either mouse
strains, appears as a DMR under the filtering strategy (B) despite no true
methylation difference under personal-genome alignment (C). This is due
to misalignment of reads: upwards tick marks indicate CpGs with average
coverage >100 in the filtered analysis.

erentially to the BL6 chr10 rather than to the BL6 chrM due
to SNPs in both regions, but aligned correctly to chrM when
the CAST reference was used (Figure 5C). Overall, these
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results indicate that while variation filtering is sufficient to
address large-scale quantification bias, residual alignment
errors may still create local false-positive regions.

Addressing heterozygosity

Thus far, we have discussed the implications of CpG vari-
ation within the relatively narrow context of a homozy-
gous genome––namely, methylation experiments involving
inbred genotypes, most relevant to studies involving animal
and plant species such as mouse or Arabidopsis. In most
other scenarios, including all human studies, genomes are
generally heterozygous. Accurate quantification of methy-
lation at heterozygous CpGs is an ongoing and challenging
problem: reads from a C-to-T allele must be distinguished
from truly unmethylated reads from the CpG-containing
allele. This requires reads containing both the CpG and a
phased variant, which is unlikely with current short read se-
quencing technologies and the reduced complexity of bisul-
fite space; as well as a method of aligning to a diploid refer-
ence genome, which standard aligners do not support.

However, even in the presence of heterozygosity, apply-
ing knowledge of CpG variation and personalized genomes
remains useful. We propose the following algorithm for
WGBS analysis of heterozygous samples:

i. Create personalized genomes for each sample; for het-
erozygous loci, choose one allele to include in the
genome.

ii. Align samples to their personalized genomes and place
CpGs into a common coordinate space.

iii. For each individual sample, remove any CpG site which
is heterozygous in that sample.

iv. Smooth methylation values over the remaining CpGs,
including any CpGs that are homozygous sample-
unique.

Our analysis of data from inbred mice shows that this
approach removes all bias and is almost as powerful as
having phased reads. Specifically, step 1 creates a personal-
ized genome with improved accuracy at homozygous vari-
ants relative to the standard reference. Accuracy over het-
erozygous loci remains partial; however, as we observed pre-
viously in our analysis of variation filtering, methylation
bias resulting purely from alignment errors is both rare and
highly localized (Figure 5). That analysis also showed that
removal of CpG sites susceptible to quantification errors
is far more important in addressing bias; such sites are re-
moved in step 3. The result is a method that preserves infor-
mation at homozygous sample-unique CpGs, while remov-
ing locations contributing to quantification bias.

An application to human cancer

One potential non-strain application of our heterozygosity
method is in normal-cancer comparisons; as cancer sam-
ples are known to contain a multitude of genomic muta-
tions, they represent samples especially likely to be substan-
tially distant from the standard human reference genome.
As an example of this scenario, we obtained publicly avail-
able WGBS data of two samples, normal human brain and

a human glioblastoma cell line U87MG, from a study on
methylation of super-enhancers (25); as well as publicly
available SNP and indel information on the U87MG line,
relative to the human reference genome, from a separate
study (26). The U87MG genome was annotated as contain-
ing 2 384 078 SNPs and 320 051 indels; 1 116 438 SNPs and
172 183 indels were marked as heterozygous. These resulted
in 334 625 CpGs being lost relative to the human reference,
while adding 331 108 U87MG-unique CpGs. This number
of affected CpGs is about 10-fold lower than we observed
in the BL6-CAST comparison, but nevertheless constitutes
around 1% of CpG sites in the human genome.

Using our pipeline for personalized alignment and es-
timation in the presence of heterozygosity, we mapped
U87MG reads to a personalized U87MG genome created
from the above variant information. Both the U87MG and
normal brain samples were also aligned to hg19. All align-
ments were placed into the hg19 coordinate system; then,
prior to smoothing, 148 185 heterozygous CpGs were fil-
tered from the U87MG-aligned U87MG sample. Due to
lack of replicates, we could not perform standard DMR
finding; instead, we measured methylation across tiled ge-
nomic windows.

Unlike our observations in CAST mice, U87MG global
methylation was not strongly affected by reference genome
choice, with only about a 0.3% difference between align-
ments. Quantification bias was also not readily apparent at
larger scales; of 255 236 covered 10-kb windows tiled across
the genome, only 66 contained a mean methylation dispar-
ity between alignments >10%. These results were expected,
given that the U87MG genome had a relatively smaller
number of ‘lost’ CpGs compared to the CAST genome; fur-
thermore, as the cancer sample had a low starting methyla-
tion, the effect of 0%-methylated sites on the mean would
naturally be smaller. However, methylation bias was still
clearly present on the local scale: when the genome was
tiled at 1-kb rather than 10-kb, 6647 of the 2 409 180 re-
sulting windows now showed a methylation disparity above
the 10% threshold. The majority of these windows (5361
or 81%) showed lower U87MG sample methylation in the
hg19 alignment relative to the U87MG alignment, as ex-
pected from the effect of ‘lost’ CpGs on estimation.

As we saw with our inbred mouse data, aligning the
U87MG sample to its own reference appeared to eliminate
some false-positive methylation differences. Of 1 725 532 1-
kb windows that displayed a >10% methylation difference
between normal and U87MG samples on the hg19 align-
ment, 27 864 (1.6%) no longer showed the same large methy-
lation difference when the normal sample was compared
to the U87MG-aligned U87MG sample. As an example, a
roughly 1-kb region across the gene body of DHX37 ap-
peared to be hypomethylated in the U87MG sample relative
to normal brain when the sample was aligned to hg19. How-
ever, this was caused by 0%-methylation calls at six CpG
positions in the region that were lost in the U87MG sam-
ple; correspondingly, when U87MG was self-aligned, there
was virtually no difference between samples (Figure 6A).
As DHX37 has been previously linked to neurologic disease
(32,33), we found this an especially compelling case of align-
ment bias producing an appealing but false-positive candi-
date gene.
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Figure 6. Impact of self-alignment in a normal-cancer comparison. (A) A
5 kb window across DHX37 displays false-positive hypomethylation that
is ameliorated with U87MG self-alignment. Grey lines mark CpGs unique
to hg19; dots indicate raw methylation levels in U87MG and hg19 align-
ments. (B) A 25 kb window across the LGALS8 gene shows markedly
higher smoothed methylation in U87MG when self-aligned. Tick marks
indicate CpGs unique to hg19 (blue) or U87MG (red).

Conversely, and again as observed in our mouse data,
self-alignment could result in novel identification of re-
gions of interest. The 16 699 tiled 1-kb windows indicated a
normal-cancer methylation difference >10% only when the
U87MG sample was self-aligned. As an example, a 25-kb
region on chr1 containing a number of both hg19-unique
and U87MG-unique CpGs contained several regions of
hypermethylation in U87MG when the sample was self-
aligned (Figure 6B). This region covers part of the LGALS8
gene, a galectin previously implicated in migration and pro-
liferation of U87 glioblastoma cells (34). Thus, it is plausi-
ble that self-alignment would result in finding more normal-
cancer DMRs in relevant genes, increasing the power of the
study. Overall, our results suggested that self-alignment of
the U87MG cancer sample could correct local alignment
bias and facilitate more comprehensive identification of re-
gions of interest, even if not at the scale seen in our ex-
tremely distant mouse strains.

DISCUSSION

Here we have studied the unique challenge of comparing
DNA methylation data between divergent genotypes. We
have introduced a method which, through imputation, al-
lows the inclusion of genotype-specific CpGs in regional
methylation analysis. The most powerful version of our
method uses personalized genomes, accounting for differ-
ences in genomic coordinates, and we show that this results
in increased power for detection of DMRs while dramati-
cally reducing bias. We expect our method to have the most
significant implications for studies using model organisms,
which often have widespread and consistent differences be-
tween genotypes, but it is widely applicable to any setting
where genetic variation is expected between sample groups.

We have compared our method to various other poten-
tial strategies for handling data from distant genotypes. At
the most extreme end, using just a single reference genome
results in a massive quantification bias that completely ob-
scures the true signal. We have for the first time precisely

quantified this bias by also aligning to the distant sample’s
reference genome, observing a near-total inversion of bias
both globally and locally. As a first step to detect bias of this
nature, we recommend routinely examining global methyla-
tion across samples. This is easy and effective, particularly
as the proportion of genotype-specific CpGs in a sample in-
creases. Note that bias is not always the only explanation
for global differences; for example, it is well-established that
global methylation is cell type dependent.

Naturally, personalized genomes are not always available,
especially outside the context of model organisms; however,
in these cases, any measure to account for variation will still
improve analysis. If a database of sequence variants is avail-
able, methylation calls can be filtered post-alignment to re-
move CpGs not found in all genotypes. This can be done
individually for each sample at little computational cost.
Alternatively, existing tools such as Bis-SNP or BS-SNPer
can genotype samples using bisulfite-converted DNA. As
we observed, the success of such tools depends on both the
coverage of the experiment and the extent of CpG variation;
while our attempts in inbred mouse strains largely failed
at 28× coverage, the tools have been shown to successfully
capture smaller-scale variation in human data.

When partial adjustments (or, inadvisably, no adjust-
ments) are made for CpG variation, identified regions of
interest should be routinely scrutinized to rule out the possi-
bility of quantification bias or alignment errors. C-to-T mu-
tations are often easy to spot, appearing as completely un-
methylated sites (i.e. exactly 0% rather than near-0%) within
otherwise highly methylated regions. Additionally, as we
observed, sites of unusually high coverage can be indicators
of misalignment. Regions with one or both of these charac-
teristics should be carefully validated to ensure they are not
false positives.

The exact effect of quantification bias depends critically
on experimental design. Here, we have focused on an anal-
ysis where the goal is to compare two distinct genotypes. In
contrast, a study might distribute genotypes evenly among
groups of comparison, e.g. drug versus placebo; this design
is common in studies involving human subjects. In these
experiments, rather than skew methylation levels in a spe-
cific group, quantification bias would increase within-group
variation, consequently causing a loss of power. The strat-
egy we advocate of personalized alignment addresses both
situations, both removing bias and decreasing variation. In
general, most studies in model organisms involving multiple
strains will require the availability of personalized genomes.
Such studies are often undertaken specifically to understand
the impact of genotype, thus the accurate comparison of
groups with vastly different genomes is paramount. This
is for example the rationale behind the development of the
mouse Collaborative Cross (35). Arabidopsis thaliana is fre-
quently used for the same purpose; although plants have
extensive non-CpG methylation, we expect variation across
those sites to be governed by similar principles.

When moving beyond homozygous-inbred organisms, al-
lele heterozygosity presents a few additional considerations.
Accurate alignment requires a diploid reference genome,
and accurate quantification at heterozygous CpGs further
requires that non-CpG reads be distinguishable from un-
methylated reads. In principle, the eventual solution to these
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issues involve aligning to both haplotypes and analyzing
each haplotype separately. This would require advances in
alignment tools as well as phased genomes, such as those
made possible by 10× Genomics. In the interim, however,
we have developed and presented our method to correct for
known heterozygous mutations across CpGs––by far the
largest source of quantification bias––namely by filtering
such CpGs from analysis.

We have applied our approach to heterozygous CpG vari-
ation to a human disease context, using existing bisulfite
data and variant information from normal brain and a
glioblastoma cell line. Although on a smaller scale of magni-
tude than our highly divergent mouse strains, we show that
simply aligning the cancer line to its personalized genome
rather than the human reference profoundly affects methy-
lation quantification. Importantly, this is enough for us to
identify both false-positive regions driven by bias and novel
regions previously obscured by bias, even in the presence of
heterozygosity. Although our cancer application is selected
from existing data and thus lacks replicates or variant data
for the normal sample, these are easily obtained in a full
cancer experiment, i.e. through increased sample size and
genotyping of samples.

In human studies, any two individuals will be genetically
closer than the two mouse strains studied here, and the rate
of CpG variation less extreme. However, we know from
genome-wide association studies that individuals in a group
are rarely random samples from a background distribution.
Hence, quantitation bias may still exist and require correc-
tion, e.g. if certain CpGs are consistently lost in one group
relative to the other. Correction becomes particularly cru-
cial when widespread genetic differences between sample
groups are not only likely but functionally relevant––most
notably, in cancer-normal studies such as the one we exam-
ined.

CONCLUSION

We have shown that quantification bias stemming from
CpG variation between samples can severely affect analy-
sis of bisulfite converted DNA. We have proposed a method
which addresses this, and furthermore integrates genotype-
specific CpGs into differential methylation analysis to in-
crease power. Our method requires either personalized ref-
erence genomes, or detailed knowledge of sequence vari-
ation across CpGs. Future studies employing bisulfite se-
quencing should carefully consider this issue, especially if
the goal is comparison between distinct genotypes.

DATA AVAILABILITY

WGBS data is available under NCBI GEO accession num-
ber GSE87101. This includes alignments of the samples
to both CAST and BL6 genomes, expressed in BL6 coor-
dinates as well as alignment of the samples to the CAST
genome, expressed in CAST coordinates. Supplementary
Methods contain details on the experimental protocol.
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Soza,A. (2016) Galectin-8 promotes migration and proliferation and
prevents apoptosis in U87 glioblastoma cells. Biol. Res., 49, 33.

35. Churchill,G.A., Airey,D.C., Allayee,H., Angel,J.M., Attie,A.D.,
Beatty,J., Beavis,W.D., Belknap,J.K., Bennett,B., Berrettini,W. et al.
(2004) The Collaborative Cross, a community resource for the genetic
analysis of complex traits. Nat. Genet., 36, 1133–1137.


