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Genetic network and gene set 
enrichment analyses identify 
MND1 as potential diagnostic 
and therapeutic target gene 
for lung adenocarcinoma
Jinying Wei1,2, Guangping Meng1, Jing Wu2, Qiang Zhang2 & Jie Zhang1*

This study aimed to characterize the key survival-specific genes for lung adenocarcinoma (LUAD) using 
machine-based learning approaches. Gene expression profiles were download from gene expression 
omnibus to analyze differentially expressed genes (DEGs) in LUAD tissues versus healthy lung tissue 
and to construct protein–protein interaction (PPI) networks. Using high-dimensional datasets of 
cancer specimens from clinical patients in the cancer genome atlas, gene set enrichment analysis 
was employed to assess the independent effect of meiotic nuclear divisions 1 (MND1) expression on 
survival status, and univariate and multivariate Cox regression analyses were applied to determine the 
associations of clinic-pathologic characteristics and MND1 expression with overall survival (OS). A set 
of 495 DEGs (145 upregulated and 350 downregulated) was detected, including 63 hub genes with ≥ 10 
nodes in the PPI network. Among them, MND1 was participated in several important pathways by 
connecting with other genes via 17 nodes in lung cancer, and more frequently expressed in LUAD 
patients with advancing stage (OR = 1.68 for stage III vs. stage I). Univariate and multivariate Cox 
analyses demonstrated that the expression level of MND1 was significantly and negatively correlated 
with OS. Therefore, MND1 is a promising diagnostic and therapeutic target for LUAD.

Lung cancer is the most frequent malignancy and responsible for the highest incidence and the largest number 
of deaths globally (approximately 1.8 million new cases and over 1 million deaths yearly)1,2. In China from 
2008 to 2012 lung cancer was the leading cause of cancer-related  death3, with the crude rates of incidence and 
deaths of 54.66/100,000 and 45.60/100,000, respectively. Squamous cell carcinoma and small cell lung cancer 
have been the most prevailing lung malignancy subtypes in the past; however, lung adenocarcinoma (LUAD) 
has recently emerged as the most common and most aggressive histological  type4, with most cases being diag-
nosed at advanced stages. LUAD generally grows in the outer regions of the lungs for a long time before the 
appearance of symptoms, including mild insufficiency of breath, subtle weight loss, and a general sense of being 
unwell. A combination of imaging studies, including computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET), has been used to analyze lung cancer, whereas lung biopsy is 
generally required to diagnose the type of lung cancer. Early diagnosis and accurate staging for lung cancer are 
very important in planning an effective treatment regimen, particularly for the most aggressive cases of LUAD.

Gene-targeting therapeutic strategies are now emerging as potential treatments for LUAD. Targeted therapies 
and immunotherapy have been demonstrated to improve median survival times for a set of solid carcinomas in 
clinical  trials5, resulting in long-term survival even for subjects with the advanced-stage lung carcinoma. How-
ever, progress related to the overall prognosis of LUAD has been limited, as the occurrence and development 
of this heterogeneous disease are regulated by different genes. The discovery of novel genes associated with the 
occurrence and progression of LUAD as well as effective diagnostic biomarkers is essential to characterizing the 
mechanisms underlying LUAD, identifying effective diagnostic biomarkers, and achieving significant break-
throughs for the precise diagnosis and effective treatment of LUAD.
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Machine-based-learning  approaches4,6–12 have been used to analyze both histological and molecular fea-
tures of tumors for classification according to molecular  patterns9,12 and identification of biologically relevant, 
tumor-type-defining and clinically informative genetic  modifications11 in a variety of cancers. Nowadays, rapid 
development of “-omic” technologies, including gene chip analysis and next-generation sequencing, has been 
proven to generate vast volumes of molecular data for a tumor and publicly stored in databases for assessment 
of differentially expressed genes (DEGs) in a tumor without the need for such subjective  diagnostics13. The Gene 
Expression Omnibus (GEO) Database was the first public database for high-throughput gene expression data as 
well as hybridization array, chip,  microarray14, supporting MIAME-compliant data submissions. Another public 
database is the Cancer Genome Atlas (TCGA)15, which collects molecular data sets from exome sequencing, com-
parative genomic hybridization (CGH) arrays, DNA methylation arrays, RNA sequencing, and reverse protein 
phase arrays (RPPA) along with clinical information for cancers including LUAD. Thus, TCGA is a fundamental 
tool for the categorization and further study of the molecular pathogenesis for LUAD. Both the authoritative 
TCGA and GEO databases are publicly accessible through multiple platforms. Advances in computational tools 
have facilitated the use of machine-learning processes for analyzing histological data and molecular features, 
integrating both molecular analysis and visual inspection to enhance diagnostic  power9–12. Therefore, machine-
based learning approaches are the key development for switching from the original clinical diagnosis methods 
to a computer-based clinical diagnosis and categorization of tumors, and for optimizing treatment schemes to 
be ever-more personalized through characterization of an individual’s tumor.

In the present study, we downloaded genomic data from the GEO database to detect significant DEGs in 
LUAD and further validated these DEGs with transcriptomic data and clinicopathological data from TCGA data-
base to investigate correlations between the expression of DEGs, including meiotic nuclear division 1 (MND1), 
and survival. The information retrieved for the DEGs was applied to construct a protein–protein interaction 
(PPI) network and conduct an overall survival (OS) analysis. In total, 495 DEGs were identified, of which MND1 
was significantly associated with OS and thus might be used as a prognostic biomarker and a molecular curative 
target for LUAD. The results of the present study provide valuable information for understanding the mechanisms 
underlying the pathogenesis of LUAD and for the identification of diagnostic and therapeutic targets for LUAD.

Results
Clinicopathological statistics of TCGA LUAD cases. The clinic-pathological information for a total 
of 486 clinical LUAD samples downloaded from TCGA are listed in Table 1. The available clinic-pathological 
features for each LAUD case included the patient’s age at diagnosis (years), gender, carcinoma stage, and TNM 
grouping. Overall, 46% of the 486 LUAD cases were male and 54% were female, and their ages ranged from 33 
to 88 years (Table 1). Notably, more than half of the LUAD cases (54.8%) were stage I at diagnosis, and only 5.2% 
were diagnosed at stage IV.

Table 1.  Clinic-pathological features of LUAD patients in TCGA.

Clinical characteristics Total (N = 486) %

Duration (d) 769.6 (0–6812)

Age at diagnosis (y) 66 (33–88)

Gender

Male 222 45.7

Female 264

Stage

I 262 54.8

II 112 23.5

III 79 16.5

IV 25 5.2

T

T1 163 33.8

T2 260 53.8

T3 41 8.5

T4 19 3.9

M

M0 333 93.3

M1 24 6.7

N

N0 312 65.8

N1 90 19.0

N2 70 14.8

N3 2 0.4
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Identification of DEGs. A set of 495 DEGs was detected from three consolidated and batch-corrected 
datasets: GSE118370 (normal 6, tumor 6), GSE19188 (normal 15, tumor 18), and GSE40791 (normal 100, tumor 
94), using |logFC|> 2 and p < 0.05 as the cutoff criteria. Among them, 145 DEGs were upregulated and 350 DEGs 
were downregulated.

The co-expression, genetic, and physical interactions among the 495 DEGs and predicted genes were char-
acterized using STRING to construct the PPI networks. A group of 63 hub genes had a node degree ≥ 10 in the 
PPI networks of upregulated and downregulated DEGs (Fig. 1A), suggesting that these genes play important 
roles in the progression of LUAD. The top 10 nodes in the PPI network were CCNA2, TOP2A, CCNB1, CDC20, 
DLGAP5, MELK, PBK, RRM2, K1F11, and K1F2C. However, for most of these hub genes, either no clinico-
pathological features were available in TCGA database or the relationship with clinical data was nonsignificant. 
Meaningful clinical data were available for MND1, which has 17 nodes (Fig. 1B) connected with other genes and 
participates in several pathways related to lung cancer (Fig. 1C), suggesting that MND1 might be essential in the 
progression of LUAD. Therefore, MND1 was elected as the target gene for further analysis in the present study.

Expression of the MND1 gene. The differential scatter plot and paired difference analyses of MND1 
expression showed a significant difference between 54 normal samples and 497 LUAD samples from TCGA 
database (Fig. 2A,B, p < 0.001). Compared with its expression in normal samples, MND1 was significantly upreg-
ulated in LUAD samples.

MND1 expression and clinicopathological features. The associations between MND1 expression 
level and clinic-pathological data from TCGA were determined by logistic regression analysis (Table 2). When 
entered as a categorical dependent variable according to a median expression value of 1.83, MND1 expression 
was negatively related to prognostic clinic-pathologic features. The expression of MND1 increased significantly 
with advancing LUAD stage (OR = 1.68 for stage III vs. stage I, p = 0.046), suggesting that in patients with the 
elevated MND1 expression, LUAD was inclined to be diagnosed at a late stage. Age (continuous; OR = 0.37, 
p < 0.05) also was positively correlated with MND1 expression. No significant association of MND1 expression 
with distant metastasis (positive vs. negative; OR = 1.73, p = 0.209), lymph node metastasis (positive vs. negative; 
OR = 1.50, p = 0.098) and gender (male vs. female; OR = 1.34, p = 0.109; Table 2) was observed.

The associations of MND1 expression level with survival rate and clinical stage are shown in Fig. 2C,D. LUAD 
samples were classified into high and low expression sets, and Kaplan–Meier curves based on the MND1 expres-
sion level were constructed (Fig. 2C). Log-rank test revealed that higher MND1 expression was significantly 
associated with poorer OS among LAUD patients compared with lower MND1 expression (p = 0.008). As shown 
in Fig. 2D, the expression level of MND1 in LUAD subjects with advanced stage disease (stage II–IV) was obvi-
ously higher than that in subjects with stage I disease (stage I vs stage II–IV, p = 0.009).

MND1 expression, clinicopathological variables, and patient survival. The associations of OS 
with MND1 expression and clinic-pathological data were analyzed by Cox regression analyses (Table 3). HR 
results for OS were statistically significant based on the expression level of MND1 in all samples. As shown 
in Table  3, MND1 expression was significantly negatively correlated with OS (HR = 1.45, 95% CI 1.14–1.84, 
p = 0.002). Other clinic-pathologic variables including stage (HR = 1.65, 95% CI 1.40–1.95, p < 0.0001), T cat-
egory (HR = 1.63, 95%CI 1.32–2.02, p < 0.0001), and N category (HR = 1.79, 95%CI 1.46–2.20, p < 0.0001) were 
significantly related to OS.

In the univariate Cox regression model, categorical MND1 expression was significantly correlated with OS 
(HR = 1.52, 95%CI 1.18–1.97, p = 0.001, Table 4), as seen in the Forest plots obtained using the Survminer pack-
age in R (Fig. 3). However, clinicopathologic variables including age, gender, stage, and TMN classification were 
not significantly associated with OS. The results indicated that elevated expression of MND1 is independently 
correlated with OS in LUAD cases.

Figure 1.  PPI networks of DEGs. (A) PPI network of DEGs constructed using STRING. (B) Top 50 hub genes. 
(C) MND1-connected PPI.
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GSEA identification of MND1-related signaling pathways. Signaling pathways that were differen-
tially activated in LUAD patients were determined by GSEA via comparison of the high and low MND1 expres-
sion groups. Significant differences (false discovery rate [FDR] < 0.25, NOM-p < 0.05) were detected in enrich-
ment of the Molecular Signatures Database (MSigDB) Collection. The most significantly enriched signaling 
pathways according to the NESs are shown in Fig. 4 and Tables 5 and 6. The most differentially over-represented 
signaling pathways in LUAD patients with the elevated MND1 expression included the p53 signaling pathway, 
pancreatic cancer, small cell lung cancer, bladder cancer, melanoma, and colorectal cancer (Table 5). Signal-
ing pathways related to aldosterone-regulated sodium reabsorption, vascular smooth muscle contraction, per-
oxisome proliferator-activated receptor (PPAR) signaling pathway, complement and coagulation cascades, drug 

Figure 2.  Associations of MND1 expression with clinic-pathological characteristics. (A) MND1 expression 
in healthy and LUAD tissues. (B) Different expression of MND1 in normal–LUAD paired tissues. (C) Survival 
rates with elevated and low expression of MND1. (D) Differential expression of MND1 between stage I and 
stage II–IV LUAD cases.

Table 2.  Associations of MND1 expression with clinic-pathological features estimated by logistic regression 
analysis. Categorical dependent variable, greater or less than the median expression level.

Clinical characteristics Total (n) OR for the elevated MND1 expression p

Stage (III vs. I) 335 1.68 (1.01–2.83) 0.046

Distant metastasis (positive vs. negative) 348 1.73 (0.75–4.22) 0.209

Age (continuous) 458 0.37 (0.14–0.87) 0.028

Lymph node metastasis (positive vs. negative) 465 1.50 (0.93–2.43) 0.098

Gender (male vs. female) 477 1.34 (0.94–1.93) 0.109
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Table 3.  Correlations of OS with clinic-pathologic characteristics in LUAD patients estimated using 
multivariate Cox regression analysis. OS overall survival, HR hazard ratio, 95%CI 95% confidence interval.

Clinicopathologic variable

OS

HR (95%CI) p value

Age 1.00 (0.98–1.02) 0.843

Gender 1.04 (0.72–1.49) 0.852

Stage 1.65 (1.40–1.95) 0.000

T 1.63 (1.32–2.02) 0.000

M 1.76 (0.96–3.20) 0.066

N 1.79 (1.46–2.20) 0.000

MND1 1.45 (1.14–1.84) 0.002

Table 4.  Multivariate survival model after variable selection.

Clinicopathologic variable

OS

HR (95%CI) p value

Age 1.01 (0.99–1.03) 0.334

Gender 1.00 (0.68–1.45) 0.981

Stage 2.17 (1.35–3.51) 0.001

T 1.16 (0.90–1.47) 0.248

M 0.32 (0.10–1.11) 0.073

N 0.93 (0.62–1.39) 0.711

MND1 expression 1.52 (1.18–1.97) 0.001

Figure 3.  Forest plot from univariate Cox regression analysis of the associations of MND1 expression with 
clinic-pathological features.
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metabolism cytochrome p450, calcium signaling, and gonadotropin-releasing hormone (GNRH) signaling were 
differentially enriched in LUAD patients with low MND1 expression (Fig. 4, Table 6).

Discussion
LUAD is a highly complex and devastating disease for which the current therapeutic strategies are limited in 
number and largely ineffective. Consequently, considerable efforts have been made to develop novel and effective 
molecular-targeted therapeutic schemes. However, the molecular mechanisms underlying the progression and 

Figure 4.  Enrichment plots from GSEA. (A) The p53 signaling pathway was differentially over-represented 
in LUAD cases with the elevated MND1 expression. (B) The p53 signaling pathway and pathways associated 
with pancreatic carcinoma, small cell lung carcinoma, bladder carcinoma, melanoma, and colorectal carcinoma 
were differentially over-represented in cases with the elevated MND1 expression, whereas the pathways for 
aldosterone-regulated sodium reabsorption, vascular smooth muscle contraction, PPAR signaling, complement 
and coagulation cascades, drug metabolism, cytochrome p450, calcium signaling and GNRH signaling were 
differentially over-represented in cases with low MND1 expression.

Table 5.  Gene sets over-represented in the elevated MND1 expression phenotype.

Name NES NOM p-val FDR q-val

KEGG_P53_SIGNALING_PATHWAY 2.304 0 0

KEGG_PANCREATIC_CANCER 1.881 0.006 0.016

KEGG_SMALL_CELL_LUNG_CANCER 1.674 0.019 0.072

KEGG_BLADDER_CANCER 1.622 0.023 0.092

KEGG_MELANOMA 1.485 0.042 0.15

KEGG_PATHWAYS_IN_CANCER 1.503 0.047 0.147

KEGG_COLORECTAL_CANCER 1.56 0.047 0.124

Table 6.  Gene sets over-represented in low MND1 expression phenotype.

NAME NES NOM p-val FDR q-val

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION − 2.122 0 0.019

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION − 1.874 0 0.077

KEGG_PPAR_SIGNALING_PATHWAY − 1.805 0.002 0.116

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES − 1.667 0.02 0.137

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 − 1.643 0.021 0.14

KEGG_CALCIUM_SIGNALING_PATHWAY − 1.533 0.029 0.159

KEGG_GNRH_SIGNALING_PATHWAY − 1.529 0.027 0.156
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metastasis of LUAD as well as relevant biomarkers have yet to be determined. In the present study, a set of 495 
DEGs was discovered from the GEO data and TCGA data, including 145 upregulated and 350 downregulated 
genes. Among them, the overlapping genes included MND1, and members of the p53 signaling pathway were sig-
nificantly associated with LUAD, consistent with the results of Gao and  Wang16 and Zhang et al.17, who reported 
several potential roles of MND1, cyclin family members and p53 signaling pathway proteins in  LUAD16,17. 
Moreover, these significantly overlapping genes were key hub genes in the PPI network, with significant roles 
in the prognosis of LUAD, consistent with previous  reports16–18. Among them, MND1 with 17 nodes (Fig. 1B) 
was predicted to connect with other important genes and pathways related to lung cancer, supporting the results 
of Dastsooz et al.19 and Zhang et al.17, who demonstrated the key role of MND1 expression and function in the 
occurrence and progress of carcinomas including LUAD.

DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and 
chronic inflammatory conditions. DNA repair pathway deficiencies have profound consequences on the signals 
of the immune system, eventually leading to malignant  cancer20,21. In the present study, we discovered the associa-
tion of hub gene MND1 with the occurrence and progression of LUAD. There have been few reports of MND1 
expression in lung  cancer17. MND1 is an intracellular protein that is expressed in the membrane of immune 
cells and cells of the thymus where it is essential in meiotic homologous chromosome pairing, synapsis and 
intragenic recombination during meiosis. The differential regulation of MND1 in LAUD patients and healthy 
controls is likely associated with the meiosis-specific HOP2-MND1 that form an extremely conserved and stable 
heterodimeric  complex22 essential for homologous recombination in higher  eukaryotes23–25. Homologous recom-
bination repairs damaged chromosomes and mediates pairing of homologous chromosomes, playing a crucial 
role in maintaining  telomere26 and genome  stability27. Significantly, dysfunction in HR or its mediators and 
regulators can result in carcinoma-susceptible human  diseases28. In the heterodimeric HOP2-MND1 complex, 
HOP2 acts as the major DNA-binding subunit, whereas MND1 is the important Rad51 interaction  entity22 that 
modulates ATP and DNA binding by RAD51 to stabilize the RAD51 presynaptic filament and duplex DNA cap-
ture for enhancement of synaptic complex constitution. Chi et al.22 demonstrated stimulation of MND1 in both 
DMC1- and RAD51-mediated homologous strand assimilation, which is essential for the resolution of meiotic 
double-strand breaks. Furthermore, Bugreev et al. reported in vitro stimulation of HOP2-MND1 in the DNA 
strand exchange activities of RAD51 and  DMC129, leading to stabilization of the RAD51–single-stranded DNA 
nucleoprotein filament, the catalytic intermediate in recombination responses. The HOP2-MND1 complex that 
is predominantly expressed in human fibroblasts and cell  lines30 acts in combination with RAD51 in recombi-
nation events to cause telomere lengthening. Alternations of HOP2 were detected in early onset familial breast 
and ovarian cancer  subjects31,32, and a single amino acid deletion (Glu201 del) was associated with XX ovarian 
dysgenesis that is featured by streak  ovaries33. Disruptions of Hop2 and MND1 gene expression are essential for 
DMC1 defects in homologous  recombination34, whereas RAD51 loss is a functioning biomarker of the DNA 
damage in response to an unfavorable prognostic impact in non-small cell lung carcinoma cases undergoing 
curative surgical  resection35. In the present study, the increased expression of MND1 in LUAD patients was asso-
ciated with advanced clinical stage, short OS time, and poor prognosis, supporting the results of Dastsooz et al.17. 
Our study suggests that MND1 might be useful as a prognostic biomarker and treatment target for LUAD. Our 
findings need to be confirmed through further molecular validation studies as well as by clinical observations.

Weighted correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) have been widely 
used to identify classes of genes that are over-represented in a large set of genes and may have an association 
with disease  phenotypes36,37. WGCNA is a co-expression network model for clustering analysis at the gene level, 
starting from the level of thousands of genes to determine the gene modules of clinical interest, and finally using 
the connectivity and gene importance within the modules to identify key genes in the disease pathway for further 
verification. Compared with GSEA, WGCNA provides more informative but nonsignificantly different results. 
However, the algorithm in WGCNA is more complicated and cumbersome for identifying modules correspond-
ing to the biological approach. In the present study, we aimed to identify novel genes by performing clustering 
analysis of the biological functions of HUB genes rather than disease-related genes. Therefore, differential gene 
expression coupled with GSEA seems to more scientifically and accurately reflect the biological functions of 
genes. GSEA using TCGA data revealed that a set of important pathways including p53 signaling and pathways 
associated with malignancies such as pancreatic carcinoma, small cell lung carcinoma, bladder carcinoma, mela-
noma, and colorectal carcinoma were differentially over-represented in the elevated MND1 expression pheno-
type, whereas the pathways of aldosterone regulated sodium reabsorption, vascular smooth muscle contraction, 
PPAR signaling, complement and coagulation cascades, drug metabolism cytochrome P450, calcium signaling, 
and gonadotropin-releasing hormone (GnRH) signaling were differentially over-represented in the low MND1 
expression phenotype. These data suggest that other genes identified by the GSEA as part of the MND1 protein 
network might play key roles in LUAD. Among the MND1-upregulated pathways, tumor suppressor p53 encoded 
by the homologous TP53 gene, has been previously proven to be involved in lung cancer, ranking first among 
all the genes detected in terms of its correlation with various types of human  malignancies38. TP53 acts to slow 
down or monitor cell  division39. Mutant p53 is a result of a TP53 gene alternation and acts as a tumor-promoting 
factor that functions essentially in the tumorigenesis of lung epithelial cells, resulting in cancer formation or cell 
transformation and elimination of normal TP53 gene  functions40. Among the MND1-downregulated pathways, 
cytochrome p450 is a key enzyme in cancer formation and  treatment41, serving important metabolic roles in a 
number of aspects of malignancy as a consequence of unusually broad substrate specificity. Cytochrome p450 is 
also a prominent player in the metabolism of anticancer therapy drugs to improve or diminish the drug efficacy, 
depending on whether the drug or its metabolites are effective. The cytochrome expression in lung carcinoma 
and surrounding tissues could be a crucial determiner of the efficacy of anticancer  drugs41,42. In the present study, 
cytochrome p450 was inhibited by MND1, contributing to the longer OS of LUAD cases with low MND1 expres-
sion. Previous studies demonstrated correlations between TP53 mutation and poorer prognosis in non-small cell 
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lung  carcinoma43 and epidermal growth factor receptor (EGFR)-mutated  LUAD44–46. However, the molecular 
functions of co-regulations between the targetable driver MND1 and tumor suppressor TP53 and other pathways 
such as cytochromes in the prognostic outcomes of LUAD patients have yet to be clarified. Multiplex genomic 
profiling datasets for LUAD patients are now available for machine-based-learning  approaches9,12 and can be used 
to characterize both targetable driver alterations and tumor suppressor genes or pathways that are potentially 
significant for the design of therapeutic strategies and as predictive biomarkers for therapeutic efficacy in LUAD.

In conclusion, we discovered that MND1 expression is strongly negatively correlated with OS in LUAD 
patients. Notably, the effect of MND1 expression on the prognosis of LUAD patients is independent of clin-
icopathological features. Thus, MND1 can potentially serve as a prognostic biomarker for worse OS of LUAD 
patients and a target for the design of therapeutic schemes. Moreover, multiple pathways were upregulated or 
downregulated by MND1 expression during the occurrence and development of LUAD, among which the p53 
signaling pathway might be the critical pathway through which MND1 modulated its effect on the OS of LUAD 
patients. However, our findings based on analyses of TCGA and GEO data in the present study need to be con-
firmed by analyses of biologically and functionally experimental data. The data regarding drug treatment for 
LUAD were also not available, limiting the analysis of clinical outcomes. Further in-depth studies are necessary 
to validate the results of the present study and reveal correlations between the targetable driver MND1 and the 
significant MND1-mediated pathways, which can then be applied to improve the therapeutic efficacy of treat-
ments and prolong the OS of LUAD patients.

Methods
Data collection and process for differential expression analysis. Gene expression datasets 
GSE118370, GSE19188 and GSE40791 were downloaded from the GPL570 platform (https:// www. ncbi. nlm. 
nih. gov/) and merged using Perlscript (ActivePerl-5.26.3.2603); these included data from 121 normal tissues 
and 118 LUAD tissues. The data were pre-processed for background adjustment and normalization by batch 
rectification using sva package (version 3.32.1) in R language (version 3.6.0;). The DEGs between LUAD and 
healthy tissues were analyzed with eBayes-test method of limma package (version 3.40.2) in R  language47. P 
values were adjusted using the eBayes test, and an adjusted p value (adj.p) < 0.05 and |log FC|> 2 were used as the 
cutoff thresholds.

The clinicopathological features and transcriptomic profiles of LUAD cases were downloaded from TCGA 
(https:// portal. gdc. cancer. gov/). Among 551 cases with transcriptome profiles, only LUAD tissues with full tran-
scriptomic data and survival information were included, resulting in 486 clinical files for further analysis. Sixty-
five samples (54 normal samples and 11 samples with incomplete clinicopathological features) were excluded. 
The clinicopathological features included pathological stage, age, gender, OS (survival days and survival state), 
TMN grouping, lymph node status, and distant metastasis status. All samples were tested by Illumina HiSeq 200 
RNA Sequencing v.2 analysis. Fragments per kilobase of transcript per million mapped reads (FPKM) was applied 
as the unit of gene expression for categorization of LUAD cases into high and low expression sets. Variables in 
these two sets and the prevalence of categorical variables were compared using the Wilcox test. LUAD samples 
were divided into stage I and stage II–IV, according to the clinical phase at diagnosis.

PPI network construction and hub gene analysis. The Search Tool for the Retrieval of Interacting 
Genes (STRING, https:// string- db. org/) is an online database for retrieving interacting genes, including physical 
and functional  correlations48.  STRING48 was used to understand the protein–protein interaction by submitting 
the set of proteins and the respective pathway involved in LUAD was identified by using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway database (https:// www. kegg. jp/ kegg/ pathw ay. html)49. A STRING 
search was performed to evaluate the interactive associations among DEGs using a confidence score > 0.7 as the 
cut-off criterion, and significantly differentially expressed genes for the prognosis of LUAD were elected as hub 
genes (p < 0.05). Cytoscape software (version 3.5.1)50 was applied to construct PPI networks. The hub genes in 
the network were identified with cytoHubba (version 0.1)51 in Cytoscape to characterize crucial factors in LUAD.

Gene set enrichment analysis (GSEA). GSEA is a computational tool that allows the use of a priori 
gene sets to determine significantly over-represented or down-represented gene groups between two biological 
 phenotypes52. The expression level of MND1 with 17 nodes in the PPI network was used as a phenotype label to 
measure the association between a set of genes and a phenotype in TCGA dataset. GSEA was carried out first to 
generate a sorted list of all genes based on their association with MND1 expression and then to assess whether 
survival differed significantly between the high- and low-MND1 expression groups using Java 8 (gsea-3.0.jar 
vision). Each gene set was repeatedly permutated 1000 times for each analysis. The nominal p value (NOM-p) 
and normalized enrichment score (NES) were applied to rank the pathways over-represented in each of pheno-
types. GSEA enrichment plots were drawn using ggplot2 package in R.

Statistical analysis. All data were statistically analyzed using R (v.3.6.0). The associations of clinic-patho-
logical features, including age, gender, stage, and TMN grouping, with MND1 expression were estimated using 
the Wilcoxon signed-rank test and logistic regression. The associations of clinic-pathological characteristics with 
OS were identified using univariate Cox regression and multivariate Cox regression analyses. The multivariate 
Kaplan–Meier method in the R/Survminer package (version 0.4.4) was applied to generate the Kaplan–Meier 
survival plot. Multivariate Cox analysis was performed to determine the comparative effects of MND1 expres-
sion on survival among subgroups with different clinical  parameters53: stage, lymph node status, distant metas-
tasis status, age, and gender, using the median value of MND1 expression as the cut-off criteria. A hazard ratio 
(HR) based on the Cox PH model and the corresponding 95% confidence interval (95% CI) were estimated.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://portal.gdc.cancer.gov/
https://string-db.org/
https://www.kegg.jp/kegg/pathway.html
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Data availability
The datasets generated and analyzed during the present study are available from the corresponding author upon 
reasonable request.
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